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Abstract  

Most research on decision making attends more to cognitive 
rules than to the situations in which these rules are employed. 
One characteristic of these situations is the correlation among 
the features or cues they reveal. We simulated thousands of 
decision situations that varied in 1) the number of 
alternatives, 2) the number of features, and 3) the correlations 
among features. Six, simple decision rules were then used to 
choose an alternative and their choices were compared to 
those generated by a mathematically optimal rule. Results 
show that all rules, including some that do very poorly when 
features are uncorrelated, greatly increase their chances of 
making optimal decisions as feature correlations rise. We 
discuss some implications of these results for the use of 
simple decision rules in the real world.  

Keywords: decision making; cognitive processes; mental 
rules; situations; simulation. 

Varieties of Decision Rules 
Thanks to the nature of our basic cognitive processes, 
humans have remarkable capacities to invent, store, employ, 
modify and share thousands of heuristics -- mental rules  
analogous to software applications -- to adapt to our 
environments. Many of these rules assist decision making, 
including those expressed by phrases such as “Do what you 
did before,” “Ask your doctor,” and “Flip a coin,” and those 
documented in research on decision rules and multi-attribute 
choice (e.g., see Tversky & Kahneman, 1974; Yoon & 
Hwang, 1995). 

Why do people use some rules more often than others? 
What are the consequences of employing the rules they use?  
Research reveals that rule choice is influenced by complex 
relationships among time, attention, memory and situational 
constraints, and by habit, motivation and emotion (for 
example, see Goldstein & Hogarth, 1997; Simon, 1956). 
Research also reveals that many of the most popular rules 
contain simplistic decision rules that ignore information 
potentially useful for good choices (Kahneman, 2011; 
Thorngate, 1980). As a result, bad decisions are made more 
frequently than necessary. 

Still, simple rules do not always lead to bad decisions. 
Although some simple rules frequently lead to poor choices, 
others lead to mathematically optimal choices most of the 
time (Gigerenzer, Todd & ABC Research Group, 1999; 
Thorngate, 1980). For example, a simple rule prescribing 
that equal weights should be assigned to all features of 
several alternatives produces the same choice as a 

sophisticated, weighted-average model about 60-90% of the 
time (Thorngate, 1980). 

Some differences in the capabilities of decision rules to 
generate optimal decisions stem from the amount and kind 
of information the rules employ and ignore. Other 
differences, however, are likely to stem from characteristics 
of the decision situation (see, for example, Chowdhury & 
Thorngate, 2013). 

One situational characteristic is the relationship among 
features of alternatives. Consider, for example, an employer 
scanning application forms to select a new employee. If the 
forms contain questions about the age, education, work 
experience, and current salary of applicants, then the 
answers are likely to be correlated; younger applicants 
would probably have less education, work experience, and 
salary than would their older competitors. The correlations 
could benefit an employer who uses a decision rule that 
ignores most of the available information. If, for example, 
the intercorrelations among the answers averaged r = +0.99, 
then the employer’s cursory evaluation of answers to only 
one question -- say, age -- would do almost as well as an 
attentive evaluation of answers to all questions. Under these 
conditions, even simplistic decision rules would likely do 
well. 

How much intercorrelation is needed to compensate for 
simplistic decision rules? To answer the question we 
examined how (a) the correlations among features of 
decision alternatives, and (b) the nature of the decision rule 
employed to choose among these alternatives, influenced (c) 
the probability that the best alternative would be chosen.  
We also examined how these influences were moderated by 
(d) the number of alternatives available, and (e) the number 
of features describing each alternative.  

We wrote a computer programme with functions that 
simulated seven decision rules believed to be common in 
making everyday choices. Each of these simulated rules was 
given thousands of decision situations that varied in the 
number of their alternatives and features, and in the average 
correlation among the features. One of the seven rules, the 
Max Weighted Rule, duplicated a classic, economic 
prescription for maximizing expected value. Different 
numerical weights were assigned to represent the 
importance of different features, and these weights were 
multiplied by the numerical values an alternative had on the 
corresponding features. A weighted average was then 
calculated to summarize the value of each alternative, and 
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the alternative with the highest weighted value was chosen 
and recorded. The computer programme then determined 
which alternative would be chosen by each of the remaining 
six decision rules, and tallied how often these choices 
matched the choices made by the Max Weighted Rule. 

Method 
The simulation was written in the Julia programming 
language (http://julialang.org), a recently-developed 
alternative to Matlab®.  Each run of the simulation (1) 
created a decision situation where a simulated chooser must 
select one of several alternatives presented simultaneously, 
(2) applied six simplified decision rules to select an 
alternative, and (3) reported how often the simplified rules 
made the same choice as a sophisticated, max weighted-
average rule. 

Decision Situations 
Each decision situation was represented by a matrix of 
specified number of columns and rows; each row in the 
decision matrix represented an alternative that could be 
chosen, and each column represented a feature the 
alternatives had. Each cell of the matrix was filled with a 
value for the corresponding alternative-feature combination. 
The feature-values were randomly generated from a normal 
distribution with an arbitrary mean = 100 and standard 
deviation = 15. 

Each feature was also assigned a random weight (W) 
simulating its importance. The weights summed to 1.0 and 
were ordered so that the first column of a decision matrix 
had the most weight and last column of the matrix had the 
least.  

Table 1 shows an example of a decision matrix with 3 
alternatives, each with 3 features.  

 
Table 1: Decision matrix. 

 
Alternative Feature 1 

W=0.48 
Feature 2 
W=0.39 

Feature 3 
W=0.13 

1 77.9 96.3 106.5 
2 99.7 98.9 89.8 
3 127.3 91.9 92.9 

Independent Variables. We ran our simulation with many 
possible combinations of three independent variables. The 
first independent variable was the number of alternatives 
from which users could choose: 6, 12, or 24. The second 
independent variable was the number of features that each 
alternative had: 4, 8, or 16. The third independent variable 
was the average correlation between all pairs of features: r = 
+0.0, +0.2, +0.4, +0.6, +0.8, and +1.0.  

Correlated values of the features were generated by a 
simple algorithm. We generated a normally-distributed 
random variable, Z, then generated values of features A, B, 
C, etc. by correlating each feature with Z. This resulted in 
samples of A, B, C, etc. that were correlated with each other 
with a standard mathematical formula: r(ac) = r(ab)*r(bc). If 

the population correlation between, say, A and Z was r = 
0.5, between B and Z was 0.5, and between C and Z was 
0.5, then our algorithm would generate samples of A, B and 
C that, on average, had correlations of r^2 = +0.25. 

We ran the simulation for each of the 3*3*6 = 54 
combinations of the three independent variables (three 
levels of number of alternatives * three levels of number of 
features in an alternative * six levels of correlations between 
features). For each combination, our programme simulated a 
specified set of alternatives with new, randomly generated 
numbers and weights for features. Then the programme 
chose alternatives using seven different decision rules and 
recorded these choices. 

Decision Rules 
Max Weighted (MW) Rule. The simulation programme 
multiplied feature values of each column by its 
corresponding weight and summed weighted values across 
each row to determine max-weighted alternative. For 
example, Feature 1 of each alternative in Table 1 was 
multiplied by its weight 0.48, Feature 2 was multiplied by 
0.39, and Feature 3 by 0.13. These three weighted values 
were then summed to obtain a weighted average for each 
alternative. Then the MW rule chose the alternative with 
highest max-weighted average (Alt 3 = 109.05).  
 
Equally Weighted (EW) Rule. The equally weighted 
decision rule ignored the given weights and instead assigned 
an equal weight to each feature. The rule then calculated a 
simple average feature-value for each alternative, and 
selected the alternative with highest simple average (see 
Coombs, Dawes, & Tversky, 1970, Chapter 5). In the 
example of Table 1, the EW rule would select third 
alternative because its equally-weighted average (.33*127.2 
+ .33*91.9 + .33*92.99 = 104) was highest of all three 
alternatives. 
 
Highest Minimum (HMin) Rule. Similar to the classic 
minimax criterion of choice (see Coombs, Dawes, & 
Tversky, 1970, Chapter 5), the HMin decision rule first 
identified the minimum feature-value of each alternative. 
Then it selected the alternative with the highest of these 
minimum values. Weights assigned to features were 
ignored. In the example of Table 1, the HMin rule would 
select third alternative because its minimum feature-value 
(91.9) was highest of the three. 
 
Highest Maximum (HMax) Rule. The HMax decision rule 
mirrored the HMin rule. It looked at maximum feature-value 
of each alternative and selected the alternative with the 
highest of these maximum values. Here too weights 
assigned to features were ignored. In the example of Table 
1, the HMax rule would select the third alternative because 
its maximum feature-value (127.3) was higher than the other 
two maximums (106.5 and 99.7). 
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Max Most-Important (MMI) Rule. The max most 
important rule made rudimentary use of feature weights. It 
considered only the most heavily-weighted feature (column 
1) of each alternative, selecting the alternative with highest 
value on this most-weighted feature. In the example of 
Table 1, the MMI rule would select third alternative because 
its feature-value (127.3) for the most weighted feature was 
higher than the values of other alternatives. 
 
Max Least-Important (MLI) Rule. The max least-
important decision rule was included as a whimsical 
variation of the MMI rule. It selected the alternative with 
highest feature-value for the least weighted feature. In the 
example of Table 1, the MLI rule would select the first 
alternative because its feature-value (106.5) for the least 
weighted feature was higher than the corresponding values 
(89.8 and 92.9) of the two other alternatives. 
 
Lexicographic (L) Rule. This rule also made rudimentary 
use of weights assigned to features. Each alternative was 
first evaluated with respect to most-weighted feature 
(column 1). The average value of this feature (column 1 
average) was computed, and alternatives with less-than-
average values on the first feature were eliminated from 
further consideration. After elimination, if there were more 
than two alternatives remaining, those remaining were 
evaluated with respect to the second most-weighted feature 
(column 2). The average value of this feature (column 2 
average) was then computed, and alternatives with less than 
the average value for the second feature were eliminated. 
This procedure was repeated until only one alternative 
remained. If there was a tie during elimination, one 
alternative was chosen at random. In the example of Table 
1, the L decision rule would select the third alternative after 
eliminating alternatives with less than average value (101.7) 
for first feature (column 1). 

Dependent Variables 
The programme was iterated 1000 times for each of the 54 
combinations of independent variables. When 1000 
iterations of a combination were completed, the programme 
printed the percentage of trials on which the six decision 
rules (EW, HMin, HMax, MMI, MLI, and L rules) selected 
the alternative chosen by the max weighted (MW) rule.  

Results 
Figures 1-4 show the relations between correlations among 
features (x) and percentage of choices matching those of the 
MW decision rule (y), for the six other decision rules. Each 
figure displays one of the nine combinations of number of 
alternatives and number of features. The remaining five 
combinations produced similar results. 
 
 

 
 
Figure 1: Percent of decisions matching those made by the 

MW rule in the 6-alternative and 4-feature condition. 
 

 
 

Figure 2: Percent of decisions matching those made by the 
MW rule in the 6-alternative, 16-feature condition. 

 

 
 

Figure 3: Percent of decisions matching those made by the 
MW rule in the 24-alternative, 4-feature condition. 
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Figure 4: Percent of decisions matching those made by the 
MW rule in the 24-alternative, 16-feature condtion. 

 
Figures 1-4 reveal three interesting results. First, when the 

features were uncorrelated, there was considerable variation 
in ability of different cognitive rules to produce the same 
results. The equal-weighted (EW) rule was most likely to 
select MW alternative across all nine research conditions, 
replicating the results of Thorngate (1980). Not surprisingly, 
the max-least-important rule (MLI) was the least likely to 
duplicate MW choices. The lexicographic (L) rule was the 
worst of the remainder, again replicating Thorngate (1980).  

The second interesting result can be seen by comparing 
the family of curves across all four figures. Adding 
alternatives and features to the decision situation reduced 
the percent of choices replicating those of the MW rule. 
Adding alternatives produced a somewhat larger reduction 
in this percent than did adding features (compare, for 
example, the drop in percent shown in Figures 2 and 4 
versus the drop in percent shown in Figures 1 and 3). 

Perhaps the most interesting result, however, is the 
consistent rise in the percent of decisions matching those of 
the MW rule with the rise in feature correlations. Even 
moderate correlations of r = +0.4 to +0.6 produced increases 
of 20% or more in the number of times a rule mimicked the 
MW choice. As correlations approached r = +1.0, all rules 
mimicked the choices of the MW rule quite well and, of 
course, when all correlations reached r = +1.0, all rules 
generated the MW choice all the time.  

Discussion 
Popular, simple-minded decision-making rules are often 
criticized for increasing the chances of bad decisions 
(Gigerenzer, Todd & ABC Research Group, 1999; 
Thorngate, 1980). Our simulation shows that these chances 
decline when the features describing decision alternatives 
are correlated. When the features are uncorrelated, the 
choice of a decision rule can make a big difference in the 
chances of a suboptimal choice. When the features are 
highly correlated, almost any simple decision rule will do. 

The conclusion prompts at least two questions. First, how 
correlated are the features of decision situations in the 
world? Second, should they be? Consider a judge assigned 
the task of choosing the winner of a competition for an 
academic scholarship based on information about the 
applicants' high school marks. Chances are the marks are 
correlated; marks in Grade 10 math, for example, are likely 
to be highly correlated with marks in Grade 11 math.  Under 
these conditions, it might be reasonable for the judge to save 
time and mental effort by focusing on Grade 11 mark and 
ignoring Grade 10 marks, since it is likely the resulting 
choice would be the same as one made by considering the 
latter. 

Alas, the correlations among features of alternatives in 
real decision situations are rarely known. The results of our 
simulation suggest that more attention be paid to them. 
Knowledge of the correlations would give decision makers a 
sense of the consequences of choosing a simple-minded 
decision rule. 

Such knowledge, however, prompts a more vexing 
question: Should decision situations be constructed to 
present correlated features, or to ensure the features are 
correlation free? Most people would likely judge it unfair, 
for example, to construct a scholarship application form 
with the following two questions: 

1. What was your average mark in Grade 10? 
2. What was your average mark in Grade 10? 

Yet the same people might judge the application form fair if 
"Grade 10" in Question 2 were replaced by "Grade 11,"  
even though the Grade 11 information would likely be 
almost the same. The perfect application form might contain  
only items highly correlated with scholarly merit but 
uncorrelated with each other. Could such items be found? 
And would their utility be vitiated whenever a simple-
minded decision rule is used? Answers to these questions 
are beyond the scope of the current simulation. But they 
deserve to be addressed in future studies.  
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