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Abstract

Most research on decision making attends more to cognitive
rules than to the situations in which these rules are employed.
One characteristic of these situations is the correlation among
the features or cues they reveal. We simulated thousands of
decision situations that varied in 1) the number of
alternatives, 2) the number of features, and 3) the correlations
among features. Six, simple decision rules were then used to
choose an alternative and their choices were compared to
those generated by a mathematically optimal rule. Results
show that all rules, including some that do very poorly when
features are uncorrelated, greatly increase their chances of
making optimal decisions as feature correlations rise. We
discuss some implications of these results for the use of
simple decision rules in the real world.
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rules; situations; simulation.

Varieties of Decision Rules

Thanks to the nature of our basic cognitive processes,
humans have remarkable capacities to invent, store, employ,
modify and share thousands of heuristics -- mental rules
analogous to software applications -- to adapt to our
environments. Many of these rules assist decision making,
including those expressed by phrases such as “Do what you
did before,” “Ask your doctor,” and “Flip a coin,” and those
documented in research on decision rules and multi-attribute
choice (e.g., see Tversky & Kahneman, 1974; Yoon &
Hwang, 1995).

Why do people use some rules more often than others?
What are the consequences of employing the rules they use?
Research reveals that rule choice is influenced by complex
relationships among time, attention, memory and situational
constraints, and by habit, motivation and emotion (for
example, see Goldstein & Hogarth, 1997; Simon, 1956).
Research also reveals that many of the most popular rules
contain simplistic decision rules that ignore information
potentially useful for good choices (Kahneman, 2011;
Thorngate, 1980). As a result, bad decisions are made more
frequently than necessary.

Still, simple rules do not always lead to bad decisions.
Although some simple rules frequently lead to poor choices,
others lead to mathematically optimal choices most of the
time (Gigerenzer, Todd & ABC Research Group, 1999;
Thorngate, 1980). For example, a simple rule prescribing
that equal weights should be assigned to all features of
several alternatives produces the same choice as a

sophisticated, weighted-average model about 60-90% of the
time (Thorngate, 1980).

Some differences in the capabilities of decision rules to
generate optimal decisions stem from the amount and kind
of information the rules employ and ignore. Other
differences, however, are likely to stem from characteristics
of the decision situation (see, for example, Chowdhury &
Thorngate, 2013).

One situational characteristic is the relationship among
features of alternatives. Consider, for example, an employer
scanning application forms to select a new employee. If the
forms contain questions about the age, education, work
experience, and current salary of applicants, then the
answers are likely to be correlated; younger applicants
would probably have less education, work experience, and
salary than would their older competitors. The correlations
could benefit an employer who uses a decision rule that
ignores most of the available information. If, for example,
the intercorrelations among the answers averaged r = +0.99,
then the employer’s cursory evaluation of answers to only
one question -- say, age -- would do almost as well as an
attentive evaluation of answers to all questions. Under these
conditions, even simplistic decision rules would likely do
well.

How much intercorrelation is needed to compensate for
simplistic decision rules? To answer the question we
examined how (a) the correlations among features of
decision alternatives, and (b) the nature of the decision rule
employed to choose among these alternatives, influenced (c)
the probability that the best alternative would be chosen.
We also examined how these influences were moderated by
(d) the number of alternatives available, and (e) the number
of features describing each alternative.

We wrote a computer programme with functions that
simulated seven decision rules believed to be common in
making everyday choices. Each of these simulated rules was
given thousands of decision situations that varied in the
number of their alternatives and features, and in the average
correlation among the features. One of the seven rules, the
Max Weighted Rule, duplicated a classic, economic
prescription for maximizing expected value. Different
numerical weights were assigned to represent the
importance of different features, and these weights were
multiplied by the numerical values an alternative had on the
corresponding features. A weighted average was then
calculated to summarize the value of each alternative, and
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the alternative with the highest weighted value was chosen
and recorded. The computer programme then determined
which alternative would be chosen by each of the remaining
six decision rules, and tallied how often these choices
matched the choices made by the Max Weighted Rule.

Method

The simulation was written in the Julia programming
language  (http://julialang.org), a recently-developed
alternative to Matlab®. Each run of the simulation (1)
created a decision situation where a simulated chooser must
select one of several alternatives presented simultaneously,
(2) applied six simplified decision rules to select an
alternative, and (3) reported how often the simplified rules
made the same choice as a sophisticated, max weighted-
average rule.

Decision Situations

Each decision situation was represented by a matrix of
specified number of columns and rows; each row in the
decision matrix represented an alternative that could be
chosen, and each column represented a feature the
alternatives had. Each cell of the matrix was filled with a
value for the corresponding alternative-feature combination.
The feature-values were randomly generated from a normal
distribution with an arbitrary mean = 100 and standard
deviation = 15.

Each feature was also assigned a random weight (W)
simulating its importance. The weights summed to 1.0 and
were ordered so that the first column of a decision matrix
had the most weight and last column of the matrix had the
least.

Table 1 shows an example of a decision matrix with 3
alternatives, each with 3 features.

Table 1: Decision matrix.

Alternative Feature 1  Feature 2  Feature 3
W=0.48 W=0.39 W=0.13

1 77.9 96.3 106.5
99.7 98.9 89.8

3 127.3 91.9 92.9

Independent Variables. We ran our simulation with many
possible combinations of three independent variables. The
first independent variable was the number of alternatives
from which users could choose: 6, 12, or 24. The second
independent variable was the number of features that each
alternative had: 4, 8, or 16. The third independent variable
was the average correlation between all pairs of features: r =
+0.0, +0.2, +0.4, +0.6, +0.8, and +1.0.

Correlated values of the features were generated by a
simple algorithm. We generated a normally-distributed
random variable, Z, then generated values of features A, B,
C, etc. by correlating each feature with Z. This resulted in
samples of A, B, C, etc. that were correlated with each other
with a standard mathematical formula: r(ac) = r(ab)*r(bc). If

the population correlation between, say, A and Z was r =
0.5, between B and Z was 0.5, and between C and Z was
0.5, then our algorithm would generate samples of A, B and
C that, on average, had correlations of 12 = +0.25.

We ran the simulation for each of the 3*3*6 = 54
combinations of the three independent variables (three
levels of number of alternatives * three levels of number of
features in an alternative * six levels of correlations between
features). For each combination, our programme simulated a
specified set of alternatives with new, randomly generated
numbers and weights for features. Then the programme
chose alternatives using seven different decision rules and
recorded these choices.

Decision Rules

Max Weighted (MW) Rule. The simulation programme
multiplied feature values of each column by its
corresponding weight and summed weighted values across
each row to determine max-weighted alternative. For
example, Feature 1 of each alternative in Table 1 was
multiplied by its weight 0.48, Feature 2 was multiplied by
0.39, and Feature 3 by 0.13. These three weighted values
were then summed to obtain a weighted average for each
alternative. Then the MW rule chose the alternative with
highest max-weighted average (Alt 3 = 109.05).

Equally Weighted (EW) Rule. The equally weighted
decision rule ignored the given weights and instead assigned
an equal weight to each feature. The rule then calculated a
simple average feature-value for each alternative, and
selected the alternative with highest simple average (see
Coombs, Dawes, & Tversky, 1970, Chapter 5). In the
example of Table 1, the EW rule would select third
alternative because its equally-weighted average (.33*127.2
+ .33*%91.9 + .33*%92.99 = 104) was highest of all three
alternatives.

Highest Minimum (HMin) Rule. Similar to the classic
minimax criterion of choice (see Coombs, Dawes, &
Tversky, 1970, Chapter 5), the HMin decision rule first
identified the minimum feature-value of each alternative.
Then it selected the alternative with the highest of these
minimum values. Weights assigned to features were
ignored. In the example of Table 1, the HMin rule would
select third alternative because its minimum feature-value
(91.9) was highest of the three.

Highest Maximum (HMax) Rule. The HMax decision rule
mirrored the HMin rule. It looked at maximum feature-value
of each alternative and selected the alternative with the
highest of these maximum values. Here too weights
assigned to features were ignored. In the example of Table
1, the HMax rule would select the third alternative because
its maximum feature-value (127.3) was higher than the other
two maximums (106.5 and 99.7).
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Max Most-Important (MMI) Rule. The max most
important rule made rudimentary use of feature weights. It
considered only the most heavily-weighted feature (column
1) of each alternative, selecting the alternative with highest
value on this most-weighted feature. In the example of
Table 1, the MMI rule would select third alternative because
its feature-value (127.3) for the most weighted feature was
higher than the values of other alternatives.

Max Least-Important (MLI) Rule. The max least-
important decision rule was included as a whimsical
variation of the MMI rule. It selected the alternative with
highest feature-value for the least weighted feature. In the
example of Table 1, the MLI rule would select the first
alternative because its feature-value (106.5) for the least
weighted feature was higher than the corresponding values
(89.8 and 92.9) of the two other alternatives.

Lexicographic (L) Rule. This rule also made rudimentary
use of weights assigned to features. Each alternative was
first evaluated with respect to most-weighted feature
(column 1). The average value of this feature (column 1
average) was computed, and alternatives with less-than-
average values on the first feature were eliminated from
further consideration. After elimination, if there were more
than two alternatives remaining, those remaining were
evaluated with respect to the second most-weighted feature
(column 2). The average value of this feature (column 2
average) was then computed, and alternatives with less than
the average value for the second feature were eliminated.
This procedure was repeated until only one alternative
remained. If there was a tie during elimination, one
alternative was chosen at random. In the example of Table
1, the L decision rule would select the third alternative after
eliminating alternatives with less than average value (101.7)
for first feature (column 1).

Dependent Variables

The programme was iterated 1000 times for each of the 54
combinations of independent variables. When 1000
iterations of a combination were completed, the programme
printed the percentage of trials on which the six decision
rules (EW, HMin, HMax, MMI, MLI, and L rules) selected
the alternative chosen by the max weighted (MW) rule.

Results

Figures 1-4 show the relations between correlations among
features (x) and percentage of choices matching those of the
MW decision rule (y), for the six other decision rules. Each
figure displays one of the nine combinations of number of
alternatives and number of features. The remaining five
combinations produced similar results.
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Figure 1: Percent of decisions matching those made by the
MW rule in the 6-alternative and 4-feature condition.
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Figure 2: Percent of decisions matching those made by the
MW rule in the 6-alternative, 16-feature condition.
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Figure 3: Percent of decisions matching those made by the
MW rule in the 24-alternative, 4-feature condition.
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Figure 4: Percent of decisions matching those made by the
MW rule in the 24-alternative, 16-feature condtion.

Figures 1-4 reveal three interesting results. First, when the
features were uncorrelated, there was considerable variation
in ability of different cognitive rules to produce the same
results. The equal-weighted (EW) rule was most likely to
select MW alternative across all nine research conditions,
replicating the results of Thorngate (1980). Not surprisingly,
the max-least-important rule (MLI) was the least likely to
duplicate MW choices. The lexicographic (L) rule was the
worst of the remainder, again replicating Thorngate (1980).

The second interesting result can be seen by comparing
the family of curves across all four figures. Adding
alternatives and features to the decision situation reduced
the percent of choices replicating those of the MW rule.
Adding alternatives produced a somewhat larger reduction
in this percent than did adding features (compare, for
example, the drop in percent shown in Figures 2 and 4
versus the drop in percent shown in Figures 1 and 3).

Perhaps the most interesting result, however, is the
consistent rise in the percent of decisions matching those of
the MW rule with the rise in feature correlations. Even
moderate correlations of r = +0.4 to +0.6 produced increases
of 20% or more in the number of times a rule mimicked the
MW choice. As correlations approached r = +1.0, all rules
mimicked the choices of the MW rule quite well and, of
course, when all correlations reached r = +1.0, all rules
generated the MW choice all the time.

Discussion

Popular, simple-minded decision-making rules are often
criticized for increasing the chances of bad decisions
(Gigerenzer, Todd & ABC Research Group, 1999;
Thorngate, 1980). Our simulation shows that these chances
decline when the features describing decision alternatives
are correlated. When the features are uncorrelated, the
choice of a decision rule can make a big difference in the
chances of a suboptimal choice. When the features are
highly correlated, almost any simple decision rule will do.

The conclusion prompts at least two questions. First, how
correlated are the features of decision situations in the
world? Second, should they be? Consider a judge assigned
the task of choosing the winner of a competition for an
academic scholarship based on information about the
applicants' high school marks. Chances are the marks are
correlated; marks in Grade 10 math, for example, are likely
to be highly correlated with marks in Grade 11 math. Under
these conditions, it might be reasonable for the judge to save
time and mental effort by focusing on Grade 11 mark and
ignoring Grade 10 marks, since it is likely the resulting
choice would be the same as one made by considering the
latter.

Alas, the correlations among features of alternatives in
real decision situations are rarely known. The results of our
simulation suggest that more attention be paid to them.
Knowledge of the correlations would give decision makers a
sense of the consequences of choosing a simple-minded
decision rule.

Such knowledge, however, prompts a more vexing
question: Should decision situations be constructed to
present correlated features, or to ensure the features are
correlation free? Most people would likely judge it unfair,
for example, to construct a scholarship application form
with the following two questions:

1.  What was your average mark in Grade 10?

2.  What was your average mark in Grade 10?
Yet the same people might judge the application form fair if
"Grade 10" in Question 2 were replaced by "Grade 11,"
even though the Grade 11 information would likely be
almost the same. The perfect application form might contain
only items highly correlated with scholarly merit but
uncorrelated with each other. Could such items be found?
And would their utility be vitiated whenever a simple-
minded decision rule is used? Answers to these questions
are beyond the scope of the current simulation. But they
deserve to be addressed in future studies.
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