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Abstract

Our ability to detect patterns and observe regularities is a
fundamental part of reasoning and learning. Various
theoretical accounts conceptualize induction in different
ways. In the current study, we used the balance-scale task and
mouse-tracking techniques as a means to explore the
cognitive dynamics that underlie inductive pattern
recognition. Although we did not replicate an expected
interaction between problem difficulty and task instruction
because of a procedural constraint, we were still able to
examine the implicit cognitive dynamics underlying explicit
behavioral responses as a function of problem difficulty. In
particular, we found some support that newer, non-
algorithmic accounts of cognition on such tasks better
characterize performance than rule-based accounts.
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Inductive reasoning is a fundamental component of the
scientific process. A key cognitive process underlying
scientific reasoning skills (e.g., prediction, hypothesis
testing, conceptual change) is the ability to induce patterns
in evidence. In order to discover laws and formulate
hypotheses, scientists use induction to find regularities in
observed phenomena. Sometimes we may search explicitly
for rules that govern natural phenomena, but we also use
implicit learning processes to discover patterns and rules.
The processes that underlie induction have been
conceptualized in different ways. According to information-
processing accounts, knowledge structures can be described
in terms of symbols, algorithms, and rules. More recent
theories in psychology, such as the dynamic systems
approach (Thelen & Smith, 1994), have conceptualized
learning and change in terms of human behavior being
situated and embodied. Dynamic systems theory has
provided insight into accounting for change, but largely with
respect to perceptual and motor processes. Thus far, it has
been difficult for us to determine the best way to apply
dynamic systems concepts to higher-level cognitive
phenomena such as inductive reasoning. New research
techniques and data-analytic methods allow us to apply
these theoretical constructs and explanations to higher-level
cognition. Although computerized tasks have been used to
measure accuracy and reaction time, mouse tracking can be
used to examine the temporal, embodied, and dynamic
elements of cognition, and to track learning across micro
timescales. Moreover, this technique provides a window
into the implicit processes that underlie explicit responses.

The Balance-Scale Task

Piaget introduced the balance-scale task as a means of
studying cognitive development (Inhelder & Piaget, 1958).
Participants make predictions about a two-arm balance scale
on which weights are placed on pegs at different distances
from the fulcrum. Siegler (1976) demonstrated that changes
in performance could be described with respect to different
strategies or rules. Several theoretical accounts of change
have been proposed. Proponents of classic information-
processing theories (e.g., Klahr & Siegler, 1978) argue that
we acquire a series of algorithms that we transition through
as a function of experience. According to connectionist
accounts (e.g., McClelland, 1989), changes in performance
are a result of learning statistical relations between problems
and correct answers. Zimmerman (1999) derived predictions
for performance from an analysis of how neural networks
solve these problems and an analysis of the problem space.
In particular, these predictions focused on the idea that
performance measures (accuracy and response time) should
vary as a function of where a problem is located in the
problem space (e.g., participants should react faster and
more accurately to problems with a high torque difference).
Dynamic systems theorists (e.g., van der Maas &
Raijmakers, 2009) discuss transitions in terms of patterns of
variability and stability; a previously stable behavioral
pattern becomes highly variable and undergoes a sudden
transition to a new pattern of behavior.

Over the last few decades, many researchers have
examined performance on the balance-scale task, typically
with the goals of determining (a) what underlying
competencies exist at different ages and (b) how
performance is affected by factors such as the number of
pegs and weights and whether feedback is given
immediately following each trial. The balance-scale task
has several features that make it ideal for studying cognitive
change and learning. It is simple enough that young children
understand the task demands, yet the underlying physics
principle (torque) is complex enough that adults require
much experience with the task before they can induce the
underlying physical rules. The problem space has been
analyzed in detail (Zimmerman, 1999), and we know much
about the context effects that influence performance and
facilitate rule discovery (Messer, Pine, & Butler, 2008).
Zimmerman and Pretz (2012) examined the effects of
instructing participants to make rapid predictions or to think
deeply and try to discover the rule underlying the balance
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task. Participants who made quick predictions without
thinking about potential rules demonstrated superior
performance on the most difficult problems, and had better
performance on a transfer task.

Kloos and Van Orden (2009) document a large number of
context effects, including the number of response options
available to participants, the magnitude of the torque
discrepancy between the two arms, and whether
proprioceptive feedback was given. This strong context
dependence, found not just on the balance-scale task, but in
most tasks used in psychological research, admits the
conclusion that there may be no such thing as a context-free
competence that can be uncovered via carefully controlled
experiments. Rather, context is “constitutive of cognition”
(Riley, Shockley, & Van Orden, 2012, p. 26). Such a
conclusion is problematic for traditional cognitive science
theories, as they are typically predicated on explaining task
behavior in terms of the functioning of specific cognitive
components.

However, from a dynamical systems perspective,
behavior on the balance-scale task is not the result of
participants applying a rule or set rules to each problem, but
instead results from the soft-assembly (Turvey & Carello,
1981) of the cognitive system, whereby contextual factors
constrain the system such that the set of possible responses
to a problem reaches a critical state and is collapsed to one
response over the time scale of a single trial. On this view,
participants are seen as anticipating stimuli rather than just
reacting to them, which leads to the prediction that recent
trials should affect behavior, a process known as iterativity
(Van Geert, 2003). Over the course of the experiment, the
cognitive system reorganizes as a result of exposure to
multiple trials and feedback on the accuracy of predictions.
As the mental representation of the problem changes,
participants will change strategies. The emergence of new
representations is characterized by an increase in entropy or
variability until a critical instability is reached, at which
point a rapid decrease in variability will occur as the system
undergoes a phase transition and stabilizes into a new
organization (Stephen & Dixon, 2009). Each successive
organization of the cognitive system produces behavior that
can be described in terms of the rules described by Siegler
(1976), but is not governed by these rules.

To examine the predictions made by dynamic systems
theory, we need to conduct fine-grained analyses of real-
time behavior. Researchers typically use button presses to
measure accuracy and reaction times. However, accuracy
averaged over a set of trials (e.g., proportion of correct
responses) is not a sensitive measure of change. By
recording the x, y coordinates of mouse movements we can
record participants’ ongoing cognitive dynamics as they
decide which response to select.

One aim of the current study is to examine implicit
responses on the balance-scale task by examining the
temporal dynamics of response choice. The response that a
participant selects in any given trial is an explicit response.
An analysis of the extent to which the trajectory of the

mouse movement deviates towards the distracter informs us
of an implicit response. A large deviation away from the
target response indicates that at least two potential responses
are activated prior to the final explicit decision. Smaller
deviations indicate that the distracter response may not have
become so highly activated on that particular trial. By
comparing deviations from the target response on different
trials, we can examine whether participants are differentially
attracted to the distracter as a function of the difficulty of
the problem at hand. We can classify the difficulty of
individual balance-scale problems with respect to the torque
difference between the two arms and the number of
strategies that yield the correct solution. When presented
with high torque-difference problems, participants should
move towards a single strong attractor basin in the state
space for that problem (Spivey, 2007). More difficult
problems, with low torque difference, can be described in
terms of a state space with two strong attractors: both ‘left’
and ‘right’ are strong attractors for the response.

Our second aim was to try to replicate Zimmerman and
Pretz’s (2012) finding that the instructions given to
participants for how to approach the task interacted with
problem difficulty. Participants instructed to try to discover
the rule that would allow accurate predictions had an
advantage in accuracy for problems that were easy. This
advantage was reversed for those instructed to respond
quickly without thinking too much; this instruction resulted
in greater accuracy on the most difficult problems and
significantly better transfer. An analysis of mouse
movements will allow us to examine the cognitive dynamics
underlying response choices in these two different
instructional conditions for problems of varying difficulty at
both shorter and longer timescales. Such an analysis can
inform a theoretical account of how rapid, unreflective
responding differs from more analytic responses, and why
there is an advantage for rapid responding for difficult
problems.

Method
Stimuli

Stimuli consisted of a set of 144 pictures of balance scales,
which were presented in the center of a computer screen
(see Figure 1). Each balance scale had 5 pegs on each arm
and had between 1 and 5 weights on one of the pegs on each
arm. Although there are 625 possible 5-peg, 5-weight
balance scales, we used a restricted set of 144 problems for
two reasons. First, 64% of the complete problem set
contains problems where only weight or distance varies, or
where one arm has a greater number of weights at a greater
distance. Such problems are very easy to solve, and the
latter type are not typically used, even in studies with
children. Second, we did not include any scales that
balanced (7.8% of the problem space), so that we could
restrict the response choices to left or right. The remaining
problems constitute a set that allowed a sampling of an
approximately equal distribution of problems of three levels
of difficulty.
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Figure 1: Screenshot of the MouseTracker experiment.

Some examples of balance scales used in the task are
illustrated in Figure 2. Easy problems are defined as those
for which the torque difference between the two arms of the
balance scale is between 5 and 15. The example in Figure 2
has a torque difference of 8 (4w x 1d vs. 3w x 4d). Medium
problems have torque differences less than 5 and can be
solved by either adding or multiplying weights and
distances. In the example, the torque difference is 2 (4w x
2d vs. 2w x 3d), but a correct prediction also results when
adding weights and distances (i.e., 4w+2d vs. 2w+3d). Hard
problems also have torque differences less than 5, but
require multiplication of weight and distance to make
accurate predictions. Adding weights and distances will lead
to an incorrect prediction.

Procedure

Participants were 154 university students (M age = 20.2; SD
= 2.8) from Illinois State University who volunteered to
participate for extra course credit. A computerized balance-
scale task was used. Participants were asked to make
predictions about whether the scale would tip left or tip
right. After completing a set of practice trials, participants
started each trial by clicking the “start” button at the bottom
center of the screen. Immediately after the button click, a
pair of response buttons marked “left” and “right” appeared
at the upper corners of the screen and an image of a balance
scale appeared in the center of the screen. Participants were
encouraged to initiate responses as quickly as possible. On
trials in which response initiation was over 1000ms, a
message was presented to remind participants to start
moving the mouse immediately. Stimuli were presented
using MouseTracker (Freeman & Ambady, 2010). On trials
in which correct predictions were made, there was no
feedback (a constraint of the program), and participants
proceeded to the next trial. For incorrect predictions, a red X
appeared in the center of the screen for 1000ms. Participants
completed 4 blocks of 44 trials, and were told they could
take a break between blocks. In addition to recording
response choices and reaction times, we recorded the
streaming x, y coordinates of mouse movements on each
trial and normalized each trajectory into 101 time steps in
order to compare trials of varying duration.
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Figure 2: Sample balance scale problems. Top left: easy, top
right: medium, and bottom: hard.

Design and Analyses

Each participant was randomly assigned to one of two
conditions. In the prediction condition (n = 77), they were
instructed to make predictions only, that is, to make speeded
intuitive judgments without thinking too much about each
problem. In the rule-seeking condition (n = 77), they were
instructed to make predictions and to attempt to discover the
rule that would then allow accurate predictions on every
trial." Each block of 44 trials consisted of a randomly
presented mix of easy, medium, and hard problems. The
design was thus a 2 (instruction condition) x 3 (difficulty) x
4 (block) mixed design, with instruction condition as a
between-subjects variable and block and problem difficulty
as within-subjects variables.

The dependent variables were accuracy, response time,
and maximum deviation from an idealized trajectory toward
the correct response. The latter is computed by recording the
x, y coordinates of mouse movements from the start position
to the predictions of “left” or “right” on each trial. This
method allows us examine participants’ ongoing cognitive
dynamics as they decide which response to select. The
extent to which mouse trajectories exhibit curvature away
from the correct response is indicative of an evolving
response, in which the activations of multiple competing
and conflicting implicit responses change over time before
resolving into an explicit response. We analyzed accuracy,
reaction times, and mouse trajectory curvature using 2
(instruction) x 3 (problem difficulty) x 4 (block) mixed
ANOVAs. We also conducted a series of linear regression
analyses, with torque difference as the predictor. In order to
compare the trajectories of correct and incorrect responses,
we conducted an additional mixed ANOVA with accuracy
(correct vs. incorrect) as a repeated-measures variable.

Results and Discussion
Accuracy

As expected, there was a main effect of problem difficulty
on accuracy, F(2, 304) = 313.92, p < .001, with correct
response chosen most frequently for easy problems and least

! One potential criticism of this manipulation is that the rule-
seeking participants had a higher cognitive load. Our previous
research showed equivalent performance for the prediction
and prediction-plus-load conditions (Zimmerman, 2010).
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Figure 3: Accuracy of responses (%) by problem difficulty
and instruction condition

frequently for hard problems. There was a main effect of
instruction, F(1, 152) = 15.61, p = .01, with greater
accuracy in the prediction condition than in the rule-seeking
condition (see Figure 3). A difficulty x block interaction,
F(6, 912) = 297, p = .007, revealed that accuracy for
medium problems increased across blocks, but not for easy
or hard problems. Torque difference significantly predicted
accuracy, b = 2.16, #(1692) = 23.19, p < .001, and explained
a significant proportion of the variance, R* = .24, F(1, 1692)
= 537.85, p < .001. The expected interaction between
instruction and difficulty found by Zimmerman and Pretz
(2012; Experiments 1-3) was not replicated. Moreover, the
expected advantage for those seeking the rule on easy and
medium problems was not evident, with those in the
prediction condition having a non-trivial advantage with
respect to accuracy for all problem types (d = .50).

Response Time

There was an expected main effect of problem difficulty,
F(2,304) = 22.68, p < .001, with fastest responses for easy
problems (see Figure 4). Response times decreased over
time, F(3, 456) = 20.01, p < .001. Participants in the
prediction condition responded faster than those in the rule-
seeking condition, F(1, 152) = 6.16, p = .014. A block x
instruction interaction, F(3, 456) = 5.25, p = .001, revealed
a greater decrease in response time for rule-seekers.

The response time pattern for the prediction condition is
similar to that found by Zimmerman and Pretz (2012);
however, response times here are faster than what they
reported for rule-seekers (i.e., means of 3.9 to 4.6 sec across
three experiments). The pattern here is consistent with
participants who found the task too challenging and gave up
looking for the underlying rule (see Zimmerman & Pretz,
2012; Experiment 3). Taken together, this pattern suggests
that our instructional manipulation did not have the
expected effect. Alternatively, the constraint of needing to
start a mouse movement quickly may have made it difficult
for rule-seekers to follow our instructions to try to discover

3300
3100
@ 2900 <
£ \Y
QE, 2700 -
.- \ .
Z 2500 - \\...
& 2300 a0 A\an 0
£ . 3
22100 > AN
7 N\ Ceseveceecer ~ ..
£ 1900 —NC=—= \‘\'
1700
1500
BI‘BZ‘B3‘B4| B1|B2|B3|B4
Prediction Rule-seeking
Easy == == «Medium ceecceceee Hard

Figure 4: Response times (ms) by problem difficulty, block
(B1-B4), and instruction condition.

the rule. Ultimately, this constraint made the task difficult
for rule seekers; by the last block, response times are not
that different from those making predictions alone.

Maximum Deviation

Consistent with our suspicion that our instructional
manipulation did not work as expected, there were no
effects of instruction condition or interactions, so further
analyses on maximum deviation and trajectory data combine
data from the two groups. There were main effects of
problem difficulty, F(2, 304) = 67.70, p < .001, and block,
F(3, 456) = 17.32, p < .001. On easy problems there was a
smaller deviation towards the distracter than on medium and
hard problems, and there was less deviation towards the
distracter during the first block than on blocks 2 to 4 (see
Figure 5). A regression analysis revealed that torque
difference significantly predicted maximum deviation, b = -
.02, ((1691) = -12.59, p < .001, and explained a significant
proportion of the variance, R = .09, F(1, 1691) = 158.57, p
<.001.
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Figure 5: Maximum deviations from an idealized trajectory
for the three problems types over the four blocks.
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Figure 6: Maximum deviations of the idealized trajectory
for the three problem types on correct and incorrect trials.

Comparison of Correct and Incorrect Responses

We compared mouse trajectories and their maximum
deviations for correct and incorrect responses using a mixed
2 (accuracy) x 3 (difficulty) x 4 (block) ANOVA. There was
a main effect of accuracy, F(1, 84) = 20.60, p < .001, and an
accuracy x difficulty interaction, F(2, 168) = 8.57, p < .001
(see Figure 6). Overall, participants’ mouse movements
demonstrated greater attraction to the unselected response
before making a response on incorrect trials than on correct
trials. The correct response thus had greater attraction on
trials where the incorrect response ended up being chosen
compared to distracter response on correct trials. This effect
was exaggerated for easy problems.

We calculated the average x-coordinates for each of the
101 normalized timesteps for each level of problem
difficulty on correct and incorrect trials. As there was no
effect of block on maximum deviation scores, we combined
trials from the four blocks. We subtracted the coordinate
values for the incorrect trials from the coordinate values of
the correct trials at each timestep to provide a series of
difference scores. Figure 7 illustrates the differences
between correct and incorrect trials for each of the three
problem difficulties. Positive values indicate where mouse
positions deviated more towards the unselected response on
incorrect trials than on correct trials and negative values
show where correct trials deviated more towards the
unselected response.

During easy problem trials, there was less deviation
towards the unselected response on correct trials than
incorrect trials, whereas there was little difference between
correct and incorrect trials for hard problems. On medium
difficulty trials, there is an early deviation toward the
correct response on correct trials, relative to incorrect trials,
followed by a deviation toward the distracter response later
on, around timestep 68.

The timecourse of mouse trajectories follows a different
pattern for each level of problem difficulty. The pattern for
easy problems indicates that features of the problem rapidly

X Coordinate Difference

cesesees Hard

Easy = == «Medium

Figure 7: X-coordinate difference between correct and
incorrect responses at each timestep. Positive values
indicate greater deviation toward the unselected response on
incorrect trials.

led to a greater activation of the correct response. The
patterns for medium problems look similar to those for easy
problems early on, but later in the trial, there is greater
relative movement toward the distracter response on correct
trials, suggesting that the unselected response became more
highly activated at different time points for correct and
incorrect responses.

General Discussion

Our goal was to use mouse-tracking techniques to provide
insight into the implicit cognitive dynamics underlying
explicit response choices in a well-studied task. Zimmerman
and Pretz (2012) reported a robust interaction between
difficulty and instruction; such context effects make the
balance-scale task a strong candidate for examining the
ways in which contextual constraints operate at different
levels to affect behavior, and how both motor and strategic
behaviors evolve over time in response to those constraints.

Unexpectedly, participants in the prediction condition
made faster and more accurate responses across the board,
relative to those in the rule-seeking condition. The time
constraint we placed on participants to ensure that we
captured online processing (i.e., to start mouse movements
within 1000ms of clicking “start”) was consistent across
conditions. However, the effect on those seeking the rule
was profound. Their accuracy was lower than expected for
easy and medium problems, and their response time patterns
indicate that they gave up very early in the experiment. In
essence, we may have turned every problem into a hard
problem for these participants.

Our results show that participants learned something
about the medium difficulty problems over the course of the
experiment, as evident by the interaction between block and
difficulty. However, there was no increase in accuracy for
easy or hard problems, and the maximum deviations did not
decrease over time; rather, they increased for all problem
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types over the first two blocks then remained stable. These
data show that, even after 144 trials, participants were not
able to reliably use feedback to make accurate predictions
(or to discover the torque rule), and that the relative
activation strengths (i.e., attraction to the two response
choices) remained stable over the experiment.

If participants were using an addition rule, we would
expect to see greater differences between the medium and
hard problems, and if they used a multiplication (torque)
rule, we would expect better (but slower) overall
performance. In fact, all dependent measures — accuracy,
response time, and maximum deviation — are predicted by
the torque difference between the two arms of the balance
scale, suggesting that predictions are not made using explicit
mathematical rules, but rather by a more implicit weighting
of the elements of each problem. However, medium and
hard problems have the same low torque differences. Thus,
torque difference alone cannot account for the differences in
accuracy between the two. According to a dynamic systems
account, our pattern of results can be explained in terms of
multiple constraints. The exact features of every problem,
including torque difference and the way in which that
difference is instantiated across the two arms in terms of
distance and weight, all contribute to an evolving response.

When we compared x-coordinate differences between
correct and incorrect responses at each timestep, we found
differential attraction to the distracter response as function
of problem difficulty. Relative to incorrect trials,
performance on correct trials indicated that easy problems
led to a strong initial activation of the correct response; any
competition from the distracter was soon inhibited. For
medium problems, the patterns were more complex
suggesting that competing representations achieved partial
activation at various points during a trial.

In conclusion, our data partially support a dynamic
systems account of behavior on the balance-scale task. Our
data do not support the claim that participants applied rules;
response choices evolved over single trials as a function of
problem features. However, we did not observe patterns of
variability and stability over time; there were no indications
of rapid transitions to new states. In future studies, rule
discovery can be induced by providing difficult, yet highly
diagnostic problems (Zimmerman & Pretz, 2012). This type
of learning environment will allow an analysis of the
behavioral patterns that precede rule discovery, and inform
our understanding of how constraints operating at nested
spatiotemporal scales yield a phase transition to a new
strategy.

References

Freeman, J. B., & Ambady, N. (2010). MouseTracker:
Software for studying real-time mental processing using a
computer mouse-tracking method. Behavior Research
Methods, 42, 226-241.

Inhelder, B., & Piaget, J. (1958). The growth of logical
thinking from childhood to adolescence. New York, NY:
Basic Books.

Klahr, D., & Siegler, R. S. (1978). The representation of
children's knowledge. In H. W. Reese & L. P. Lipsitt
(Eds.), Advances in child development and behavior (Vol.
12). New York, NY: Academic Press.

Kloos, H. & Van Orden, G. C. (2009). Soft-assembled
mechanisms for the unified theory. In J.P. Spencer, M.
Thomas, & J. McClelland (Eds.), Toward a new grand
theory of development: Connectionism and dynamics
systems theory reconsidered. Oxford, UK: Oxford
University Press.

McClelland, J. L. (1989). Parallel distributed processing:
implications for cognition and development. In R. G. M.
Morris  (Ed.),  Parallel  distributed  processing:
Implications for psychology and neurobiology. Oxford,
UK: Oxford University Press.

Messer, D. J., Pine, K.J. & Butler, (2008). Children’s
behaviour and cognitions across different balance tasks.
Learning and Instruction, 18, 42-53

Riley, M. A., Shockley, K., & Van Orden, G. (2012).
Learning from the body about the mind. Topics in
Cognitive Sciences, 4, 21-34.

Siegler, R. S. (1976). Three aspects of cognitive
development. Cognitive Psychology, 8, 481-520

Stephen, D. G., & Dixon, J. A. (2009). The self-
organization of insight: Entropy and power laws in
problem solving. Journal of Problem Solving, 2, 72-101.

Thelen, E., & Smith, L. B. (1994). A dynamic systems
approach to the development of cognition and action.
Cambridge, MA: Bradford Books/MIT Press.

Turvey, M. T., & Carello, C. (1981). Cognition: The view
from ecological realism. Cognition, 10, 313-321.

Van der Maas, H. L. J., & Raijmakers, M. E. J. (2009).
Transitions in cognitive development: Prospects and
limitations of a neural dynamic approach. In J.P. Spencer,
M. Thomas, & J. McClelland (Eds). Toward a new grand
theory of development: Connectionism and dynamics
systems theory reconsidered. Oxford, UK: Oxford
University Press.

Van Geert, P. (2003). Dynamic systems approaches and
modeling of developmental processes. In J. Valsiner and
K. J. Conolly (Eds.), Handbook of developmental
psychology. London, UK: Sage.

Zimmerman, C. (2010, June). The interaction of implicit vs.
explicit processing and problem complexity in scientific
reasoning. Presented at the Second Purdue Symposium on
Psychological Sciences (Psychology of Science: Implicit
and Explicit Reasoning). West Lafayette, IN.

Zimmerman, C. (1999). A network interpretation approach
to the balance scale task (Unpublished doctoral
dissertation). University of Alberta.

Zimmerman, C., & Pretz, J. (2012). The interaction of
implicit versus explicit processing and problem difficulty
in a scientific discovery task. In R. Proctor and J. Capaldi
(Eds.), The psychology of science: Implicit and explicit
processes. Oxford, UK: Oxford University Press.

3166



