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Abstract

Understanding how humans control unstable systems is cen-
tral to many research problems, with applications ranging from
quiet standing to aircraft landing. Increasingly much evidence
appears in favor of event-driven control hypothesis: human op-
erators are passive by default and only start actively controlling
the system when the discrepancy between the current and de-
sired system states becomes large. The present study proposes
a cognitive model describing the transitions between the pas-
sive and the active phase of control behavior. The model is
based on the concept of random walk in double-well potential
widely employed in physics. Unlike the conventionally used
model of fixed threshold, the proposed model is intrinsically
stochastic and thus conforms to the physiological interpreta-
tion of the threshold as a probabilistic rather than deterministic
notion. The model is studied numerically and is confronted to
the experimental data on virtual stick balancing. The results
confirm the validity of the model and suggest that the double-
well potential can be used in modeling human control behavior
in a diverse range of applications.
Keywords: Stochastic modeling; control behavior; stick bal-
ancing; intermittency

Control of unstable systems underlies many critical proce-
dures performed by human operators (e.g., manipulation of
industrial machinery, aircraft landing), as well as numerous
routines that all of us face in daily life (e.g., standing upright,
riding a bicycle, carrying a cup of coffee). Eliciting and mod-
eling the basic mechanisms of human control can help us to
understand the nature of such processes, and in the end, hope-
fully, to reduce the risks associated with human error.

Continuous control models describe human actions well
in many situations (Gawthrop, Loram, Lakie, & Gollee,
2011). On the other hand, increasingly much evidence
appears in favor of more general concept —intermittent
control (Gawthrop et al., 2011; Loram, Gollee, Lakie, &
Gawthrop, 2011; Balasubramaniam, 2013; Milton, 2013).
The latter implies that human control is discontinuous, re-
peatedly switching on and off instead of being always active
throughout the process.

Intermittency has long been attributed to a general class
of human control processes (Craik, 1947). However, de-
spite being recognized for decades, human control intermit-
tency is still far from being completely understood. The
event-driven control hypothesis has recently become the most
widely employed explanation of intermittency of human con-
trol (Gawthrop et al., 2011; Milton, 2013). Event-driven
models build up on the fact that human operators cannot de-
tect small deviations of the controlled system from the goal
state. Therefore, the control is switched off as long as the
deviation remains below a certain threshold value (Fig. 1a).

Whenever the deviation exceeds the threshold, the control is
switched on so that the system is driven back to the goal state.

The existing models based on the standard, deterministic
threshold mechanism can explain many features of experi-
mentally observed dynamics. Possibly that is why the na-
ture of the threshold as some precise, fixed number has rarely
been questioned in the literature on human control. In the real
control process, where the control switches on and off many
times, would the operator always react to precisely the same
deviation? If not, then how diverse are the actually imple-
mented threshold values?

The concept of threshold is not deterministic but proba-
bilistic, as evidenced by psychophysics (Gescheider, 1997).
In principle, the perception threshold is characterized not by
a fixed value, but by a probability distribution of the stimulus
magnitude allowing one to recognize the stimulus. However,
the magnitude corresponding to the 50 % chance of recog-
nizing the stimulus is commonly used as a simple shortcut
for the perception threshold. Indeed, ignoring the variability
of the threshold may be completely plausible as long as this
variability is low enough. In such cases the fluctuations of the
threshold would have a minor effect on the system dynamics
and may be neglected. However, we argue that in controling
unstable objects human operators can disregard not only the
small deviations that cannot be perceived, but also the devia-
tions significantly exceeding the perception threshold.

In contrast to psychophysical experiments, in controling
unstable objects many factors other than the magnitude of
stimulus (i.e., deviation from the goal) affect the actual
threshold value triggering human response. For instance, if
the control process lasts for a relatively long time, the mental
expenses for staying perfectly aware of the smallest devia-
tions may be unbearable for the operator. In this case, even
the deviation that can otherwise be clearly perceived may be
neglected due to energy considerations. Another relevant fac-
tor is the limited ability of the operator to precisely manipu-
late the unstable system. Even a highly skilled operator can-
not accurately compensate for small, barely detectable devia-
tions. In order not to destabilize the system by the imprecise
interruption, the operator may prefer to wait until the devia-
tion becomes large enough. As a result, the corrective move-
ments need not be thoroughly planned and implemented.
These and some other factors may cause high variability of
the actual threshold triggering human control (Fig. 1b).

In the present paper we propose a stochastic model cap-
turing the probabilistic nature of human control. The model
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(a) Fixed reaction threshold

(b) Probabilistic reaction threshold

Figure 1: Two basic models of human reaction threshold

introduces two mechanisms, “how to react” and “when to
react”, which jointly determine the operator control behav-
ior. We hypothesize that it is the stochasticity of the sec-
ond mechanism that mainly causes the random fluctuations in
the dynamics of unstable systems under human control. This
stochasticity is captured in the model by means of the double-
well potential concept inherited from physics. To confirm the
validity of the model, we confront it with the experimental
data on overdamped stick balancing. Our results suggest that
the stochastic mechanism of control triggering may be a key
to understanding the dynamics of human-controlled systems.

Methods
Ten right-handed healthy volunteers (six male, four female,
aged from 20 to 61, median 26) participated in the experi-
ments. Three subjects had previously participated in the pre-
liminary experiments involving the same task (Zgonnikov,
Lubashevsky, & Mozgovoy, 2012, 2013). Seven other par-
ticipants had had no prior experience in either virtual or real
stick balancing. On the computer screen the subjects saw a
vertically oriented stick and a moving cart rigidly connected
with the base of the stick (Fig. 2). The task was to main-
tain the upright position of the stick by moving the platform
horizontally via computer mouse.

The stick dynamics were simulated by numerically solving
the following ordinary differential equation

τθθ̇ = sinθ− τθ

l
υcosθ , (1)

where θ is the angular deviation of the stick from the vertical
position, θ̇ is the angular velocity of the stick, and υ is the
velocity of the cart controlled by the operator via computer
mouse. The parameter τθ defines the time scale of the stick
motion, and the stick length l de facto determines the typical
magnitude of the cart displacements required for keeping the

Figure 2: One-degree-of-freedom overdamped inverted pen-
dulum.

Figure 3: Typical cart velocity pattern of the overdamped
stick balancing obtained experimentally. The trajectory rep-
resents the randomly selected 10-second time fragment of
balancing without stick falls.

stick upright. The parameter values used in the experiments
are τθ = 0.3, l = 0.4.

The experiment consisted of one-minute practice period
and three five-minute recorded trials separated by two three-
minute rest periods. The distance between the monitor and
the subject eyes was about 70 cm, the stick length on the
screen was about 10 cm. The screen update frequency was
60 Hz. The horizontal position of mouse cursor on the screen
was sampled with frequency of 50 Hz.

Results
Pronounced intermittent control patterns were found in all
subjects. The observed intermittency is illustrated by the typ-
ical cart velocity dynamics (Fig. 3). The subjects control the
stick intermittently: they spend substantial portion of time in
the passive control phase. The fragments of active control are
most often isolated and unimodal.

The typical phase trajectory of the stick balancing in the
θ− θ̇ phase plane provide important insights into the system
dynamics (Fig. 4). Based on the phase trajectory it is easy
to reconstruct the typical pattern of the observed operator be-
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Figure 4: Typical phase trajectory of the overdamped stick
balancing obtained experimentally. The trajectory represents
the randomly selected 30-second time fragment of balancing
without stick falls.

havior. Given that the initial deviation of the stick from the
vertical position is small, the operator takes no action, so the
stick falls on its own for some time. Then, the operator takes
the control over the system, moving the cart to compensate
for the deviation. The corrective movements are generally im-
precise: the operator practically never drives the stick close to
the upright position. Substantial errors are usually corrected
straight away. On contrary, in the case of small to moderate
error the operator usually halts the control for some time after
the initiated cart movement is completed, even if the resulting
deviation from upright position is evident.

To check whether the diversity in the subjects’ age and pre-
vious task experience leads to fundamentally different prop-
erties of the system dynamics, we analyzed the statistical dis-
tributions of the system state variables. The distributions of
the stick angle θ and the angular velocity θ̇ are extremely sim-
ilar (up to scale) for all ten subjects (Fig. 5). The angle has
approximately Laplacian distribution, however, the distribu-
tion is bimodal with a narrow gap (width of order 0.1 std(θ)).
The angular velocity distribution is similar in profile to the
angle distribution. Both the θ and θ̇ distributions are substan-
tially non-Gaussian, which confirms that the observed control
behavior is highly nonlinear.

The remarkable similarity of the distributions across the
experimental group (up to scale) may indicate that all the sub-
jects employ the same nonlinear mechanisms in controling
the stick.

Model
To infer the key mechanisms governing the intermittent con-
trol behavior observed in the experiments, we construct a
model for the dynamics of overdamped stick controlled by
human operator. We single out two control mechanisms that
are hypothesized to be crucial in the given setting. We pro-

Figure 5: Experimentally obtained distributions of stick an-
gle and angular velocity. The angle and angular velocity val-
ues are normalized with respect to their standard deviations:
θ→ θ/std(θ), θ̇→ θ̇/std(θ̇). Colored lines represent the dis-
tributions for each subject. Solid black lines represent the
average distributions calculated based on the aggregated data
for all the subjects. Dashed lines represent the Laplace distri-
butions (zero mean, unit variance) for reference.

pose a mathematical model that captures only these specific
mechanisms, neglecting the factors of supposedly minor im-
portance. Finally, we confront the model with the experi-
mental data to verify our hypothesis about the mechanisms of
human control in the analyzed task.

The overdamped stick dynamics are governed by Eq. (1).
For simplicity, prior to constructing the control model we lin-
earize it near the vertical position θ = 0,

τθθ̇ = θ− τθ

l
υ, (2)

where the cart velocity υ is controlled by the operator.
We hypothesize that two mechanisms jointly determine the

operator control behavior. The first mechanism determines
the control dynamics in the active control phase, regulating
the magnitude of control based on the deviation of the sys-
tem from the desired state (“how to react”). The second
mechanism is responsible for detecting the events that should
be responded to (“when to react”). Within this framework,
we suppose the first mechanism to operate as an open-loop
controller intermittently activated by the second mechanism,
which is based on the idea of stochastic control triggering.
The dynamics of the two mechanisms are independent, al-
though coupled. Appealing to the idea of the phase space
extension (Zgonnikov & Lubashevsky, 2014), we decompose
the term υ representing human control in Eq. (2) into two
separate phase variables:

υ = uξ, (3)
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where u describes the dynamics of the “how-to-react” mech-
anism and ξ represents the “when-to-react” mechanism.

“How-to-react” mechanism
Human control is often characterized by open-loop, prepro-
grammed corrective actions, rather than closed-loop feed-
back strategies (Ben-Itzhak & Karniel, 2008; Gawthrop et al.,
2011). In the current context it may imply that once the op-
erator launches a hand movement to compensate for the de-
tected stick deviation, this movement is not interrupted until
fully executed. Indeed, many variations of such a strategy are
possible. For example, our experimental results suggest that
if the operator generates a highly imprecise movement, this
movement is likely to be corrected early despite still being
executed. However, in the model we capture only the basic
pattern of open-loop control: once the deviation is detected,
the system is driven to some vicinity of the goal state by a
single preprogrammed, short control effort.

In the analyzed task the operator accelerates the cart on the
screen in response to the current state of the system, θ and u.
The basic pattern of the operator actions in the active control
phase can be easily captured by the following equation

u̇ = γθ−σu, (4)

where γ and σ are non-negative constant coefficients.

“When-to-react” mechanism
In modeling the “when-to-react” mechanism we employ the
concept of event-driven intermittency: the control is triggered
whenever the system essentially deviates from the goal state.
How particularly the operator determines whether the devia-
tion is essential or not is however a non-trivial question.

We hypothesize that in controlling an unstable system the
operator can be either in the “act” state or in the “wait” state,
which is determined in part by the current deviation from the
goal, and in part by stochastic factors. Appealing to physics,
we capture the switching between these two states by the ran-
dom walk in double-well potential. The potential landscape
changes depending on the current system state (Fig. 6), and
the random fluctuations allow for the probabilistic mecha-
nism of switching.

(a) Small deviation (b) Large deviation

Figure 6: Double well potential of human mental state during
a control process

The new phase variable ξ describes the dynamics of the
mental state of the operator. Whenever the operator feels that

the current value of deviation can be neglected, ξ remains
equal or close to zero. In contrast, ξ = 1 when the operator
decides to actively control the system. The dynamics of ξ

is intrinsically stochastic: the larger the deviation, the higher
the probability that ξ “switches on”. Such behavior can be
naturally captured by the following equation

τξξ̇ =−∂H
∂ξ

+ εHζ, (5)

where τξ defines the time scale of the mental state dynam-
ics, H is the Hamiltonian describing the energy landscape
and εHζ is a multiplicative white noise. The Hamiltonian
H should be of such form that captures the basic properties
illustrated in Fig. 6: the system energy should be low in the
“wait” state when the current deviation is small, and, on the
opposite, when the deviation is large, the “act” state should
be the most probable. Here we employ the following ansatz
implementing these properties:

H(ξ,θ) =
ξ4

4
− (1+a)

ξ3

3
+a

ξ2

2
+

1−a
12

, (6)

where a = a(θ) causes the energy landscape to change de-
pending on the system state. Specifically, function a(θ)
should be chosen in such a way that a≈ 1 if θ≈ 0, and a≈ 0
otherwise. We use the following expression (although any
function with the similar profile can be used):

a =
θ2

th

θ2
th +θ2

, (7)

where θth is the characteristic angle threshold value.
Equations (2–7) form the model capturing the “how-to-

react” and the “when-to-react” mechanisms and their inter-
action in the context of overdamped stick balancing.

Response delay
Both components of the proposed framework reflect in prin-
ciple complex cognitive operations which take some time in
the real control process. However, in the overdamped stick
balancing the operator reaction delay effects are supposed
to be of minor importance, given the event-driven control
hypothesis. During the time required for the two mecha-
nisms to process the initial deviation θ(t0) this deviation in-
creases by a factor depending on the response delay T and
the time scale of the uncontrolled stick motion τ. Solving
the initial value problem for Eq. (2) where υ = 0, we get
θ(t0 + T ) = θ(t0)eT/τ. The response delay thus affects the
difference between the angle initially detected as worth re-
acting to, θ(t0), and the angle the operator actually reacts to,
θ(t0 +T ). However, as long as T remains in some sense less
than τ, the response delay cannot affect the basic patterns of
the system dynamics, in contrast, to, e.g., the standard, un-
derdamped stick balancing. This allows us to conclude that in
the overdamped stick balancing the operator response delay
does not substantially affect the system dynamics and there-
fore may be omitted in the model.
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Simulation results

Here we report the preliminary analysis of the model (2–7)
and confront the model with the experimental data. Indeed,
the proposed model still requires the detailed scrutiny, as well
as thorough comparison to the data from human subjects;
these analyses will be reported elsewhere.

We study numerically the basic properties of the sys-
tem (2–7) by simulating its dynamics using the explicit or-
der 1.5 stochastic Runge-Kutta method (Roessler, 2005). The
values of system parameters used in simulations are: τθ =
3, l = 1,γ = 1, σ = 1, τξ = 0.05, ε = 0.7,θth = 0.2.

The phase trajectory of system (2–7) shows that both the
described mechanisms are actually captured by the model
(Fig. 7). The initially perturbed system moves along the
τθθ̇ = θ manifold with the cart velocity u close to zero. This
motion regime represents the passive control phase. As the
angle θ increases, the system may escape from the vicinity of
the manifold τθθ̇ = θ, thereby switching from the passive to
the active control phase. This transition is induced by the ran-
dom factor εHζ, so it occurs at probabilistically determined
angle. The trajectory of the system during the active con-
trol phase represents the single corrective movement aimed
at driving the stick to the vicinity of the vertical position.
This point is highlighted by the cart velocity dynamics: the
initially generated corrective movement is not corrected once
started (Fig. 8).

The simulated phase trajectory of system (2–7) represented
in Fig. 7 resembles the experimentally obtained phase trajec-
tories (Fig. 4). Naturally, many features of the experimental
data are not captured by the model. For instance, the model
always overshoots the goal position by design, while human
subjects often undershoot substantially (Fig. 4). At the same
time, this and other mismatches between the experimental
and simulted trajectories are apparently of minor importance,
as demonstrated by the analysis of the statistical distributions
(Fig. 9).

Figure 7: Phase trajectory of stick motion generated by
model (2–7). Values of parameters used for simulations are:
τθ = 3, l = 1,γ = 1, σ = 1, τξ = 0.05, ε = 0.7,θth = 0.2.

Figure 8: Cart velocity generated by model (2–7). Values of
parameters used for simulations are: τθ = 3, l = 1,γ = 1, σ =
1, τξ = 0.05, ε = 0.7,θth = 0.2.

We compare the distributions of θ and θ̇ of the stick bal-
ancing by human subjects and the distributions produced by
system (2–7) in a numerical simulation with duration of 1000
time steps. Both the stick angle and angular velocity distribu-
tions of the human-controlled stick are well captured by the
model (2–7) (Fig. 9).

Figure 9: Stick angle and angular velocity distributions ex-
hibited by system (2–7) and the average distributions ob-
tained experimentally. The model distributions are calcu-
lated based on the data obtained numerically for T = 1000
time units. The parameter values used for simulations are
τθ = 3, l = 1,γ = 1, σ = 1, τξ = 0.05, ε = 0.7,θth = 0.2. The
angle and angular velocity values are normalized with respect
to their standard deviations: θ→ θ/std(θ), θ̇→ θ̇/std(θ̇).

Discussion
This paper highlights that the stochastic control triggering
mechanism is an essential, possibly crucial component of hu-
man control. We found that in overdamped stick balancing
the subjects exhibited clear intermittent control patterns. The
resulting distributions of the stick angle and the cart velocity
do not depend (up to scale) on the subject’s age, balancing
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experience and skill. The universality of the distributions im-
plies that the mechanism underlying the human control in the
present task do not vary from subject to subject, but instead
are rather fundamental. We hypothesize that this mechanism
operates as a threshold-based open-loop control, where the
threshold is defined in a stochastic manner. The model im-
plementing the hypothesized mechanism matches the experi-
mental data. The phase trajectory exhibited by the model im-
itates the basic motion pattern of the overdamped stick under
human control. Most importantly, the statistical distributions
produced by the model match those obtained experimentally.
Overall, our results imply that the stochasticity of the thresh-
old mechanism plays a decisive role in human control at least
in the considered task, and possibly in a wide class of human-
controlled processes.

Conventional approach to modeling human control is to ap-
proximate the basic control algorithm implemented by human
central nervous system (CNS) in a deterministic way, usually
as a linear feedback with a threshold element. In virtually all
available human control models the stochasticity of the sys-
tem dynamics is typically expressed by adding the additive
or multiplicative noise to the control signal. The noise term
is thought to capture the cumulative effect of all the factors
unaccounted for in the basic control law. Such noise is often
called ”sensorimotor”, which reflects the assumption that the
major sources of uncertainty in human control are the sen-
sory and motor systems. Our results provide strong evidence
that besides the noisiness of the sensory and motor systems,
the processing of the input signal by the CNS is intrinsically
stochastic on its own. Consequently, the stochastic control
triggering mechanism may be one of the key aspects of hu-
man control. Indeed, one may imagine many situations where
the stochasticity of the threshold would be a minor factor,
e.g., due to the overall high degree of uncertainty in the con-
trol system. On the other hand, it is completely possible that
the effects of the threshold stochasticity would be amplified,
not diminished, by other factors. Hence, regardless the prac-
tical considerations, one has to be aware of this stochasticity.

According to our hypothesis, in balancing the overdamped
stick the operator continuously observes the external process
(i.e., stick motion), and decides when and how exactly to in-
terrupt it given the current circumstances. Similar processes
(although typically in much more complex environments) are
studied within the field of dynamic decision making, which
focuses on the processes ”which require a series of decisions,
where the decisions are not independent, where the state of
the world changes, both autonomously and as a consequence
of the decision maker’s actions, and where the decisions have
to be made in real time” (Brehmer, 1992). Similarly to the
overdamped stick balancing, in arguably any dynamic pro-
cess involving human as a decision maker the procedure of
detecting the deviations from the desired situation is stochas-
tic in its nature. For instance, in car following, air traffic
control or organizational management a system state either
may be classified as acceptable with some probability, or may

trigger the active behavior of a human observing the system.
Thus, the concepts and models elaborated in the investiga-
tions of the event-driven human control may also prove use-
ful in understanding human behavior in a wide variety of dy-
namic processes.
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