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Abstract
The wisdom of the crowd technique has been shown to be very
effective in producing judgments more accurate than those of
individuals. However, its performance in situations in which
the intended estimates would involve responses of greatly dif-
fering magnitudes is less well understood. We first carried out
an experiment to elicit people’s estimates in one such domain,
populations of U.S. metropolitan areas. Results indicated that
there were indeed vast between-subjects differences in magni-
tudes of responses. We then proposed a hierarchical Bayesian
model that incorporates different respondents’ biases in terms
of the overall magnitudes of their answers and the amount of
individual uncertainties. We implemented three variations of
this model with different ways of instantiating the individual
differences in overall magnitude. Estimates produced by the
variation that accounts for the stochasticities in response mag-
nitude outperformed those based on standard wisdom of the
crowd aggregation methods and other variations.
Keywords: wisdom of the crowd; graphical model; hierarchi-
cal Bayesian model; human judgments; individual differences.

Introduction
The wisdom of the crowd (WoC) technique involves aggre-
gating decisions or estimates made by a group of people.
Much research has found that the crowd as a whole can
produce estimates that are much more accurate than those
by a random informant (Surowiecki, 2005). However, most
research focused on types of quantities that are naturally
bounded. For example, if the targets of estimation were prob-
abilities of events, all responses would need to be between 0
and 1. This restriction constrains the plausible range of re-
sponses and could, as a result, potentially help produce more
accurate estimates. Other similarly naturally bounded quanti-
ties, some to a lesser degree, include year of events, tempera-
ture of cities, etc. In contrast, many real life estimation prob-
lems involve values that are not naturally bounded, such that
estimates given by different informants could vary by multi-
ple orders of magnitude.

Previous studies have found that when applied to quantities
that are not naturally bounded, traditional WoC aggregation
methods, such as the mean or median of a crowd’s estimates,
yield relatively smaller improvement, compared to those that
are naturally bounded. For example, Yeung (2013) reported
that neither mean nor median improved confidence interval
estimates for questions without natural bounds, while they
did improve those with natural bounds. Rauhut and Lorenz
(2011) also reported that averaging an individual’s multiple
responses to the same questions did not improve estimates
for general numerical questions, in contrast to similar previ-
ous research using questions about percentage values (Vul &
Pashler, 2008).

Estimates about quantities without natural bounds are com-
monly encountered because many naturally occurring quanti-

ties can be described by distributions without a natural maxi-
mum and are severely right skewed. For example, Gibrat’s
law suggested that the distribution of populations of cities
follows a log-normal distribution (Eeckhout, 2004). Other
distributions with similar characteristics include power-law,
Pareto, and exponential distributions. They naturally occur in
many different contexts, including income and wealth, num-
ber of friends, waiting time, time till failure, etc. (Barabási,
2005). How to best aggregate these quantities in a WoC con-
text is not very well understood. In the present research we
demonstrate a hierarchical Bayesian approach to the problem.

Hierarchical Bayesian models formally express the rela-
tionships between psychological constructs, stimuli, and ob-
servations. They produce quantitative predictions that can be
compared with empirical data, providing a way to test psy-
chological theories encapsulated in the models (Lee, 2011).

In this paper our main objectives are to improve the WoC
estimates for quantities without natural bounds using such
models, and to investigate the psychological assumptions on
which these models rely. We first carried out an empiri-
cal experiment to obtain the data on which we will base
our analyses. Standard WoC procedures will be applied and
their performances will be evaluated. We will then pro-
pose and implement a family of computational models that
is based on assumptions made about the structure of people’s
responses. We will then compare the performance of these
models against those of the standard WoC methods. Finally
we will discuss the implication of our findings.

The experiment
We recruited 101 participants from Amazon Mechanical
Turk. Workers were required to be 18 years or older, be resid-
ing in the U.S., and have a lifetime acceptance rate on MTurk
of over 95%. Each participant was paid US$0.40.

We first reminded participants to not use any external re-
sources during the experiment. We then asked participants to
rate the level of their knowledge about geography and popu-
lation on a 7-point scale (from “Very Good” to “Very Poor”).

The participants then completed a set of trivia questions
on U.S. geography taken from the experiment in Moore and
Healy (2008). We used all nine geography questions there
that were about the U.S. Out of those, three were classified by
Moore and Healy as easy, four medium, and one hard. Two
of the questions were changed slightly to make them more
difficult in order to increase the discriminatory power about
the participants’ knowledge.

The participants would then proceed to the main part of the
experiment. Here they were asked to make estimates about
the population of 20 U.S. metropolitan areas (the full list can
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be found in Figure 2). The definition of metropolitan areas
were defined for them in the instruction: “a metropolitan area
refers to a densely populated urban core and its less-populated
surrounding territories”. We selected every three metro areas
from the list of U.S. metropolitan areas in Wikipedia1. That
is, we use the top-ranked (one with the highest population)
metro area, the 4th, the 7th, and so on, with the last one be-
ing the 58th ranked one. Each metro area was specified using
their Metropolitan Statistical Areas name (e.g. “New York-
Newark-Jersey City metropolitan area”) and was elicited us-
ing the prompt “I think it’s equally likely that the population
of the metropolitan area is above or below”.

We allowed participants to respond in units of thousands or
millions — responses could be entered with suffixes of “k” or
“K”, and “m” or “M”, indicating thousands and millions, re-
spectively. As the participants entered their responses, the
experiment automatically convert the responses into thou-
sands (if greater than 1,000) and into millions (if greater than
1,000,000) and display them so that the participants could vi-
sually inspect their answers after conversion, and confirm that
the responses were entered as intended. For example, if the
participant had entered “1.23m” in the input text field, the
experiment would display “1,230,000”, “1,234 thousand(s)”,
and “1.23 million(s)” immediately above. This should partic-
ularly be useful for minimizing input errors. The orders of the
questions were randomized between participants. After the
estimation task the participants were asked to self-rate their
level of knowledge about geography and population again.
Finally they completed a short demographic survey.

Basic results
Of the 101 participants, 37 (36.6%) were female. The aver-
age age was 31.8, with s.d. of 10.1. For the sake of brevity,
all population figures in this paper represent units of one thou-
sand. That is, a value shown as 1,230 corresponds to an esti-
mate or model prediction of 1,230 thousand, or 1.23 million.

We first inspected the responses visually. Figure 1 displays
the responses of four participants of varying performances.
The two graphs on top display participants who performed
well in terms of getting the overall magnitude of the an-
swers correct; the two at the bottom were two who performed
poorly. The two graphs on the left display participants who
performed well in terms of getting the relative size of the met-
ros correctly; the two on the right were two who performed
poorly. The wide disparity in performance along these two
dimensions can be easily seen.

We then checked whether the magnitudes of the esti-
mates did vary widely, both between participants and between
items. The median estimates of individuals varied from 25 to
37,500 (25/75 percentiles at 375 and 1600, respectively), sug-
gesting that the between-subjects estimates did vary widely.
Similarly, the median ratio of an individual’s highest and
lowest estimates was 36.67 (25/75 percentiles at 11 and 80),

1http://en.wikipedia.org/wiki/List_of_Metropolitan
_Statistical_Areas (retrieved Dec 31, 2013)
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Figure 1: Varieties in individual performance. This figure contains
the correlations between the estimates and the ground truth for four
participants, highlighting the variety of performance on two dimen-
sions: overall magnitude and accuracy in terms of relative size. The
diagonal line spans the line of perfect correlation.

showing that even within the same individual, the differences
between items were very large. Both the range of mean es-
timates and the range of within-subjects ratios between es-
timates were much bigger than those possible for estimates
about other types of quantities such as percentage or year of
events. More importantly, the large differences in magnitude
suggest that using the arithmetic mean to aggregate people’s
estimates might produce crowd estimates that are unstable
from one sample to another. In particular, the variability in the
numbers of informants who make estimates on the high end
could severely impact the mean. However, we might be able
to produce more stable estimates if we can better account for
the differences in the magnitudes of individuals’ estimates.

Overall the participants correctly assigned higher estimates
to larger metros, and vice versa. The median Pearson’s cor-
relation coefficient between participants’ estimates and the
truth was 0.831, with the 25/75 percentiles at 0.658 and 0.931.

We first investigated the results using the standard WoC
methods. Two of the most commonly used metrics of pre-
diction performance are the mean absolute distance (MAD)
and root mean square error (RMSE). The key difference be-
tween the two metrics is the use of the squared loss in RMSE.
Squared loss is convex and it means that large prediction er-
rors are overweighted over smaller ones.

One issue with these metrics is that the truths and, to a
greater extent, the participants’ estimates have large variabil-
ity. Thus, performance metrics that rely on the arithmetic
difference between estimates and the truth would overweigh
items with larger truth values. For example, let’s say partici-
pant A made an estimate that is 10% off the truth for the New
York question (the largest metro), and 5% for the Las Vegas
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Figure 2: This figure shows the stimuli, responses, and outputs from various wisdom of the crowd methods. The 20 metropolitan areas are
listed in the X-axis in descending order of size. For each question, the density of the estimates from the experiment is represented by the
violin plot. The horizontal bar indicates the true values. The salmon colored circle represents the WoC mean estimate, the green triangle the
median, and the blue square the full model predictions. The Y-axis is log-transformed.

question (11th largest metro); whereas participant B had a 5%
error for the New York question and a 10% one for Las Vegas.
The total MAD of the two participants in these two questions
would be 2083 and 1192, for A and B, respectively. However,
it can be argued that these two participants should be rated as
equally good, as each made a 10% error and a 5% one.

For this reason, we also used two other metrics that are
based on the size of the error relative to the truth (Makridakis,
Wheelwright, & Hyndman, 2008): mean absolute percentage
error, MAPE “ 1

N
ř

|100 ¨ estimate´truth
truth | and root mean square

percentage error, RMSPE “
b

1
N
ř

p100 ¨ estimate´truth
truth q2. Like

the difference between MAD and RMSE, the main differ-
ence between these two metrics is that RMSPE uses squared
loss and therefore gives more weight to avoiding large errors.
These metrics address the problem of overweighing items
with large truth values by evaluating all items on the same
scale. For example, an estimate that is 30% higher than the
truth for the New York item and one that is 30% higher than
the truth for the Las Vegas item would receive equal scores in
this metric, regardless of their differences in absolute magni-
tude. Also, it gives a more generally applicable performance
index by giving the error in terms of a percentage of the truth.

Lastly, we compared the model predictions with the truths
using Pearson’s correlation coefficient, in order to focus of
the performance in terms of relative size between the items.

These metrics were computed using the figures taken from
the Wikipedia page specified earlier, using the figures from
the “2012 Estimate” column. Although we consider the two
percentage-based metrics to be more generally applicable, as
we will see, the performance numbers from all metrics largely
agree with each other. Because of space limit in this paper we
will focus on comparisons based on MAPE and MAD. The
full result is shown in Table 1. The average MAPE of all par-

ticipants was 102.1 while the best performing individual had
a MAPE of 21.43. This means, on average, the best partic-
ipant made an error that was 21.43% times of the truth. In
terms of MAD, the overall mean was 3013, with a noticeable
right skew (best: 582.2; worst: 33,112).

A more interesting analysis is to compare individuals’ per-
formance against the wisdom of the crowd. We will focus
on two standard ways of aggregation — taking the mean or
the median of all individuals’ responses. We first look at the
performance based on MAPE. The MAPE of WoCmean was
26.23 and was better than all but 2 participants (98.0 per-
centile). WoCmedian performed much worse than WoCmean,
with an MAPE of 58.0, better than only 62.4% of the partici-
pants. Performance based on MAD reflects a similar pattern.
The WoCmean MAD was 1169, better than all but 4 partici-
pants (96.0 percentile), while WoCmedian MAD was 2118 and
was better than only 63.4% of participants.2 This result was
somewhat surprising as we had expected the crowd median
to have performed better than the crowd mean, because the
median is a more robust statistic than the mean, and we pre-
sumed that the variability among estimates would be an issue.

Self-rated expertise was 4.93 at the beginning of the ex-
periment, compared to 4.53 afterwards. A paired t-test
showed that the difference was significant (tp100q “ 2.09,
p “ 0.04). However, neither measure correlates with actual
performance. Pearson’s correlation coefficient between par-
ticipants’ MAPE and the two elicitations of self-rated exper-
tise were 0.002 and 0.123 respectively (both n.s.).

We also looked at the correlation between the performance
at the trivia questions and at population estimates. The par-

2We also computed the performance for estimates using the geo-
metric mean of all participants. Its performance was worse than all
other aggregation methods in all metrics, except for r, where it was
worse than only the full model and WoCmedian at 0.986.
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ticipants performed well overall in the trivia questions, get-
ting an average 6.84 (s.d. = 1.00) out of 9 questions correct.
However, their trivia scores were almost independent of their
MAPE (r “ 0.096, n.s.). The independence of trivia knowl-
edge and self-rated level of knowledge to actual performance
agrees with similar results previously reported (Lee, Steyvers,
de Young, & Miller, 2012; Lee & Danileiko, submitted).

A computational model
Although the simple WoC procedure of averaging produced
estimates that were quite good, it processes each item sepa-
rately and therefore fails to take advantage of the regularities
of the estimates at the individual level. In particular, it ignores
the fact that there were high degrees of correlation between
estimates made by the same individual. We suggest that mod-
els that taking advantage of this characteristic of people’s re-
sponses might be able to generate more accurate estimates.

Our model focuses on one type of individual level regular-
ity — the overall magnitude of the estimates. We have seen
that estimates made by different participants varied to a large
degree. We formalize the concept of the overall magnitude
using the ratio between an individual’s mean estimates to the
overall crowd mean. We label this ratio the scale bias, and
represent it using β. For example, a β of 0.75 means that,
on average, this participants’ responses are 75% that of the
crowd average. Figure 3 shows the distribution of scale bias.

Estimates for any particular metro are positively and highly
correlated with all other estimates by the same individual.
We computed the Pearson’s correlation coefficient between
all possible pairs of estimates in the experiment. For these
`20

2

˘

“ 190 pairs, the smallest correlation was 0.197 and the
mean was 0.756. This result demonstrates the highly positive
correlation between an individual’s estimates. Furthermore,
it supports the psychological construct of an individual level
scale bias that applies to a closely related set of estimates.

In order to investigate the impact of β on estimate aggrega-
tion, we instantiated β in three different ways in our model.
In the first variation, one that we call the full model, βi, the
scale bias of participant i, is sampled from a prior distribu-
tion. The distribution we use is gammap2, 2

λi
q, in which λi is

the empirical value of the scale bias of each individual, as cal-
culated from the experimental data. This gamma distribution
was chosen as the prior for β because it captures all features
that correspond to our prior beliefs about the value of β — it

Table 1: Results of the experiment in different metrics. Perfor-
mance is measured in MAPE (mean absolute percentage error),
RMSPE (root mean square percentage error), MAD (mean absolute
distance), RMSE (root mean square error), and r (Pearson’s correla-
tion coefficient). For all metrics but r, smaller values indicate better
performance. Best performance in each category is in bold.

Full Fixed-β Const.-β WoC WoC
model model model (mean) (median)

MAPE 21.07 23.16 69.36 26.23 58.03
RMSPE 24.95 28.52 70.07 33.42 58.73
MAD 1043 1144 2587 1169 2118
RMSE 2060 2532 4394 2301 3456
r 0.988 0.974 0.965 0.974 0.989
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Figure 3: This figure shows a histogram of the scale bias, the ratio
between the mean estimate of each participant and the overall mean
estimate of all participants.

has a mean of λi, is unimodal roughly in the middle of the
distribution, and is slightly right skewed.3

An alternate model, the fixed-β model, is constructed by
setting βi to λi. On one hand, this construction of the model
is slightly simpler and has a more straightforward modeling
interpretation. On the other hand, it prevents the model from
incorporating the stochastic noise of each individual’s β.

In order to assess the contribution of individualized βi to
model performance, we also implemented a version of the
model with the component set to a constant. In this constant-
β model, we simply set all β to 1. This represents a version of
the model in which we do not account for the scale bias, and
assign all individual differences to individuals’ random noise.

Other than the definition of β, the rest of the model is
identical between the three variations. The full model is
represented graphically in Figure 4. Graphical models are
probabilistic models in which graphs are used to express
the relationships between variables (Shiffrin, Lee, Kim, &
Wagenmakers, 2008). In graphs, nodes represent variables
and edges represent the relationship between these variables.
Moreover, variables that are observed are shaded; nodes with
double border indicate that the values of the variables are
deterministically computed based on their parent nodes; and
plates group variables that form repeated sub-units. Formally,
the model is defined as follows:

ψ j „ gammap10´9,10´9q

µi j Ð βiψ j

φi „ gammap10´9,10´9q

σi „ gammap1,
1

βiφi
q

xi j „N pµi j,σiq

(1)

The main objectives of the model’s inference are the la-
tent ground truths, represented by ψ j for question j. In the
model ψ j is sampled from a weakly informative prior. ψ j of
each item is multiplied with each individual’s scale bias βi to
produce µi j, which can be thought of as the estimate that i-th
participant would have produced if the only error were due to
the scale bias.

3We have conducted a sensitivity analysis concerning the param-
eters for the gamma prior. We found that the performance of the
model does not fluctuate much (ă ˘0.01) using the gamma prior
gammapx,x{λq in which 1ď xď 10.
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Figure 4: Graphical model for the full model.

The error and random noise for estimates produced by the
i-th participant is represented by σi, and is dependent on βi
and φ. An intuition about the relationship between βi and
errors is that, if an individual’s estimates tend to be bigger
in absolute terms, the magnitude of the errors are likely to be
bigger to the same degree as well, and vice versa if βi is small.
The other component of the estimate error, φ, represents both
random noise and the normalizing constant for bringing the
variability of the estimates to the right magnitude.

The final component of the model is the empirical esti-
mates given by participant i for item j, represented by xi j. It
is the only node that is observed, and is produced by sampling
a Gaussian distribution with a mean of µi j and a standard de-
viation of σi.

We implemented the model using a Markov Chain Monte
Carlo procedure using JAGS (Plummer, 2004). 1,000 adap-
tive samples and 3,000 burn-ins were used. The actual sam-
ples contain three chains of 30,000 steps each with no thin-
ning. Finally, we emphasize that the model is defined and
implemented without the need of knowing the ground truth.

Modeling results
The model predictions are displayed graphically in Figure 2.
Although ultimately, the model predictions were generated
based on estimates by the crowd, the model produced the es-
timates through a process much different from simple aggre-
gation. Therefore, in terms of the directions of error from the
truth, the model predictions and estimates produced by stan-
dard methods do not necessarily agree.

We tabulated the performance of various methods of WoC
aggregations in Table 1. These include the full model (with
β sampled from a distribution), the fixed-β model (with βi
set to λi), the constant-β model (with β set to 1), the crowd
mean, and the crowd median. The full model had the best
performance in all distance and ratio based metrics. For ex-
ample, MAPE for the full model is 21.1, versus the next best
of the fixed-β model at 23.2, and WoCmean at 26.2. This rep-
resents an average error for the full model that is 19% smaller,
relative to that of WoCmean. Remarkably, the full model out-
performed every individual in the experiment.

Similar pattern of results is found based on comparisons
using MAD and RMSE. The full model has the best MAD at
1043, and is better than all but 3 of all participants. In terms

of RMSE, the full model also outperformed other methods
at 2060 (91.1 percentile). The slightly lower performance in
RMSE with respect to the crowd was due to a combination of
the overweighting of the New York item in an absolute dis-
tance based metric, and the fact that the estimates of a few
participants for this question were significantly better than
those of the crowd. In fact, 51.3% of the full model RMSE
was due to this single item. This supports the notion that ab-
solute distance based metrics like MAD and RMSE should
be complemented by other metrics for more a comprehensive
evaluation of performance.

Finally, we calculated the Pearson’s correlation coeffi-
cient between the truth and various predictions. Overall the
predictions of all models correlated highly with the truth.
WoCmedian performed the best at 0.989, although the perfor-
mance of the full model was almost the same at 0.988. Both
methods outperformed all participants.

To assess the impact of different instantiations of β on per-
formance, we compared the full model to the two variations.
The constant-β model performed very poorly. This is not sur-
prising as the model does not incorporate the greatly differ-
ent magnitudes of the responses, and therefore σi needs to
be much bigger to account for the huge disparity in all sub-
jects’ estimates. As a result, the differences between better
and worse subjects were washed out. In contrast, the fixed-β
model performed quite well, although it is also outperformed
quite clearly by the full model. This suggests that allowing
for stochasticities in individuals’ scale bias can improve the
performance of the model.

Overall, based on all metrics evaluated, the full model com-
pared favorably against the standard WoC methods of mean
and median, and against the other two variations of the com-
putational model.

General Discussion
In this paper we investigated the problem of aggregating es-
timates from informants about quantities that vary by mul-
tiple orders of magnitude, both between-items and between-
informants. Although this is not a very well understood ques-
tion, it is an extremely important one because many real life
estimation tasks belong to this category.

We proposed a family of hierarchical Bayesian models
constructed based on a graphical model, with the three vari-
ations differ in terms of how they account for the overall
magnitude of an individual’s responses. The model relies on
psychological assumptions about the structure of responses
within individuals. We found that the full model outper-
formed standard wisdom of the crowd aggregation techniques
as well as variations that do not incorporate stochasticity in
individuals’ overall magnitude.

This work contributes to the existing bodies of work in wis-
dom on the crowd research in three different ways. First,
we showed that estimates from the same individuals have a
high degree of correlation, especially in terms of their biases
from the truths. Second, we demonstrated that a hierarchical
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Bayesian model leveraging the first point can produce better
performing estimates for the kind of questions found to be
problematic for traditional methods of aggregation (Müller-
Trede, 2011; Yeung, 2013). Third, it suggests that utilizing
the structure of the responses, in addition to using the re-
sponses as isolated data points, can bring upon further im-
provements in estimating about the unknown ground truth.

The key component of the proposed model is each indi-
vidual’s scale bias, a systematic tendency to over- or under-
estimate quantities for a particular set of questions. We found
supporting evidence in the high correlations between esti-
mates made by the same individuals. Moreover, its signifi-
cance can be seen in the huge difference in performance be-
tween variations of the model that incorporate it and one that
does not. However, we speculate that an individual might
not have the same scale bias for all kinds of tasks, but might
rather like the Person ˆ Situation interaction theory (Diener,
Larsen, & Emmons, 1984), in that different circumstances
might bring out different scale biases for the any individual.

The distribution of the scale bias in a crowd is an intriguing
topic in of itself and has raised a few interesting theoretical
questions. First, why are the mean estimates of individuals
self-organize into the distribution shown in Figure 3? Second,
how stable is this distribution and would similar distributions
be found in estimation of quantities in other domains? Al-
though in the current paper we have not explored these ques-
tions, future research might be able to shed light on them.

The distribution of the β parameter also has great impli-
cation on the application of the model, as it gives rise to
the great variability of the estimated quantities. The results
showed that while completely negating this variable produced
pretty bad estimates, simply setting β to the ratio between
an individual’s mean estimate and the overall crowd mean
produced reasonable performance gain over traditional WoC
methods. However, we speculate that knowing how this vari-
able is distributed in the population will help us further im-
prove WoC techniques. More specifically, a model that makes
the correct assumptions about the distribution of the crowd’s
scale bias might be able to produce better results with smaller
sample of informants, or even with a single informant.

Over- and under-estimation have previously been studied
extensively. However, in most of these cases, the target
of these mis-estimation were self-relevant quantities such as
one’s own levels of confidence, abilities, or performance (e.g.,
Moore & Healy, 2008; Klayman, Soll, González-Vallejo, &
Barlas, 1999), or in the judgment of probability (e.g., Kah-
neman & Tversky, 1979). The scale bias variable studied in
the current paper manifested in quantities that were neither
self-relevant nor about probability. Hence, systematic errors
at the individual level signal a potentially exciting new re-
search direction, especially because prescriptive procedures
such as those suggested above might be able to alleviate such
bias. Moreover, although the experiment used questions with
knowable ground truth, we expect that this technique will be
useful in improving predictions and other estimates in which

the ground truth in not known in advance.

Conclusion
In this paper, we have highlighted the problem of aggregating
estimates for quantities that are not naturally bounded. The
hierarchical Bayesian model we proposed makes assumptions
about the structure within individual’s estimates to produce
better estimates than those by the standard aggregation meth-
ods. Applying this idea to other wisdom of the crowd prob-
lems might similarly improve estimates and bring insights to
our knowledge about how individuals and crowds produce
judgments and make decisions.
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