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Abstract

The main purpose of this study is to examine how people learn
time-varying categories as well as whether order effect exists
in such learning. To this end, we design three types of category
structures, in which the stimuli vary along trials in an ascend-
ing, descending, and quadratic trend. Also, tendency to repeat
preceding category label as current response is regarded as ev-
idence for order effect. The results show a clear order effect
in these experiments. The modeling results reveal that GCM,
which is modified to be sensitive to trial order and SDGCM,
which relies on the similarity and dissimilarity to the exem-
plars for categorization, provide a good fit for all experiments.
However, the rule-based model used by Navarro, Perfors, and
Vong (2013), which changes the boundary trial by trial has dif-
ficulty accommodating the learning pattern in quadratic trend.

Keywords: Order Effect; Time-Varying Category; Category
Learning

Time-Varying Categories
Many natural categories are characterized by their features
varying in magnitude with time. For instance, the leaves of
the deciduous plant are green in summer and gradually turn to
yellow or red in autumn. This type of categories we call time-
varying categories. Recently, Navarro and colleagues used
artificial time-varying categories to examine how people learn
on them. They found that although the task was not easy,
people could not only get a satisfactory learning accuracy,
but also predict the forthcoming valid items based on their
understanding of the category structure (Navarro & Perfors,
2009, 2012; Navarro, Perfors, & Vong, 2013).

Also, these authors showed that their results can be ac-
commodated by the models, which either give the recently
seen items a larger weight in the framework of the exemplar
or the prototype model (Navarro & Perfors, 2012) or shift
the boundary trial by trial in the framework of a rule model
(Navarro et al., 2013). Whichever way it goes, the key to
making a model capable of accounting for the learning of
time-varying categories is the sensitivity to time, specifically
the sensitivity to trial order.

Order effect
The request for the sensitivity to trial order for modeling
learning pattern of time-varying categories implies that some
sort of order effect should be expected in learning of time-
varying categories. Order effect can be broadly defined as

any influence on current item brought by preceding item dur-
ing learning. Herein, order effect is referred to as tendency
of repeating category label of preceding item as response for
current item.

The simulation work of Stewart, Brown, and Chater (2002)
following their MAC (Memory and Comparison) strategy is
a good demonstration for order effect. In their simulation ex-
periment, 10 items were divided into two categories, 5 taking
lower values and the other 5 taking higher values on the stim-
ulus dimension. Suppose item Xn−1 is from the low category,
when item Xn takes a value even lower than Xn−1, it must
come from the low category and vice versa when item Xn−1
is from the high category. That is, the probability to repeat
the category label of Xn−1 is 1.00.

However, when the change on stimulus value from preced-
ing item to current one cannot guarantee what the current cat-
egory label is, that is when item Xn−1 is from the low category
and Xn > Xn−1 or when item Xn−1 is from the high category
and Xn < Xn−1, the probability to repeat the category label of
item Xn−1 depends on the similarity between items Xn−1 and
Xn.

These authors showed that MAC strategy, thought very
simple, can get about 80% accuracy on predicting partic-
ipants’ performance, hence highlighting that the exemplar
temporarily retained in STM is sufficient to provide reliable
information for categorization.

In this study, we would like to extend the studies of Navarro
and Perfors (2012) and Navarro et al. (2013) and attempt to
reveal the potential order effect in learning of time-varying
categories. To this end, we conduct three experiments with
different category structures and compare three computa-
tional models on fit to the collected data. Before we introduce
the experiments, we first introduce the models we would like
to test in this study.

GCM

GCM (Generalized Context Model) (Nosofsky, 1986, 1987)
is a classic exemplar-based model, positing that the inter-item
similarity is the basis of categorization and any item would
be classified as the category to which it is more similar. The
similarity between each item I and exemplar J, SI,J , is the
negative exponential function of distance between them on
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the stimulus dimension 1, which is derived as

SI,J = exp−c|XI−X j |, (1)

where c is the specificity parameter, the larger c is the more
unique the items are in the psychological space.

The similarity of item I to Category 1, SI,1, is the sum of the
similarities to the exemplars of Category 1, SI,1 = ∑ j∈1 SI, j,
and so is the similarity to Category 2, SI,2 = ∑ j∈2 SI, j. The
probability of Category 1 on item I is computed as

p(1|I) =
βSI,1

βSI,1 +(1−β)SI,2
, (2)

where β is the bias to Category 1, normally set as .5 when the
two categories have equal amount of the exemplars.

Although the original GCM is not sensitive to the trial or-
der, it can be adjusted by decreasing the weighting for the
exemplars exponentially from trial n−1, trial n−2, until trial
1 (see Nosofsky, Kruschke, & McKinley, 1992; Nosofsky &
Palmeri, 1997). Thus, in this study, the similarity between
item I and exemplar J is weighted by wJ = expλ( j−(n−1)),
where j is the trial number of exemplar J starting backwards
from n− 1. The category similarity to Category 1 hence be-
comes SI,1 = ∑w jSI, j∈1 and so does the category similarity to
Category 2, SI,2 = ∑w jSI, j∈2. In this study, the specificity c
and the decay rate of the weighting for the exemplar λ would
be freely estimated while fitting the GCM to the collected
data. The bias to category β is fixed as .50, therefore only the
similarity to category matters when predicting the category.

SDGCM
The second exemplar-based model we would like to test
is SDGCM (Similarity-Dissimilarity Generalized Context
Model) (Stewart & Brown, 2005), in which not only the sim-
ilarity to the exemplars but also the dissimilarity to them is
taken into account. Thus, the similarity of item I to Category
1, νI,1, is the weighted sum of the similarities to the exemplars
of Category 1, SI, j∈1, and the dissimilarities to the exemplars
of Category 2, 1−SI,i∈2,

νI,1 = ∑
j∈1

w jSI, j∈1 + ∑
j∈2

w j(1−SI, j∈2). (3)

The parameter w j adjusts how much the exemplar j con-
tributes to the computation of the category similarity and it
follows the same exponential function described in the sec-
tion of GCM. The probability of Category 1 is computed as

p(1|I) =
(βνI,1)

γ

(βνI,1)γ +((1−β)νI,1)γ
, (4)

where β is the bias to Category 1 and γ is a parameter that
varies the degree of determinism in responding. For the sake

1As all category structures are one dimensional in our experi-
ments, herein the GCM is simplified and has no selective attention
weight. The distance is measured in the city-block metric when do-
ing the modeling of the exemplar-based models in this study.

of simplification, β is set as .5 and γ is set as 1 when model-
ings the data of this study. Thus, same as the GCM, there are
two freely estimated parameters (i.g., c and λ) for SDGCM.
The MAC strategy is a special case of SDGCM (see Stew-
art & Brown, 2005) and this is why we choose SDGCM for
modeling in this study.

CBS
Navarro et al. (2013) showed that a rule-based model with
the rule shifting trial by trial can predict the learning pattern
on the categories. The category boundary linearly rises along
the trial order. Herein, we call their model CBS (Category
Boundary Shifting) model. The idea of CBS model is very
simple. People estimate the location of the category boundary
for item n, µ̂n, on trial n−1, by shifting the boundary for item
n− 1, µ̂n−1, by some proportion w, 0 ≤ w ≤ 1, towards item
n− 1. The boundary at the current moment is always the
cumulation of all previously seen items, yielding

µ̂n = w
n

∑
j=1

(1−w) j−1Xn− j +b. (5)

It is obvious in Equation 5 that the recent items would be
weighted more heavily. Also, when w is large, only a few
preceding items would be used. On the other hand, when w
is small, the items seen earlier would also contribute to the
estimation of current boundary. The parameter b is used to
avoid the model prediction lagging too much behind the data.
Once the boundary is estimated, the difference between the
current item and the boundary ∆n is transferred by a sigmoid
function to the probability of a category, say Category 12,
which is given by

p(1) =
1

1+ exp−λ∆n
. (6)

The parameter λ determines the steepness of the sigmoid
function, the larger λ the more deterministic the classification
of the items would be. When fitting CBS to the data in this
study, three parameters, w, λ, and b, are freely estimated.

In Equation 6, if the item is larger than the boundary, then
it is impossible to get the probability of Category 1 less than
.50. If the item is smaller than the boundary, it is impossible
to get the probability of Category 1 more than .50. Presum-
ably, the CBS model is only suitable for the case where the
category relationship stays constant. However, the other two
exemplar-based models have no such constraint.

Overview of Experiments
There are two goals in this study. First, we would like to ex-
amine order effect in the learning of time-varying categories.
Three experiments are conducted with the lines of different
lengths as the stimuli. The stimulus lines for learning are ma-
nipulated as always increasing in length (the ascending cat-

2Category 1 is defined as the high category on the stimulus di-
mension.
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egory structure), decreasing in length (the descending cate-
gory structure), and decreasing first and then increasing (the
quadratic category structure). These category structures can
be seen in Figure 1, which are deployed in separate experi-
ments.
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Figure 1: The category structures used in the three experi-
ments. The abscissa shows the trial number and the ordinate
shows the stimulus length. From left to right: ascending, de-
scending, and quadratic.

Second, we would like to compare the fit of the three re-
viewed models to the learning data. Specifically, we place
the emphasis on how these models can account for order ef-
fect discussed in the previous section. To this end, we divide
the trials in each experiment to eight types: according to the
category label of the preceding item (Category 1 vs. Category
2), the direction of length change from the previous item (Up
vs. Down), and in which learning session the current trial is
(First half vs. Second half). Although only Experiment 3 is
expected to have different patterns of order effect in the first
and the second half session of learning, for a fair compari-
son, we keep this division for the first two experiments. The
goal of parameter optimization is to increase the likelihood of
each model to predict the observed probability of Category 1
on these types of trials.

For fairness, the model using more parameters is penal-
ized. The goodness of fit is measured as AIC =−2LogL+2N,
N = the number of freely estimated parameters (Akaike,
1974). The log likelihood is LogL = ∑i log(∑k fik)! −
∑i ∑k(log fik)!+∑i ∑k fiklog(pik), where k is the number of
categories (i.e., k = 2) and i is the number of the types of trials
(i.e., i = 8).

Experiment 1
The category structure used in this experiment is shown in
the left panel of Figure 1. The white circles denote Category
1, which is always larger than Category 2 denoted by black
circles. The categorization rule ”Respond Category 1, if Xn >
n and Category 2 otherwise”, where n is the trial number from
1 to 100, is followed.

This category structure is designed the same way as used
by Navarro et al. (2013). However, our stimuli are displayed
in a manner of block randomzation. That is the total 100 lines
from short to long are separated to 10 blocks. Within each
block, the order of the stimuli is random, but the block se-
quence is sorted in an ascending way. As a result, this design
would make our task harder than theirs to learn.

Method
Participants In total, 25 undergraduate students are re-
cruited to participate in this experiment. The task can be fin-
ished in less than 20 minutes on average. The participant,
after finishing the task, would be reimbursed with NTD$ 60
(' US$ 2) for their time and traffic expense.

Materials and Procedure The stimuli are the horizontal
lines of different lengths. The length of the line is transferred
to be pixels from the stimulus value (from 1 to 100 units) on
the dimension by screen−width(pixels)

screen−width(cm) × (0.3+ 0.2value). On
each trial, a horizontal line is presented on the center of
screen. When the participant make a response by pressing
the key s or ’ for Category 1 and Category 2 respectively, a
corrective feedback is presented (correct or wrong). After 1
sec, the next trial begins.

Results
See the solid lines in Figure 2 for the learning accuracy. The
black circles represent the probability correct made by the
participants. Apparently, Category 1 (mean accuracy = .74)
is learned better than Category 2 (mean accuracy = .49). This
result is consistent with the finding of Navarro et al. (2013)
(.70 vs. .60 for Category 1 and Category 2). A Category (2)
×Block (10) within-subject ANOVA confirms this inspection
[F(1,24) = 59.98, MSe = 0.13, p < .01] and shows that the
learning performance is marginally significant throughout the
blocks [F(9,216) = 1.851, MSe = 0.05, p = .06] and that
the learning pattern is not different for different categories
[F(9,216) = 1.39, MSe = 0.04, p = .19]. It suggests that
Category 1 is learned better than Category 2 throughout the
whole learning session.

In order to examine order effect, a Category (2) ×
Direction-Change (2) × Learning-Session (2) within-subject
ANOVA is conducted for the probability of Category 1 on
99 trials3. The results show a significant main effect of
Category [F(1,24) = 39.86, MSe = 0.11, p < .01], a sig-
nificant main effect of Direction-Change [F(1,24) = 23.83,
MSe = 0.07, p < .01], and no significant main effect of
Learning-Session [F(1,24) = 3.79, MSe = 0.03, p = .06].
The tendency to make a response of Category 1 depends on
the category label of the preceding item as well as the di-
rection on the length changing from the preceding item to
the current one [F(1,24) = 6.06, MSe = 0.02, p < .05]. In
different learning sessions, the tendency of making a Cate-
gory 1 response differs when the length change differs in di-

3The first trial is omitted, as order effect begins from the second
trial.
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Figure 2: The observed and predicted P(Correct) in Experi-
ment 1.

rection [F(1,24) = 11.9, MSe = 0.02, p < .01]. However,
there is no interaction effect between Category and Learning-
Session, F(1,24) < 1, nor the three-way interaction effect
[F(1,24) = 1.25, MSe = 0.02, p = .028].

The superiority of learning Category 1 over Category 2
may be viewed as evidence for a response bias toward Cat-
egory 1. However, the significant interaction effect between
Category and Direction-Change turns down this hypothesis.
There would be no such interaction effect, had the bias ex-
isted. Following the view of order effect, the asymmetry on
learning accuracy for the two categories can be explained. As
the lines are getting longer, there would be a greater chance to
see the case when a line is longer than its preceding line from
Category 1 than when a line is shorter than its preceding line
from Category 2. Thus, repeating the preceding answer for
the current item would make the trial more correct for Cat-
egory 1 than Category 2. Therefore, the better learning in
Category 1 instead suggests the existence of order effect in
this experiment.

Experiment 2
In this experiment, we put emphasis on examining how peo-
ple learn the descending structure. See the middle panel in
Figure 1. The categorization rule is same as the one used in
Experiment 1: ”Respond Category 1, if Xn > n and Category
2 otherwise”. As in Experiment 1, order effect is expected.
Also, since the lines are getting shorter and shorter, accord-
ing to order effect, Category 2 is expected to be learned better
than Category 1 instead in this experiment.

Method

Participants In total, 25 undergraduate students are re-
cruited to participate in this experiment. The whole task can
be finished in less than 20 minutes on average. After testing,
the participants would be reimbursed with NTD$ 60 (' US$
2) for their time and traffic expense.

Materials and Procedure The stimuli and the testing pro-
cedure are the same as used in Experiment 1.

Results
The overall accuracy on Category 1 is worse than that on Cat-
egory 2 (.53 vs. .75). This inspection is consistent with our
expectation and confirmed by a Category (2) × Block (10)
within-subject ANOVA. The results reveal that Category 1
is learned significantly worse than Category 2 [F(1,24) =
61.95, MSe = 0.10, p < .01], the learning block has a sig-
nificant main effect [F(9,216) = 2.12, MSe = 0.06, p < .05],
and Category 2 is learned better no matter which block it is
in [F(9,216) = 1.60,MSe = 0.04,p = .12]. The learning pat-
tern across blocks is shown by the solid line in Figure 3. The
black circles connected by solid lines represent the observed
probability of correct.

In order to test order effect, a Category(2) × Direction-
Change (2) × Learning-Session (2) within-subject ANOVA
is conducted for the probability of Category 1 on 99 trials.
The results show that the participants make more Category
1 response when following an item from Category 1 (mean
P(1) = .55) than when following an item from Category 2
(mean P(1) = .26) with F(1,24) = 78.58, MSe = 0.06, p <
.01. Also, the participants show a different tendency to make
a response of Category 1 for a longer or shorter current line
[F(1,24) = 43.40, MSe = 0.09, p < .01]. However, there
is no difference on the probability of Category 1 made for
the trials in the first half or the second half learning session
[F(1,24) = 2.64, MSe = 0.01, p = .12].

As Experiment 1, the interaction effect between Cate-
gory and Direction-Change is significant [F(1,24) = 5.43,
MSe = 0.02, p < .05] and so is the interaction effect be-
tween Direction-Change and Learning-Session [F(1,24) =
9.92, MSe = 0.02, p < .01]. The tendency of making a
Category 1 response is not different in different learning
session. The three-way interaction effect is not significant
[F(1,24) = 1.32, MSe = 0.02, p = .26]. Again, it is revealed
that the tendency of making a Category 1 response depends
on the preceding item’s category label as well as the change
on the line length, namely order effect.

Experiment 3
Different to the previous two experiments, the length of the
stimulus line in this experiment is designed to vary in a
quadratic trend throughout the learning trials. The category
structure is shown in the right panel in Figure 1. For the trials
before trial 51, the line length is getting shorter and the item
of Category 1 is longer than that of Category 2. However,
from trial 51 to trial 100, the line length is getting longer
and the item of Category 1 is shorter than that of Category
2. With this category structure, we would like to examine
whether people can learn the categories whose members vary
in time in a quadratic trend as well as whether order effect
occurs.

According to the previous two experiments, the descend-
ing trend would favor the category with shorter lengths (i.e.,
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Figure 3: The observed and predicted P(Correct) in Experi-
ment 2.

Category 2 in the first half of the learning session) and the
ascending trend would favor the one with longer lengths (i.e.,
Category 2 in the second half of the learning session). Thus,
Category 2 is expected to be learned better throughout all the
trials in this experiment.

Method
Participants In total, 25 undergraduate students are re-
cruited to participate in this experiment. The task would be
finished in less than 20 minutes on average. After testing,
they would be reimbursed with NTD$ 60 (' US$ 2) for their
time and traffic expense.

Materials and Procedure The stimuli and the testing pro-
cedure are the same as used in Experiment 1.

Results
A visual inspection on Figure 4 shows that, on average, Cate-
gory 1 is learned worse than Category 2 (.50 vs. .71). The
analysis of variance on the probability of correct response
confirms this observation [F(1,24) = 71.01, MSe = 0.07,
p < .01]. Also, the probability of correct response is signifi-
cantly different across the learning blocks [F(9,216) = 2.94,
MSe = 0.06, p < .01]. The interaction between Category and
Block is significant [F(9,216) = 2.058,MSe = 0.06,p < .05].
There is a sudden drop in the learning curve at the sixth
block for both categories. This should be related to the chaos
brought by the flip of category relationships.

To test order effect, a Category (2) × Direction-Change
(2) × Learning-Session (2) within-subject ANOVA is con-
ducted. The results reveal that the probability of Category
1 made for the current trial differs when the preceding cate-
gory label differs [F(1,24) = 133.70, MSe = 0.05, p < .01].
Whether the current line is longer or shorter than the pre-
ceding one has no effect on the tendency of making a cate-
gory 1 response [F(1,24) = 3.34, MSe = 0.04, p = .08]. The
probability of Category 1 does not differ in different learn-
ing sessions [F(1,24) = 3.68, MSe = 0.02, p = .07]. The
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Figure 4: The observed and predicted P(Correct) in Experi-
ment 3.

two way interaction effect is not significant between Cate-
gory and Direction-Change [F(1,24) = 1.61, MSe = 0.02,
p = .22] and nor is that between Category and Learning-
Session [F(1,24) < 1]. However, the interaction effect be-
tween Direction-Change and Learning-Session is significant
[F(1,24) = 33.65, MSe = 0.06, p < .01]. The three way in-
teraction effect is significant [F(1,24) = 4.62, MSe = 0.03,
p < .05].

See the black bars in Figure 5 for the probability of Cate-
gory 1 on the eight types of trials. In the first half of learning
session, the participants strongly predict the current item as
Category 1 and Category 2 respectively on the U1 and D2
trials. They however are less certain when the direction of
length change does not guarantee the category label (i.e., U2
and D1 trials). This result matches the descending part of
the category structure. In the second half of learning session,
Category 1 becomes shorter than Category 2. Thus, the D1
and U2 trials instead provide reliable information about the
category label. This is why the three way interaction effect is
significant.

Modeling and Discussion
The three models discussed in the previous sections are fit-
ted to the observed p(Category 1) on the eight types of trials
for each participant in each experiment. We adopt AIC as
the measure of goodness of fit. The smaller the better. The
results show that GCM performs the best (AIC = 21.44 for
Exp1, AIC = 24.8 for Exp 2, and AIC = 32.49 for Exp3),
SDGCM performs the second best (AIC = 24.81 for Exp1,
AIC = 28.02 for Exp2, and AIC = 37.04 for Exp3), and CBS
performs relatively worse than the other two (AIC = 28.78 for
Exp1, AIC = 27.90 for Exp2, and AIC = 49.45 for Exp3).

The best fitting λ of GCM across all experiments is 0.37,
suggesting that the ratio of similarity information for clas-
sifying a current item is down to less than 50% on trial n-
3. The best fitting λ of SDGCM across all experiments is
2.72, suggesting only the right preceding item is included in
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Figure 5: The observed and predicted p(Category 1) for eight
types of trials in Experiment 3. U1: item n > item n− 1
which belongs to Category 1, D1: item n < item n−1 which
belongs to Category 1, U2: item n> item n−1 which belongs
to Category 2, and D2: item n < item n−1 which belongs to
Category 2. The bars from the darkest to the lightest corre-
spond to the observed p(Category 1), the GCM prediction,
the SDGCM prediction, and the CBS prediction.

classifying the current one. It is implied that only the tem-
porarily retained item(s) would be needed for learning time-
varying categories. The estimated specificity is larger for
GCM (c = 0.61) than SDGCM (c = 0.13). For CBS, the
mean best fitting w = .43 suggests a medium degree of re-
liance on the preceding item to determine the current bound-
ary. The decision-making process of CBS is very determinis-
tic (λ= 17.12). The boundary constant b is estimated as 9.76,
4409.11, and 11645.47 respectively for Experiment 1, Exper-
iment 2, and Experiment 3. The extremely large b prevents
the boundary falling down too quickly, which consequently
increases responses for Category 2. This benefits the model-
ing of learning pattern of the descending structure, but not the
quadratic structure.

As shown in Figure 5, the participants are aware of the in-
version of category relationship (Category 1 > Category 2→
Category 2 > Category 1). The U1 and D2 trials are strongly
predicted as Category 1 and Category 2 in the first half of
learning session and so are the D1 and U2 trials in the second
half of learning session. CBS cannot capture this change, be-
cause in CBS, Category 1 > Category 2 at all times. In addi-
tion, the model predictions are converted to p(Correct)4, plot-
ted by the dashed lines in Figures 2, 3, and 4. The predicted
p(Correct) of GCM, SDGCM, and CBS are denoted respec-
tively by the symbols of triangle, +, and ×. Although these
models are fitted to the data of p(Category 1), the patterns
of converted p(Correct) also support that GCM and SDGCM
outperform CBS.

4When converting to accuracy, 1−p(Category 1) would be the
accuracy for Category 2.

Conclusion
A number of findings in this study are worth noting. We show
that people can learn time-varying categories, even when the
category structure varies in a quadratic trend. When learning
time-varying categories, response for a current item is influ-
enced by preceding category label and the difference between
current item and preceding one, namely order effect. This or-
der effect can be accounted for by the exemplar-based mod-
els, GCM and SDGCM, with gradient descent weightings for
exemplars. Although the learning pattern on time-varying
categories can have a rule-based account, a nonlinear cate-
gory structure would challenge it. In contrast, the exemplar-
based account is relatively general to accommodate the learn-
ing patterns with different types of category structures.
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