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Abstract

A number of studies on network analysis have found the small-
world and scale-free properties in the network of free word
association, which reflects human semantic knowledge. Nev-
ertheless, there have been very few attempts to apply network
analysis to distributional semantic models (DSMs), despite the
fact that DSMs have been extensively studied as a model of
human semantic knowledge. In this paper, therefore, we an-
alyze the small-world and scale-free properties of DSM net-
works. We demonstrate that DSM networks exhibit the same
properties as the word association network. Especially, we
show that DSM networks have the distribution of the number
of connections that follows the truncated power law, which is
also observed in the association network. This result indicates
that DSMs provide a plausible model of semantic knowledge.
Furthermore, we propose a modified version of Steyvers and
Tenenbaum’s (2005) growing network model, which involves
the processes of semantic differentiation and experiential cor-
relation. This model can better explain different distributions
generated by various DSM implementations.
Keywords: Semantic network; Distributional semantic model;
Truncated power-law distributions; Network models

Introduction
Recently, network analysis or network science has attracted
considerable attention in cognitive science (Baronchelli,
Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen,
2013). The network properties revealed through the anal-
ysis of complex cognitive phenomena tell us about the be-
havior of the underlying cognitive processes, and even sim-
ple network models can provide valuable insights into the
cognitive mechanisms. In particular, a large number of net-
work studies have investigated language-related phenomena
(Borge-Holthoefer & Arenas, 2010), among which the most
studied one is free word association (De Deyne & Storms,
2008; Nelson, McEvoy, & Schreiber, 2004). This is because
free word association reflects our lexical knowledge acquired
through world experience, and thus reveals the structure of
human semantic memory or mental lexicon.
Network studies on word association have demonstrated

the small-world and scale-free properties of semantic network
(De Deyne & Storms, 2008; Morais, Olsson, & Schooler,
2013; Steyvers & Tenenbaum, 2005). For an association net-
work where each word is represented by a node and an asso-
ciation relation between two words is represented by an edge
joining the corresponding nodes, the small-world property in-
dicates that any two word nodes are connected by traversing
only a few edges, although the network is highly structured
locally. The scale-free property indicates that most word
nodes are poorly connected, while a relatively small number
of words are highly connected; as a result, the distribution of
the number of connections for each node follows a power law.
All the existing studies agree on the small-world property
of the association network, but some studies (Morais et al.,
2013) suggest that the association network is not completely
scale-free; rather the network is characterized by a power law
truncated by an exponential cutoff, where the most connected
words have a smaller connection than would be expected in a
purely power-law distributed network.

These network properties are expected to reveal the cog-
nitive mechanism underlying the semantic structure of lan-
guage (Borge-Holthoefer & Arenas, 2010). For example,
the small-world structure sheds light on an efficient search
process in semantic memory. Investigating various network
models that generate scale-free networks provides valuable
insight about psychological processes involved in lexical de-
velopment.
In contrast to the growing network-analytic interest in

word association, a distributional semantic model (hence-
forth, DSM) has rarely been investigated in network analy-
sis, despite the fact that DSMs have been extensively studied
as a valid model of semantic memory (Landauer, McNamara,
Dennis, & Kintsch, 2007). In a DSM, the lexical meaning
of a word is represented by a high-dimensional vector, and
the degree of semantic relatedness between any two words
can be easily computed from their vectors. Word vectors
are constructed from large bodies of text (i.e., corpus) by ob-
serving distributional statistics of word occurrence. Steyvers
and Tenenbaum (2005) tested whether latent semantic anal-
ysis (LSA), one of the most popular versions of DSMs, ex-
hibits the same network structure as word association, and
found that LSA networks were small-world, but not scale-
free. They concluded from this result that LSA is limited as a
model of human semantic knowledge. However, their finding
does not imply that DSMs in general fail to model semantic
memory, because a variety of methods for constructing se-
mantic spaces other than LSA are devised in the DSM frame-
work (e.g., Turney & Pantel, 2010). Furthermore, as Morais
et al. (2013) pointed out, their analysis of the scale-free prop-
erty was quite subjective in that their claim of power-law be-
havior was derived solely from the observation of the behav-
ior of distribution without any statistical tests.
In this paper, we analyze the small-world and scale-free

properties of semantic networks constructed from various
DSMs in a more systematic way, and examine the condi-
tions under which DSM networks have the same properties
as the association network. Through this network analysis,
we test whether a DSM can provide a psychologically plau-
sible model of semantic memory. In addition, we discuss a
cognitive mechanism for lexical development by proposing a
network model that simulates the behavior of DSM networks.

Complex Network Analysis
We first define some terminology from graph theory used in
this paper. A network (or graph)G is defined by a pair (V,E)
comprising a set V of nodes or vertices and a set E of edges
that connect a pair of nodes. The number of nodes |V | is
denoted by n, and the number of edges |E| is denoted by m.
An edge is directed or undirected, and a graph containing only
directed (undirected) edges is said to be directed (undirected).
Two nodes are neighbors if they are connected by an edge.
The degree ki of a node vi is the number of edges that connect
to it (i.e., the number of neighbors). The average degree over
all nodes is denoted by 〈k〉. In a directed network, the degree
of a node vi has two types, namely in-degree kini and out-
degree kouti , which respectively refer to the numbers of edges
incoming to or outgoing from v i.
A path is a sequence of edges that connects one node to
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another. The path length is the number of edges along that
path. An undirected graph is connected when there is a path
between every pair of nodes. A directed graph is strongly
connected when there is a path in both directions between
every pair of nodes. A (strongly) connected component of a
graph is a subgraph that is (strongly) connected, but no longer
connected when any other node in the graph is added. The
number of nodes of the largest (strongly) connected compo-
nent is denoted by nCC. Note that, in this paper, we restrict
the following analyses to the largest connected component.
Small-world networks can be characterized by high local

clustering and short path lengths between nodes. On the one
hand, small-world networks have clusters of nodes that are
densely connected to each other. On the other hand, two
nodes that belong to different (and distant) clusters are also
connected by only a few edges. These two features can be
quantitatively measured by the clustering coefficient C and
the average shortest path length L. The clustering coefficient
C is defined as C = ∑vi∈V C(vi)/|V | where C(vi) = Ti/

( ki
2

)
.

In this definition, Ti denotes the number of edges that exist
between neighbors of a node vi, and thus C(vi) represents
the probability that two neighbors of vi are connected by an
edge. As a result, the clustering coefficient C represents the
probability that two neighbors of a randomly chosen node are
themselves neighbors. On the other hand, L is defined as the
average of shortest path length over all (ordered) pairs of dis-
tinct nodes in an undirected (directed) network.
More formally, small-world networks are defined in terms

of how they differ from the random networks with the same
type of edges, number of nodes, and number of edges. Let
Crandom and Lrandom be the clustering coefficient and the av-
erage path length of the corresponding random network. A
network G is said to be small-world if C�Crandom and L �
Lrandom (Watts & Strogatz, 1998). It means that small-world
networks are highly clustered, unlike random networks, yet
they have small path length, like random networks.
The scale-free property can be characterized by a broad,

heavy-tailed degree distribution that follows the power law
P(k)∼ k−α . Many real networks such as WWW, citations of
scientific papers, and food web have been found to be scale-
free, and the exponent α of these distributions usually ranges
between 2 and 3. Amaral et al. (2000) also demonstrated that
many real systems that are not scale-free can be grouped into
two additional classes: a broad-scale network, characterized
by a degree distribution that has a power-law regime followed
by a sharp cutoff, i.e., P(k) ∼ k−αe−λ k, and a single-scale
network, characterized by a degree distribution with a fast
decaying tail that follows the exponential P(k)∼ e−λ k.
The degree distribution of a given network can be exam-

ined by constructing a binned histogram or plotting a cumu-
lative degree distribution on a logarithmic scale. If a degree
distribution follows the power law, the plotted distribution
shows a straight-line behavior, whether cumulative or not.
Hence, the easiest way to evaluate whether a given degree
distribution follows the power law is to observe the shape
of the plotted distribution. However, this method is subjec-
tive, especially when we test whether a distribution follows
the power law. Therefore, we not only observe the plotted
data, but also apply Clauset, Shalizi, and Newman’s (2009)
statistical framework for testing the goodness-of-fit between
the data and the power law, and whether the power law is a
more plausible model than alternative distributions. In this
framework, the power law is fitted to the data (i.e., plotted
distribution) and the scaling parameter α is estimated using
maximum likelihood estimation (henceforth, MLE). This fit-

Table 1: Statistics for the semantic network (n= 5,018) built
from the USF association norms

m nCC 〈k〉 L Lrandom C Crandom
Directed 63,620 4,845 12.7 4.26 3.64 0.187 0.005
Undirected 55,236 5,018 22.0 3.04 3.03 0.187 0.005
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Figure 1: In-degree and cumulative in-degree distributions of
the USF association network

ting procedure assumes a lower bound kmin to the power-law
behavior, for an empirical reason that most naturally occur-
ring distributions only follow a power-law distribution above
some lower bound. The lower bound kmin is identified by
minimizing the Kolmogorov-SmirnovdistanceD between the
data and the theoretical power-law fit. In this paper, to avoid
a biased estimate resulting from throwing away many legit-
imate data points, we estimate the optimal kmin within the
range of kmin ≤ 50. The goodness-of-fit test is conducted by
empirically estimating the probability p that D for the ob-
served data is smaller than that for the synthetic data ran-
domly drawn from the power-law distribution that best fits
the observed data. In other words, p denotes the probability
of obtaining the observed data under the null hypothesis that
the observed data follows the estimated power-law model. If
p is small, the null hypothesis is rejected. Clauset et al. (2009)
suggest that the power law is ruled out when p ≤ 0.1, and
we also use this criterion. The estimated power-law model
is compared with alternative models using a likelihood-ratio
test. As suggested by Clauset et al. (2009), model selection
by the likelihood ratio is significant when p< 0.1.

Analysis of Word Association Network
Method
We used the English free association norms collected at the
University of South Florida (Nelson et al., 2004), which was
also used in previous studies on association networks. Fol-
lowing these studies, we constructed a directed network as
follows. First, only cue words were represented as nodes
(i.e., words that appeared only as an associate were not con-
sidered). Second, two word nodes x and y were connected
by a directed edge from x to y, if the word y was listed as an
associate of the cue x by at least two of the participants of
the association experiment. We also generated an undirected
network by replacing directed edges with undirected ones.

Result
Table 1 shows the network statistics for the USF association
network. The association network has a small-world structure
because C � Crandom and L � Lrandom. This result is com-
pletely consistent with the existing findings on the analysis of
association networks (De Deyne & Storms, 2008; Morais et
al., 2013; Steyvers & Tenenbaum, 2005).
Figure 1 (a) and (b) plot the in-degree distribution of the di-

rected association network and its cumulative distribution. 1
These graphs show that the distributions deviate from the
pure power law, as argued by Morais et al. (2013). In-
deed, the goodness-of-fit test for the best-fit power-lawmodel
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(α = 2.91, kmin = 35) ruled out the possibility of the pure
power law, D=0.048, p= .01. Furthermore, likelihood-ratio
tests indicate that the truncated power law (i.e., the power
law with an exponential cutoff) is a significantly better fit
to the observed distribution than the pure power-law form,
logLR=−8.36, p<.001. (Although the pure power law is fa-
vored over the exponential, it is not significant, logLR=2.06,
p= .80.) These results are completely consistent with Morais
et al.’s (2013) finding. Note that the power-law exponent
α was estimated at 2.91 in this paper and 2.92 in Morais
et al. (2013), but these values are higher than those of the
other studies claiming the pure power-law fit, i.e., α = 1.79
(Steyvers & Tenenbaum, 2005), or 2.13 (De Deyne& Storms,
2008). Interestingly, our estimate of α for the truncated
power-law distribution is 1.78, which is close to their esti-
mates of pure power law. This also seems to suggest that the
truncated power law may better describe the in-degree distri-
bution in the USF association network.
We also applied the fitting procedure to the observed in-

degree distribution below kmin(= 35). This analysis is moti-
vated by the existing finding that some semantic networks ex-
hibit the power law with the initial exponential decay (Motter,
de Moura, Lai, & Dasgupta, 2002). The result is that the
exponential distribution with λ = 0.124 better fits the data
than the pure power law (logLR=−421.9, p< .0001) and
the truncated power law (logLR=−389.9, p< .0001). Fig-
ure 1 (c) indeed shows that this exponential fit appears to be
the case; P(k) decreases roughly linearly with the degree on
the semilogarithmic (i.e., log-linear) scale and the slope of the
red line equals to λ loge.

Analysis of DSM Networks
Method
To compare DSM networks directly with the USF association
network, we used only the cue words of the USF association
norms when creating DSM networks. As a corpus for DSMs,
we used the written and non-fiction parts of the British Na-
tional Corpus, which contained 491,106 documents, 73,422
distinct words, and 4,702 cue words.
We created a semantic network from a given semantic

space by first computing the cosine similarity between any
pairs of words and then determining local neighborhoods us-
ing the cosine similarity. Local neighborhoods were deter-
mined by two methods, namely the k-nn method and the r-
method. The k-nn method was used in Steyvers and Tenen-
baum (2005), while the r-method is devised in this study. 2
Both methods create a directed edge from each word to its
nearest neighbors. They differ in the way of determining
the number of nearest neighbors for each word. In the k-
nn method, the number of neighbors for a word w i is set
to the number of associates of that word in the USF asso-
ciation norms. In the r-method, the number of neighbors

1In this paper, we address only the in-degree distribution, be-
cause using the out-degree or the degree of the undirected network
would introduce a bias, which comes from the task characteristics
such as the number of associations (De Deyne & Storms, 2008).

2Steyvers and Tenenbaum (2005) also used the ε-method, in
which local neighborhoods are computed by thresholding the cosine
similarity; any pair of words whose cosine value is equal to or higher
than a threshold ε is connected by an undirected edge. However, the
symmetric nature of this method is not appropriate for modeling the
semantic knowledge underlying word association. In human word
association, a word x is an associate of a cue word y does not imply
that y is an associate of x, but the ε-method cannot capture such the
difference. Therefore, we did not use the ε-method in this paper.

Table 2: Statistics for some representative examples of the
DSM networks (n= 4,702)

m nCC 〈k〉 L Lrandom C Crandom
Word-document matrix, unweighted, unsmoothed, k-nn method
Directed 60,262 4,519 12.8 4.84 3.59 0.222 0.006
Undirected 49,274 4,702 21.0 2.94 3.06 0.228 0.005

Word-document matrix, tf-idf, smoothed, r-method
Directed 59,613 4,156 12.6 5.83 3.58 0.317 0.006
Undirected 48,622 4,702 20.7 3.88 3.07 0.308 0.005

Word-word matrix, unweighted, unsmoothed, r-method
Directed 59,621 3,091 12.8 8.31 3.45 0.366 0.008
Undirected 55,520 4,702 23.6 3.05 2.95 0.335 0.005

Word-word matrix, ppmi, smoothed, r-method
Directed 59,613 4,474 12.7 5.77 3.60 0.251 0.006
Undirected 48,504 4,702 20.6 3.76 3.07 0.242 0.005

for a word wi is determined to be the largest |N| such that
∑wj∈N cos(wi,wj) /∑wj∈V cos(wi,wj)≤ r where N is a set of
nearest neighbors of wi and V is a set of all words except wi.
The threshold r is determined so that the created DSM net-
work has the same 〈k〉 as in the directed association network.
In the DSM framework, semantic spaces are constructed

by the following three steps (Turney & Pantel, 2010).
1. Initial matrix construction: Aword-context frequency

matrix A with nw rows for words and nc columns for contexts
are constructed. The i-th row corresponds to the word vector
for the i-th word wi.
2. Weighting: The elements of the matrix A are weighted.
3. Smoothing: The dimension nc of the row vectors of A

is reduced to nr.
The notion of context in Step 1 can be generally classified

into two types: “documents as contexts” and “words as con-
texts.” For a documents-as-contexts (or word-document) ma-
trix, an element ai j of A is the frequency of a word wi in a
document d j. For a words-as-contexts (or word-word)matrix,
its element ai j is the cooccurrence frequency of two words
wi and wj within a certain range such as a window of some
words. In this paper, we used both types of context, and a
context window of size 2 (i.e., two words on either side of
the target word) for a word-word matrix. In Step 2, we em-
ployed two popular weighting methods: tf-idf and ppmi. In
the tf-idf method, the weight is calculated by the product of
the local weight based on the term frequency and the global
weight based on the inverse document frequency or entropy.
In this paper, we used the product of the logarithm of the
word frequency and the entropy (Utsumi, 2011). In the ppmi
method, the weight is calculated by pointwise mutual infor-
mation and negative values are replaced with zero (Bullinaria
& Levy, 2007). In Step 3, matrix smoothing was conducted
using singular value decomposition (SVD). In this paper, we
set nr = 300, which is used in typical applications of LSA.
Note that LSA corresponds to the combination of a word-
document matrix, tf-idf weighting, and SVD smoothing.
As a result, we obtained 24 DSM networks from all pos-

sible combinations of two methods for determining neigh-
borhoods (k-nn or r), two initial matrices (word-document
or word-word), three weighting options (tf-idf, ppmi, or un-
weighted), and two smoothing options (SVD or unsmoothed).

Result
Small-world property Table 2 shows the network statistics
for some representative examples of DSM networks. These
results clearly indicate that the DSM networks have the small-
world structure, i.e., high clustering coefficient, small shortest
path length, and high connectivity. Although we do not show
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Table 3: Summary of statistical testing for power-law behav-
ior in the in-degree distributions of directed DSM networks

Unsmoothed Smoothed
matrix / method raw tf-idf ppmi raw tf-idf ppmi
word-document / k-nn +*+ +*+ +*+ +** +** +**
word-document / r +*+ +*+ +*+ +** +** +-*
word-word / k-nn +-+ --* --* +-* +** +-*
word-word / r +-+ --* +** +-* +** +**

Note. A three-symbol code used in this table is defined as fol-
lows. The left symbol denotes the result of the goodness-of-fit
test for the power law, the middle one denotes the result of the
likelihood ratio test for the truncated power law over the power
law, and the left one denotes the result of the likelihood ratio test
for the exponential over the power law. The symbol + denotes
that the power law fits to the data (left) or the power law is fa-
vored over the alternative (right). The symbol - denotes that the
power law is ruled out (left) or the alternative is favored over the
power law (middle or right). The symbol * denotes no signifi-
cant preference between the power law and the alternative. Red
and green cells respectively denote that the in-degree distribution
follows the pure power law and the truncated power law.

the statistics of all the 24 DSM networks, other networks also
have the same small-world structure.
Scale-free property In this section, we first discuss the re-
sult of Clauset et al.’s (2009) statistical tests for all the DSM
networks, and then examine the in-degree and cumulative in-
degree distributions when necessary.
Table 3 shows the results of the goodness-of-fit test for the

best-fit power-law model and the likelihood-ratio tests for the
truncated power law and the exponential over the power law.
The code +*+ definitely indicates that a pure power-law dis-
tribution is most appropriate, and +** also indicates that a
pure power law is likely to be most appropriate. On the
other hand, the codes --*, --+, +-+ and +-* indicate that
a truncated power-law degree distribution is most appropri-
ate, while the codes -*- and +*- indicate that a exponential
distribution is most appropriate. Other possible codes show
that the most appropriate distribution cannot be determined
by this test. Note that the test result for the USF association
network is coded as --*, which favors a truncated power law.
Overall, Table 3 shows that all the DSM networks exhibit

a power-law distribution (denoted by red cells) or a trun-
cated power-law distribution (denoted by green cells). This
result provides direct evidence against Steyvers and Tenen-
baum’s (2005) argument that LSA networks do not produce
the power-law distribution and thus LSA cannot provide a
plausible model of semantic memory. A DSM has an abil-
ity to reproduce semantic networks with the same proper-
ties as the association network, and therefore it can provide
a psychologically plausible framework for modeling human
semantic memory.
A more detailed analysis of the result of the statistical tests

and the in-degree distributions reveals how the parameters for
constructing semantic spaces affect the properties of DSM
networks, which are summarized as follows.
1. Unsmoothed word-word matrix: The DSM networks

derived from the unsmoothed word-word matrices typically
exhibit the truncated power-law degree distribution, which is
similar to the distribution of the USF association network.
2. Smoothed word-word matrix: Some of the smoothed

word-word-based DSMs yield a scale-free network whose
degree distribution follows the pure power law, while other
DSMs still yield the truncated power-law distribution.
3. Unsmoothed word-document matrix: The DSM net-

works constructed from the unsmoothed word-document ma-
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Figure 2: In-degree and cumulative in-degree distributions of
the DSM networks generated from the initial matrix
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Figure 3: Cumulative degree distributions of the DSM net-
works generated from different weighting schemes

trices exhibit neither a power-law distribution nor its variants.
4. Smoothed word-document matrix: The smoothed

word-document-based DSMs yield a scale-free network
whose degree distribution follows the pure power law.
Concerning Result 1, the initial unweighted matrix gener-

ates networks whose degree distribution follows the truncated
power law, which is similar to the distribution of the asso-
ciation network, as shown in Figure 2 (g)-(j) and in the sec-
ond column (+-+) of Table 3. Both tf-idf and ppmi weighting
schemes change the degree distribution into a more truncated
form (i.e., with a sharper cutoff), as shown in Figure 3 (c) and
(d), but the distribution still follows the truncated power law.
Concerning Result 2, SVD smoothing indeed affects some

DSM networks (i.e., networks with tf-idf weighting) based
on the word-word matrix so that their degree distribution fol-
lows the pure power law, as shown in the fifth through the last
columns (+**) of Table 3 and in Figure 4 (d)-(f).
On the other hand, Result 3 can be confirmed by Figure 2
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Figure 4: Cumulative in-degree distribution of the DSM net-
works generated after and before SVD smoothing: The case
of the r-method

(a)-(d). Although the second column of Table 3 indicates that
the pure power law is most appropriate, the degree distribu-
tions for the unweighted word-document matrix, in fact, take
a different shape from three distributions addressed in this pa-
per; the distributions decay exponentially for small k, but the
decay is suddenly slower in a linear fashion, which is rarely
observed in real-world systems. Weighting does not change
these unnatural distributions, as shown in Figure 3 (a) and (b).
These unnatural distributions would result from an unsuc-

cessful construction of word-document-based networks, in
which word pairs with very low cosine similarity are con-
nected by edges. In general, a word-documentmatrix is more
sparse than a word-word matrix generated from the same cor-
pus; the percentage of zero elements was 99.36% for the
word-document matrix used in this paper, while 78.84% for
the word-word matrix. The higher sparseness of the word-
document matrix leads to very low cosine similarity. Indeed,
in the word-document-based network by the r-method, about
an half of the word pairs connected by an edge had the cosine
of 0.05 or less. These low-cosine word pairs are likely to in-
clude highly frequent words, because they are likely to have
more non-zero elements in their vector representation. The
fatter tail observed in the degree distribution for the word-
document matrix may be a consequence of this frequency ef-
fect; some frequent words are connected by a large number of
edges. Hence, if a network is created by thresholding the co-
sine similarity of word pairs, it is expected that its degree dis-
tribution becomes close to the (truncated) power law. Indeed,
when we created a network using the r-method by limiting
word pairs to be joined by an edge to those with the cosine of
0.05 or more, its degree distribution followed the truncated
power law, as shown in Figure 2 (e)-(f). The same result was
obtained in the networks created by the k-nn method.
Concerning Result 4, SVD smoothing also leads to the

word-document-basednetworks to follow the pure power law,
as shown in Figure 4 (a)-(c) and in the fifth through the last
columns of Table 3. This is because SVD compensates the
data sparseness of the original DSMs.

Network Model and Semantic Relations
One question that naturally arises is what structure underlying
various semantic networks governs their different behaviors.
In this section, we provide one possible answer to the ques-
tion in terms of a network model that explains a distinction of

semantic relations between connected word nodes.
Barabási and Albert (1999) proposed a simple model for

a scale-free network with the mechanism of network growth
and preferential attachment, which leads to the pure power-
law degree distribution with the exponent of 3. In this model,
a small fully connected network of M nodes is constructed
first, and then a new node is added to the network succes-
sively (i.e., network growth), by connecting it to M existing
nodes selected with probabilities proportional to their degrees
(i.e., preferential attachment). In order to provide a psycho-
logically plausible explanation of semantic growth, Steyvers
and Tenenbaum (2005) extended the Barabási-Albert model
by introducing the process of semantic differentiation into
the simple mechanism of preferential attachment. In the
Steyvers-Tenenbaum model, after an existing node v i is cho-
sen for differentiation with probability proportional to their
degrees just as the Barabási-Albert model does, a new node
is connected to M randomly chosen nodes in the neighbors
of the node vi. However, their model cannot explain the ob-
served difference among distributions of DSM networks, be-
cause it does not have free scaling parameters enough to gen-
erate a variety of pure and truncated power-law distributions.
One solution to the limitation lies in the reasonable as-

sumption that semantic growth cannot be explained solely by
the process of semantic differentiation. Two word nodes con-
nected by preferential attachment can be regarded as seman-
tically or taxonomically similar, because a new word added
to the network by semantic differentiation corresponds to
more specific variations on existing words. However, a new
word can be associated with other words by another relation,
namely an attributive or collocational relation. This process
does not require preferential attachment because there is no
reason to assume that highly complex concepts (i.e., those
with many connections) are likely to be an attribute of a new
concept. For example, in the USF association norms, the four
most listed associates of the cue cherry are red, pie, fruit, and
apple. When we consider the situation where a new word
cherry is added to the network, adding edges from cherry to
fruit and apple means that cherry differentiates the concepts
of fruit and its neighbor apple by introducing their new sub-
categories. On the other hand, adding edges to red and pie can
be interpreted differently; these edges may be added because
cherry has the attributes of “being red” and “being a material
of pie”. 3 We refer to this process as experiential correlation.
In lexical semantics, this distinction of semantic relations is

known as syntagmatic-paradigmatic distinction. Two words
are syntagmatically related if they cooccur more often than
would be expected by chance. Syntagmatically related words
tend to cooccur in a noun phrase (e.g., red cherry) or a verb
phrase (eat cherries). Because these phrases represent a re-
lation between a concept and its attribute, syntagmatic rela-
tions are caused primarily by experiential correlation. On the
other hand, two words are paradigmatically related if they do
not cooccur but they can substitute for one another, in other
words, they cooccur with similar words. Paradigmatic rela-
tions tend to be taxonomically similar by virtue of synonym,
antonym or other coordinates, and thus they are caused by
semantic differentiation.
In order to integrate the process of experiential correlation

into the Steyvers-Tenenbaummodel, we consider random at-
tachment, which is introduced into the Barabási-Albert model
by Liu, Lai, Ye, and Dasgupta (2002). In Liu et al.’s (2002)
model, a new node is attached to the existing nodes preferen-

3The case of pie is controversial; it can also be interpreted as due
to the semantic differentiation in which cherry subcategorizes a pie.
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Figure 5: Cumulative in-degree distributions of the real se-
mantic networks and simulated networks

tially with probability 1−p or randomly with probability p.
The resulting network has the degree distribution that follows
a mixture of power-law and exponential behaviors. Clearly,
the distribution completely follows the power law if p = 0,
while it follows the exponential if p = 1. When 0 < p < 1,
the distribution exhibits an approximately exponential behav-
ior for small k, and a power-law-like behavior for large k.
Note that, as mentioned earlier, the degree distribution of the
USF association network follows the exponential below kmin
and the truncated power law above kmin. This suggests that
both preferential and random attachments are required for ap-
propriately simulating the behavior of semantic networks.
Following Liu et al.’s (2002)model, we propose a modified

version of the Steyvers-Tenenbaum model with both prefer-
ential and random attachments. A new node is attached to M
existing nodes preferentially by semantic differentiation with
probability 1− p, and randomly by experiential correlation
with probability p. For preferential attachment, nodes to be
connected to a new node are chosen from only the neighbors
of a node vi that were previously added by preferential attach-
ment. In random attachment, these nodes are chosen from all
the existing nodes. To simulate the observed distributions of
the DSM networks by this modified model, we must deter-
mine p. In this paper, we determine p using the fraction q of
edges that connect a pair of syntagmatically related words in
the target network as follows: p= q (Model A) and p= q/2
(Model B). Model A assumes that all syntagmatic relations
are caused by random attachment, while Model B assumes
that syntagmatic relations are caused equally by random and
preferential attachments (for this possibility, see footnote3).
Figure 5 shows some simulation results by the modified

Steyvers-Tenenbaum model. In these simulations, the di-
rection of each edge was chosen randomly, pointing toward
the old node with the probability γ . We determined γ so
that the generated network had approximately the same con-
nectivity nCC as the real network. In Figure 5, the modified
model (ModelA or B) better simulates the distributions of the
real semantic networks than the original Steyvers-Tenenbaum
model (Model ST), thus suggesting that the network model
with both preferential and random attachments is more ap-
propriate for explaining the behaviors of semantic networks.
Whether ModelA or B better fits the observed distribution
depends on the semantic network; ModelA better reproduces
the distribution for the DSM networks, whileModelB is more
appropriate for the USF association network. This result sug-
gests that syntagmatically related words may be more likely
to be connected by random attachment in the DSM networks
than in the association network. It is unclear why this differ-
ence occurs, an answer to which must await further research.

Concluding Remarks
The complex network analysis reported in this paper demon-
strates that DSM networks have the same properties as the

association network; they are small-world and their degree
distributions follow the truncated power law with an ini-
tially exponential decay. In addition, the modified Steyvers-
Tenenbaum model with both preferential and random attach-
ments better reproduces these degree distributions. Future re-
search directions include analyzing a more fine-grained struc-
ture (e.g., hierarchical structure and semantic field) of seman-
tic networks, developing a more plausible network model for
simulating the behavior of semantic networks, and modeling
semantic representation as navigation on semantic networks.
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