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Abstract

Social psychology aims to reveal how social behaviors are
acquired through interactions with others (i.e., past
interpersonal experiences) whereas social neuroscience
investigates the neural substrates that correlate with acquired
social behaviors. For example, people with greater ingroup
bias are known to avoid or have avoided interactions with
outgroup members than those with weaker ingroup bias, and
their brain activation patterns are more distinct when viewing
an ingroup member from an outgroup member. The present
study aimed to examine the causal relation of these findings
from different disciplines and integrate them within a single
framework. A connectionist model was trained with/without
the training regime reflecting the interpersonal experiences
that were assumed to increase ingroup bias. As a result, if
trained with such a training environment, the model’s internal
representations of ingroup exemplars were more distinct from
those of outgroup exemplars. Thus, this model reproduced the
dissimilarity structure in the neural representations of ingroup
bias. In contrast, training without such a regime alleviated the
representation dissimilarities.
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Introduction

Social psychological studies aim to clarify how an
individual’s behaviors towards others (i.e., social cognition)
are acquired and how they change through further
interactions with others. For example, one of the widely
investigated phenomena in social cognition is ingroup bias
(or outgroup prejudice). Seminal works of Gordon Allport
hypothesized that intimate contact with outgroup members
would reduce outgroup prejudice, known as contact
hypothesis (Allport, 1954/1979). Supporting evidence for
this theory has been documented in the last 60 years of
psychology, suggesting that there is a significant negative
correlation between the contact frequency and the degree of
prejudice towards others (Pettigrew & Tropp, 2008).
Furthermore, constructive critics have refined the theory by
narrowing the boundary conditions. For example, the nature
of contact modulates its effect, such that a superficial
contact (e.g., just living nearby) could attenuate its effect
(Kanas, Sterkens, & Scheepers, 2013), which Allport
(1954/1979) also predicted (top left corner of Table 1).

In parallel to these psychological studies, cognitive
neuroscience studies have also revealed the neural correlates

of social cognition, including ingroup bias. They revealed
not only the brain region involved in social cognition but
also how the neural activities change in different social
contexts (Molenberghs, 2013). Furthermore, recent advance
has allowed to clarify even the nature of neural
representations that may underlie ingroup bias (Brosch,
Bar-David, & Phelps, 2013; Gilbert, Swencionis, & Amodio,
2012). For example, Brosch et al. (2013) employed a multi-
voxel pattern analysis methodology and found that stronger
implicit ingroup bias (pro-White bias) increases the
dissimilarities in the neural representations of ingroup and
outgroup faces (top-right corner of Table 1).

Whilst the findings from both disciplines are clearly
important for understanding ingroup bias, a key question
that has yet to be answered is how relevant these findings
are. In other words, would neural representations for
ingroup and outgroup faces become similar as people
interact with outgroup members more frequently?
Alternatively, have those with such dissimilar neural
representations experienced less frequent contact with
outgroup members than those with similar neural
representations? To test these possibilities, we would need
longitudinal or retrospective data. However, such data
cannot exclude potential influence of confounding variables.
On this point, a computational model with a learning
algorithm (i.e., it can gradually develop) provides us a
unique opportunity to overcome such a methodological
limitation. It is possible for a modeler to control various
extraneous variables and to manipulate a training regime
that reflects a social psychological finding (e.g., a model
processes outgroup exemplars more/less frequently; a model
processes homogeneous/heterogeneous ingroup members,
etc.). Then, a modeler can directly investigate the internal
representation (i.e., pattern activation in the hidden layer) of
the model to test whether such a manipulation modulates the
dissimilarities in the representations for ingroup and
outgroup exemplars (neuroscience finding). Such an
endeavor to simulate fMRI findings in a connectionist
model is not very common but is proved to be fruitful in
other domains (Cowell & Cottrell, 2013). There are many
social psychological findings that have been suggested to
affect ingroup bias. The present study aimed to examine the
impact of the frequency/nature of contact, identity, and
cultural trend (Details will be described in a later section).
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Table 1. Human poyehological and neuroscisnce daia & the description of the modelling approach and predictions

[Human data (ezisting literature)]

WVoxel-based brain activity patterns

Personality Paychological findings on their secial behavior during viewing an ingroupfoutgroup member
— -
People. with (1) tendto hawe less frequent contact with outgroup members s m -— E
strongiri;:group (2} tendte have superficial contact with outgroup members. AT ingroup member %
(2} tend to perceive their ingroup members share the o ET
samefoverlapping social 1dentities (1 e, less complex) \_  outgroup member
-
People with (41 tendte have more frequent contact with outgroup members ) AT 2 m “'— gg
. 5 b . ) o
Weal{e};;r;group (3 tendto have deep contact with outgroup members. ' -V BPA) ingroup member E
(6)  tendto perceive their ingroup members share different/non- —xe Y m - E—:.
overlapping social identities {1.e., more complex) _ \_ outgroup member
[Computational modelling (present study)] [Predictions] Similarity of the internal
[Training: Reproduce the input pattern] [Mantpulations in the training patterns) representations during processing an
{see & recognize an infoutgroup exemplars)  (to reflect psychological findings above) ingroupfoutgroup exemplar
[Input] [Cutput] (1) less frequent eutgroup exemplars. ™ m
petsonal tra1ts[h.dd | ]personal fraits (23 Several units in the output layer do not ineroun exemolar E‘
HOGED JayEL receive the target signals for the group P :
|:> ED outgroup exemplars (1.e., partial >— Ec} (] E g
understanding). @ B
internal process (33 Ingroup examples tend share the same outaroun exemplar
SEE A person understand otfoff status of the trait units _J Erone P
the person
[Exemplars]
person & person B person C 4 More frequent outgroup exemplars. % =
Ingroup: 1 Ingroup: 0 Ingroup: 0 {57 Al the units in the output layer receive ; B
Qutgroup: 0| - | Outgroup: 1) |Outgroup: 1 target signals {1.e., full undgrstandin y) ingroup exemplar ;
Trait A: 1 Trait 4:0 Trait A: 1 gelsg £ Ty g). o Eﬁ' 3
........................ &) Ingroup examples tend to have different m ]
Trait 3: 0 Trait 30: 1 Trait 30: 0 onfoff status ofthe trait units outgroup exermplar
categorization, and the similarities in the internal activation
Method pattern of one group member from another were taken as a

The bottom half of Table 1 depicts the general modeling
approach and the predictions in this study. Various kinds of
computational models have been implemented in social
psychology to demonstrate the cognitive machinery that can
reproduce social cognitive behaviors. These vary in terms of
(&) how to implement interactions with others; (b) the
explanation of how to acquire social behaviors (c) whether
the target cognition is grounded on distributed or localist
representations, and so on. From these viewpoints, our
model falls into a variant of Tensor-product model by
Kashima and his colleagues (Kashima, Woolcock, &
Kashima, 2000) and the autoassociative network model by
Smith and Decoster (1998). These models focused on the
computational operation of an individual, which processes
(recognize) the input vectors that represent ingroup and
outgroup exemplars. As the model processes the exemplars
one by one, it gradually adjusts the connection strength to
represent the ingroup and outgroup exemplars as distributed
patterns in the internal layer. The modelers analyzed these
distributed representations to test if the model reproduced
social behaviors or not. For example, the model was trained
in a close situation as a psychological experiment of group

measure of group categorization performance. Thus,
importantly, these models were never trained for the target
social cognition itself, but for recognizing others.
Nevertheless, various social cognitive behaviors came out as
an emergent property of the interaction with others.

These models have all the characteristics that are
necessary for the current study. In this study, a three-layer
feedforward network model (bottom-left corner of Table 1)
received an input vector that represented an ingroup or
outgroup exemplar. These simple vector patterns and the
architecture were chosen for simplification (actually, it is a
strength of the model to reproduce the target behavior under
simplification), but a future target would be to make the
model more realistic. The activation spread from left to right
(The activity of each unit was a sigmoid function of the
summed weighted input from other units). Then, the model
was trained for reproducing the input pattern in the output
layer. One can say that the model is trained to understand
(recognize) the person who meets up. Although sometimes a
connectionist model is criticized in terms of its lack of a
teacher signal in reality (Baker’s paradox), we assumed a
target signal is available from the person whom an
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individual meets up. Nonetheless, we addressed this issue
by simulating a situation where this signal was not obvious
— thus superficial contact (Simulation 2). The model
gradually adjusted its connection strength to reproduce the
input pattern in the output layer as closely as possible for all
the training patterns. Thus, it is important to emphasize that
the model was never trained for anything relevant to ingroup
bias. However, a key question we address is that if we train
a model in a way social psychologists assume, then does it
have an impact on the similarity structure of the acquired
internal representations? For example, if the model
processes outgroup exemplars more frequently, then the
representation patterns for outgroup exemplars become
more similar to those for ingroup exemplars? Thus, we
incorporated psychological findings into the model training
regime (middle column of Table 1), and then tested whether
a neural representation for ingroup bias (Brosch et al., 2013)
came out as an emergent property of social interactions.

Lens (http://tedlab.mit.edu/~dr/Lens/) was used for all the
simulations. Learning rate was set to 0.05. The error
derivatives were also scaled down by half for the outgroup
exemplars to reflect the less opportunity to interact with
them in reality. Weight decay was set to 1E-07. Connection
strength was adjusted through back-propagation algorithm
after every trial, and adjustment was not made if the target-
output difference was below 0.1. Momentum was not used.
Gaussian noise (SD = 0.2) was added to the input layer
activations to reflect sampling variability (In reality, people
do not have 0 or 1 binary values of the traits). An output
was scored as correct when the activation in every unit of
the output layer was in the correct side of 0.5. Training was
terminated when the network reproduced the correct outputs
for more than 95% of the training examples.

After training, each ingroup and outgroup exemplar was
presented, and the internal representation (hidden layer
activation) for each exemplar was recorded. Two measures
represented the activation dissimilarities between the
ingroup and outgroup exemplars. One was the averaged
Euclid distances between all the ingroup-outgroup pairs
(higher is more dissimilar). The other involved a cluster
analysis on the internal representations. If a hierarchical
cluster analysis (Ward) correctly categorized all the
exemplars, then a cluster distance was taken as an index of
dissimilarity (higher is more dissimilar). If not every pattern
was categorized correctly, a non-hierarchical cluster
analysis (k-mean) was run, and the entropy index was taken
as a dissimilarity index (A smaller entropy means more
dissimilar). In each Study, randomly initialized 100
simulations were run, and the results were averaged.

Results

Simulation 1: Contact frequency

The first test case was the effect of contact with outgroup
members to reduce outgroup prejudice (Pettigrew & Tropp,
2008). Twenty-two units in the input and output layers were
connected via 10 units in the hidden layer. Five ingroup

exemplars and five outgroup exemplars (Table 2) were
presented to a model. A key manipulation involved how
frequently the model processed the outgroup exemplars. In
the more frequent model, five ingroup exemplars and five
outgroup exemplars were presented alternately. In contrast,
in the less frequent model, each of five ingroup exemplars
was presented four times before the model encountered each
of five outgroup exemplars once.

As a consequence, the mean Euclid distance in the
internal representations between the ingroup-outgroup
exemplars was 2.544 (SE = 0.007) for the less frequent
model and was 2.472 (SE = 0.007) for the more frequent
model, t 108y = 6.637, p <.001. The cluster distance between
the groups was 9.84 (SE = 0.12) for the less frequent model
and was 9.47 (SE = 0.11) for the more frequent model, t (165
= 2.204, p < .05. Thus, more frequent contact with outgroup
exemplars reduced the internal representation dissimilarities.

Simulation 2: Nature of Contact

Next, not all the contacts were known to be effective, but a
superficial contact was predicted to have the opposite effect
(Allport, 1954/1979) or has been shown to have a smaller
effect (Kanas et al., 2013). To incorporate this theory in the
training regime, some of the units in the output layer did not
receive a target signal (i.e., zero error derivatives) for the
outgroup exemplars (Table 2). This means that the network
was not forced to recognize some aspects of the outgroup
exemplars. We framed this as the superficial contact model,
and compared it to the deep contact model, which was
trained to recognize all the aspects of the outgroup exemplar.
Eleven units in the input and output layers were connected
via eight units in the hidden layer in this model.

As a result, the mean Euclid distance between the
ingroup-outgroup exemplars was larger for the superficial
contact model, mean = 1.691 (SE = 0.003) than for the deep
contact model, mean = 1.604 (SE = 0.005), t 195y = 13.978, p
< .001. Entropy value as a result of a k-mean cluster
analysis (k = 3, one cluster for the ingroup, and two clusters
for the two outgroups) was 0.62 (SE = 0.03) for the
superficial model, and was 0.77 (SE = 0.02) for the deep
contact model, t (95 = 3.476, p < .001. Therefore,
superficial contact attenuated the contact effect to reduce the
representational dissimilarities between the groups.

Simulation 3: Social identity complexity

In addition to the nature of contact with outgroup, we argue
that the nature of contact within ingroup members also
matters. Schmid, Hewstonm Tausch, Cairns, and Huges
(2009) found a positive correlation between the outgroup
contact frequency and the degree of social identity
complexity (Roccas & Brewer, 2002). Social identity
complexity refers to the perceived correlation of one
category to another within the ingroup members. Those with
low social identity complexity perceive that their ingroup
memberships are highly overlapping whereas those with
high social identity complexity perceive memberships of
their various ingroups are not overlapping. Schmid et al.
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(2009) found that people with low identity complexity have
a stronger outgroup prejudice than those with high
complexity. Our working assumption here is that low in
identity complexity means that people have had frequent
experiences of meeting ingroup members with the same
identities. In contrast, high in identity similarity complexity
means that they have frequently encountered with ingroup
members with various identities. In order to incorporate our
assumption on such past experiences with ingroup members,
a key manipulation was made in the training patterns for the
ingroup exemplars (Table 2). A high complexity model (NB.
less outgroup prejudice) was trained with the same ingroup-
outgroup training set as Simulation 1 (thus, exemplars
within a group did not share the same on/off status of the
units). In contrast, a low complexity model was trained with
the different ingroup exemplars. As Table 2 shows, four
exemplars shared the same on/off status of the five units.

As a result, the mean Euclid distance in the internal
representations between the ingroup-outgroup exemplars
was 2.454 (SE = 0.009) for low complexity model (higher
overlapping categories); and was 2.358 (SE = .008) for the
high complexity model (fewer overlapping categories), t (1gs)
= 7.436, p < .001. The cluster distance between the groups
was 10.76 (SE = 0.15) for the low complexity model, and
was 9.01 (SE = 0.12) for the similarity complexity model, t
ass) = 8.797, p < .001. Therefore, the internal representation
dissimilarity between the ingroup-outgroup members was
greater when the model had more frequent experiences to
encounter ingroup members with the same social identities.
One may argue that it is not empirically supported but just
our assumption that those with low social identity
complexity have more frequently encountered ingroup
members with the same social identities. However, in this
way, modelling can provide a possible explanation about
why social identity complexity and outgroup prejudice
correlate with each other, and provides an explicit question
that can be empirically tested in a social psychological study.

Simulation 4: Cultural Context to Follow Others

Finally, even though it is not directly relevant to ingroup
bias, it should be desirable to test the generalizability of the
current approach to understand other social cognitive
neuroscience data. There is another test case for an effect of
past interpersonal interactions (to incorporate into a model
training regime) on neuroscience data. Specifically, Zhu,
Zhang, Fan, and Han (2007) found the neural activity in
medial prefrontal cortex was more similar when thinking
about self and mothers in Asian culture than Western one.
Mayer et al. (2013) conducted a follow-up study and found
a deep encoding (e.g., empathy) of other close friends also
recruited this area in Asian participants (Meyer et al., 2013),
whereas the activation patterns for strangers were different.
Then a question here is why such neural representation
dissimilarities from strangers (and similarities among close
people) differ across cultures? Markus and Kitayama (1991)
assimilated various psychological data across continents and
argued an effect of culture on cognition. Specifically, one

can safely assume that there is in general a cultural trend to
follow others in Asia whereas that to self-assert in Western
cultures. Then, a testable question is, if a model is trained in
a similar environment as Asian cultures (e.g., people follow
others), then would neural representations of close people be
more distinct from those of strangers?

These different cultural trends were incorporated into the
training regime in the following way. First, nine ingroup
and outgroup exemplars were created, respectively (Table 2).
Each exemplar was presented with one of the five behavior
units ‘on’ (i.e., in total 18*5 = 90 training patterns). A key
manipulation involved the temporal order of the to-be-‘on’
behavior unit. In the Asian cultural trend model, a context to
follow others was implemented as a temporal constraint in
the sequence of the training set. Specifically, if one
exemplar was presented with Behavior 1 ‘on’, then
following 17 exemplars were presented with the same
Behavior unit ‘on’. Then, another behavior unit was ‘on’ for
the 19" exemplar, and the following 17 (20"-36")
exemplars appeared with the same behavior unit ‘on’. In
contrast, such a temporal constraint was not made for the
Western cultural model. In summary, in Simulation 4, the
manipulation was not made in the training patterns
themselves but in the sequence of the training patterns.
Sixteen input and output layers were connected via nine
units in the hidden layer. In order for the temporal sequence
effect to come out, the activities in the hidden and output
layers were feedback to the hidden layer in the next trial
through the (self-) recurrent connections. During the test,
the hidden layer activations for the 18 exemplars were
measured with all the Behavior units ‘off’.

As a consequence, the mean Euclid distance between the
ingroup-outgroup exemplars was larger for the Asian
cultural model, mean = 1.813 (SE = 0.011) than for the
Western cultural model, mean = 1.757 (SE = 0.009), t (108) =
3.728, p < .001. The cluster distance between the groups
was 17.16 (SE = 0.40) for the Asian cultural model, and was
15.21 (SE = 0.25) for the Western cultural trend model, t
ass) = 4.086, p < .001. Therefore, training in a temporal
context to follow others increased the representation
dissimilarities between close exemplars from others.

Discussion

Since the seminal work of Allport (1954/1979), social
psychologists have found the crucial interpersonal
experiences that correlate with ingroup bias or outgroup
prejudice (Pettigrew & Tropp, 2008). In parallel to these
works, various computational models have been
implemented to understand the cognitive mechanism to
reproduce ingroup bias and other social behaviors (Kashima
et al., 2000; Smith & DeCoster, 1998). Our model is clearly
a descendant of these models. A key difference, however,
was that our model was implemented to explain how neural
representations for social cognition emerge from
interactions with others. Recently, cognitive neuroscientists
have clarified that those with greater ingroup bias show
more distinct neural representations for ingroup faces from
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outgroup faces (Brosch et al., 2013; Gilbert et al., 2012). We
tested if this neuroscience finding was relevant to social
psychological findings. Specifically, the training regime of
the computational model reflected the past interpersonal
experiences that social psychologists have found to correlate
with ingroup bias. From Simulations 1 to 3, we
demonstrated that these manipulations actually had an effect
to reduce the representation dissimilarities between groups.
Thus in the present study, we succeeded in integrating
findings from different disciplines within a single
framework, and therefore demonstrated a plausibility of
ingroup bias being learned, which is difficult to demonstrate
by a cross-sectional or a retrospective survey.

A meta-analysis of the experimental and survey data
(Pettigrew & Tropp, 2008) also suggested the mediators
(e.g., increased knowledge) by which contact reduces
outgroup prejudice. Our proposed model also demonstrated
that increased knowledge about outgroup members
(Simulation 2) reduces representation dissimilarities. Thus,
a modelling is a promising approach to demonstrate the
mechanism by which past interpersonal experiences
(according to psychological theory) affect social cognition.
Indeed, we demonstrated the generalizability of this
approach (Simulation 4) by showing the effect of a temporal
context to follow others on the neural dissimilarities
between close others and strangers (Meyer et al., 2013).

In addition, our model was never instructed to acquire or
reduce ingroup bias itself in any way. Moreover, any
component (e.g., unit and layer) of our model was not
specialised for ingroup bias itself. Rather, the model had
only a mechanism to recognize an input vector that
represented an ingroup or outgroup exemplar, a task that
humans do in daily lives. Nevertheless, the internal
representations that the model acquired for the task captured
the nature of the neural representations for ingroup bias.
Thus, one possibility is that ingroup bias (and other social
cognitions we expect) is an emergent property of
interactions with others. In other words, we have
demonstrated the plausibility of ingroup bias being learned,
without hardwiring a distinct mechanism tailored for the
sake of group bias. Related to this, current simulation
contributes to the understanding of fMRI data (Cowell &
Cottrell, 2013). Our original target was the data from Brosch
et al. (2013), which found that the implicit race bias
measure was correlated with the classification performance
of the neural activities only in the fusiform face area, not
other areas. From this pattern, the authors argued the “role
of independently identified regions of the face-processing
network” for race decoding, rather than a distributed pattern.
The current simulation suggests group bias (more
specifically, the neural representations for group bias)
would not need a distinct, modular mechanism for group
bias itself. A future study would be required to incorporate
other phenomena relevant to ingroup bias within a single
framework, but we hope this would be an initial step to
bridge social psychology and social neuroscience by
computational modelling.
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Table 2. Input & target vector patterns used for training in Simulations 1-4.

Simulation 1 (10 exemplars) Group index Traits
Ingroup Outgop A B C D E F G H I J K L M N O P Q R S T
Ingroup exemplar 1 1 0 1 0 0 001 0O OO OO OO OOTUOTU OOTU OTFPWO
Ingroup exemplar 2 1 0 01 0 0 OO 1 0O OOOOOOOUOOTU OTG OO
Ingroup exemplar 3 1 0 0 0o 1. 000 0O 1 0OO0OOO0OO0OUOTUOTU OO OTGOTG O@DOO
Ingroup exemplar 4 1 0 0o 0o 0100 0 0O 1 O0O0OO0OO0OTUO0OTUOTU OO OTUG OTU OO
Ingroup exemplar 5 1 0 0o 0o 0 01 00 0 0O0O10O0O0OO0OO0OO0OO0OTO0OTUO0OTFO
Outgroup exemplar 1 0 1 0 0o 0 0OOOOOOOOT11T0O0TUO0OTUO0OI1I o0 0000
Outgroup exemplar 2 0 1 0 0o 0 0OOOOOOOOOI1 1O0TUO0OTU0TGO0ODTI1IT000
Outgroup exemplar 3 0 1 0 0o 0 0OOOOOOOOOO OTI1TO0UO0OTUO0OTU OTI1IO00O0
Outgroup exemplar 4 0 1 0 0o 0 0OOOOOOOOOTOTI1T O0O0O0O0OT1TO0O0
Outgroup exemplar 5 0 1 0o 0o 0 0OOOOOOOOOWOOTUOTI1T 0 0 001
Simulation 2 (54 exemplars) Group index Traits
Ingroup  Outgroup 1 Outgroup 2 Trait A Trait B Trait C*
Ingroup exemplar 1 1 0 0 1 0 0 1 0 0O 1 0 O
Ingroup exemplar 2 1 0 0 1 0 0 1 0 0O 0 1 O
Ingroup exemplar 3 1 0 0 1 0 0 1 0 0O 0 0 121
in total 18 exemplars, formed by
crossing 3 * 3* 3 localist patterns
Ingroup exemplar 18 1 0 0 001 0 0 1 0 0 1
Outgroupl exemplar 1 0 1 0 .
. The same localist patterns
as 18 ingroup exemplars
Outgroupl exemplar 18
Outgroup?2 exemplar 1 0 0 1 .
. The same localist patterns
as 18 ingroup exemplars
Outgroup2 exemplar 18 0 0 1
Simulation 3 (10 exemplars) Group index Traits
Ingroup Outgopup A B C D EFP G H I J KLMNIOUZPUO QRS ST
Low identity comp lexity
ingroup (high overlap)
Ingroup exemplar 1 1 0 10 0 0 01 0 O0OO0OOOUOOTUO OT OOTUOTG OO
Ingroup exemplar 2 1 0 0 1 0 0 0O121 0O O OOOOUOUOTU OO OO OTG OTG OO
Ingroup exemplar 3 1 0 0o 01 0010 O0OOO0OO0OO0OUO0OTUOT OOTUOTUOTG OO
Ingroup exemplar 4 1 0 0o o 0101 0 O OOOOWOTOTUOTU OO OO OTU OTG OO
Ingroup exemplar 5 1 0 0o o 0 0O1 00 0 010 0O0OO0OO0OO0OO0OTO0OTUO0OTFO
High identity comp lexity
ingroup (low overlap)
Ingroup exemplars 1~5 1 0 Exactly the same as the 5 ingroup exemplars in Simulation 1
Outgroup exemplars 1~5 0 1 Exactly the same as the 5 outgroup exemplars in Simulation 1
Simulation 4 Group index Traits Behaviors®
(18 exemplars * 5 behaviors) Ingroup  Outgroup Trait A Trait B Trait C a b o d e
Ingroup exemplar 1 1 0 10 1 00 1 0 O 1 0 0 0 0
Ingroup exemplar 2 1 0 10 1 00 0 1 O 1 0 0 0 0
Ingroup exemplar 3 1 0 10 1 00 0 0 1 1 0 0 0 0
in total 9 exemplars, formed by Every pattern can take
crossing 2 * 3* 3 localist patterns one of the 5 behaviors
Ingroup exemplar 9 1 0 0 1 0 01 0 0 1 1 0 0 0 0
Outgroupl exemplar 1 .
The same localist patterns Every pattern can take
as 9 ingroup exemplars one of the 5 behaviors
Outgroup1 exemplar 9 0 1

Notes . 1. These three units (Trait C) in the output layer did not receive a target signal (error derivertive was zero) in a superficial contact condition.
2. Trait F represents the highly overlapping category in the low complexity ingroup.
3. In the Asian cultural trend model, one of the five behavior units was randomly selected' per 18 trials (18 succesive exemplars)
whereas in the Western cultural trend model, one unit was randomly selected per every trial/exemplar.
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