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Abstract 

Social psychology aims to reveal how social behaviors are 
acquired through interactions with others (i.e., past 
interpersonal experiences) whereas social neuroscience 
investigates the neural substrates that correlate with acquired 
social behaviors. For example, people with greater ingroup 
bias are known to avoid or have avoided interactions with 
outgroup members than those with weaker ingroup bias, and 
their brain activation patterns are more distinct when viewing 
an ingroup member from an outgroup member. The present 
study aimed to examine the causal relation of these findings 
from different disciplines and integrate them within a single 
framework. A connectionist model was trained with/without 
the training regime reflecting the interpersonal experiences 
that were assumed to increase ingroup bias. As a result, if 
trained with such a training environment, the model’s internal 
representations of ingroup exemplars were more distinct from 
those of outgroup exemplars. Thus, this model reproduced the 
dissimilarity structure in the neural representations of ingroup 
bias. In contrast, training without such a regime alleviated the 
representation dissimilarities.  

Keywords: ingroup bias; connectionist model; contact 
theory; social psychology; multi-voxel pattern analysis 

Introduction 

Social psychological studies aim to clarify how an 

individual’s behaviors towards others (i.e., social cognition) 

are acquired and how they change through further 

interactions with others. For example, one of the widely 

investigated phenomena in social cognition is ingroup bias 

(or outgroup prejudice). Seminal works of Gordon Allport 

hypothesized that intimate contact with outgroup members 

would reduce outgroup prejudice, known as contact 

hypothesis (Allport, 1954/1979). Supporting evidence for 

this theory has been documented in the last 60 years of 

psychology, suggesting that there is a significant negative 

correlation between the contact frequency and the degree of 

prejudice towards others (Pettigrew & Tropp, 2008). 

Furthermore, constructive critics have refined the theory by 

narrowing the boundary conditions. For example, the nature 

of contact modulates its effect, such that a superficial 

contact (e.g., just living nearby) could attenuate its effect 

(Kanas, Sterkens, & Scheepers, 2013), which Allport 

(1954/1979) also predicted (top left corner of Table 1). 

In parallel to these psychological studies, cognitive 

neuroscience studies have also revealed the neural correlates 

of social cognition, including ingroup bias. They revealed 

not only the brain region involved in social cognition but 

also how the neural activities change in different social 

contexts (Molenberghs, 2013). Furthermore, recent advance 

has allowed to clarify even the nature of neural 

representations that may underlie ingroup bias (Brosch, 

Bar-David, & Phelps, 2013; Gilbert, Swencionis, & Amodio, 

2012). For example, Brosch et al. (2013) employed a multi-

voxel pattern analysis methodology and found that stronger 

implicit ingroup bias (pro-White bias) increases the 

dissimilarities in the neural representations of ingroup and 

outgroup faces (top-right corner of Table 1).  

Whilst the findings from both disciplines are clearly 

important for understanding ingroup bias, a key question 

that has yet to be answered is how relevant these findings 

are. In other words, would neural representations for 

ingroup and outgroup faces become similar as people 

interact with outgroup members more frequently? 

Alternatively, have those with such dissimilar neural 

representations experienced less frequent contact with 

outgroup members than those with similar neural 

representations? To test these possibilities, we would need 

longitudinal or retrospective data. However, such data 

cannot exclude potential influence of confounding variables. 

On this point, a computational model with a learning 

algorithm (i.e., it can gradually develop) provides us a 

unique opportunity to overcome such a methodological 

limitation. It is possible for a modeler to control various 

extraneous variables and to manipulate a training regime 

that reflects a social psychological finding (e.g., a model 

processes outgroup exemplars more/less frequently; a model 

processes homogeneous/heterogeneous ingroup members, 

etc.). Then, a modeler can directly investigate the internal 

representation (i.e., pattern activation in the hidden layer) of 

the model to test whether such a manipulation modulates the 

dissimilarities in the representations for ingroup and 

outgroup exemplars (neuroscience finding). Such an 

endeavor to simulate fMRI findings in a connectionist 

model is not very common but is proved to be fruitful in 

other domains (Cowell & Cottrell, 2013).  There are many 

social psychological findings that have been suggested to 

affect ingroup bias.  The present study aimed to examine the 

impact of the frequency/nature of contact, identity, and 

cultural trend (Details will be described in a later section). 
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Method 

The bottom half of Table 1 depicts the general modeling 

approach and the predictions in this study. Various kinds of 

computational models have been implemented in social 

psychology to demonstrate the cognitive machinery that can 

reproduce social cognitive behaviors. These vary in terms of 

(a) how to implement interactions with others; (b) the 

explanation of how to acquire social behaviors (c) whether 

the target cognition is grounded on distributed or localist 

representations, and so on. From these viewpoints, our 

model falls into a variant of Tensor-product model by 

Kashima and his colleagues (Kashima, Woolcock, & 

Kashima, 2000) and the autoassociative network model by 

Smith and Decoster (1998). These models focused on the 

computational operation of an individual, which processes 

(recognize) the input vectors that represent ingroup and 

outgroup exemplars. As the model processes the exemplars 

one by one, it gradually adjusts the connection strength to 

represent the ingroup and outgroup exemplars as distributed 

patterns in the internal layer. The modelers analyzed these 

distributed representations to test if the model reproduced 

social behaviors or not. For example, the model was trained 

in a close situation as a psychological experiment of group 

categorization, and the similarities in the internal activation 

pattern of one group member from another were taken as a 

measure of group categorization performance. Thus, 

importantly, these models were never trained for the target 

social cognition itself, but for recognizing others. 

Nevertheless, various social cognitive behaviors came out as 

an emergent property of the interaction with others.  

These models have all the characteristics that are 

necessary for the current study. In this study, a three-layer 

feedforward network model (bottom-left corner of Table 1) 

received an input vector that represented an ingroup or 

outgroup exemplar. These simple vector patterns and the 

architecture were chosen for simplification (actually, it is a 

strength of the model to reproduce the target behavior under 

simplification), but a future target would be to make the 

model more realistic. The activation spread from left to right 

(The activity of each unit was a sigmoid function of the 

summed weighted input from other units). Then, the model 

was trained for reproducing the input pattern in the output 

layer. One can say that the model is trained to understand 

(recognize) the person who meets up. Although sometimes a 

connectionist model is criticized in terms of its lack of a 

teacher signal in reality (Baker’s paradox), we assumed a 

target signal is available from the person whom an 
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individual meets up. Nonetheless, we addressed this issue 

by simulating a situation where this signal was not obvious 

– thus superficial contact (Simulation 2). The model 

gradually adjusted its connection strength to reproduce the 

input pattern in the output layer as closely as possible for all 

the training patterns. Thus, it is important to emphasize that 

the model was never trained for anything relevant to ingroup 

bias. However, a key question we address is that if we train 

a model in a way social psychologists assume, then does it 

have an impact on the similarity structure of the acquired 

internal representations? For example, if the model 

processes outgroup exemplars more frequently, then the 

representation patterns for outgroup exemplars become 

more similar to those for ingroup exemplars? Thus, we 

incorporated psychological findings into the model training 

regime (middle column of Table 1), and then tested whether 

a neural representation for ingroup bias (Brosch et al., 2013) 

came out as an emergent property of social interactions.  

Lens (http://tedlab.mit.edu/~dr/Lens/) was used for all the 

simulations. Learning rate was set to 0.05. The error 

derivatives were also scaled down by half for the outgroup 

exemplars to reflect the less opportunity to interact with 

them in reality.  Weight decay was set to 1E-07. Connection 

strength was adjusted through back-propagation algorithm 

after every trial, and adjustment was not made if the target-

output difference was below 0.1. Momentum was not used. 

Gaussian noise (SD = 0.2) was added to the input layer 

activations to reflect sampling variability (In reality, people 

do not have 0 or 1 binary values of the traits). An output 

was scored as correct when the activation in every unit of 

the output layer was in the correct side of 0.5. Training was 

terminated when the network reproduced the correct outputs 

for more than 95% of the training examples. 

After training, each ingroup and outgroup exemplar was 

presented, and the internal representation (hidden layer 

activation) for each exemplar was recorded. Two measures 

represented the activation dissimilarities between the 

ingroup and outgroup exemplars. One was the averaged 

Euclid distances between all the ingroup-outgroup pairs 

(higher is more dissimilar). The other involved a cluster 

analysis on the internal representations. If a hierarchical 

cluster analysis (Ward) correctly categorized all the 

exemplars, then a cluster distance was taken as an index of 

dissimilarity (higher is more dissimilar). If not every pattern 

was categorized correctly, a non-hierarchical cluster 

analysis (k-mean) was run, and the entropy index was taken 

as a dissimilarity index (A smaller entropy means more 

dissimilar). In each Study, randomly initialized 100 

simulations were run, and the results were averaged. 

Results 

Simulation 1: Contact frequency  

The first test case was the effect of contact with outgroup 

members to reduce outgroup prejudice (Pettigrew & Tropp, 

2008). Twenty-two units in the input and output layers were 

connected via 10 units in the hidden layer. Five ingroup 

exemplars and five outgroup exemplars (Table 2) were 

presented to a model. A key manipulation involved how 

frequently the model processed the outgroup exemplars. In 

the more frequent model, five ingroup exemplars and five 

outgroup exemplars were presented alternately. In contrast, 

in the less frequent model, each of five ingroup exemplars 

was presented four times before the model encountered each 

of five outgroup exemplars once. 

As a consequence, the mean Euclid distance in the 

internal representations between the ingroup-outgroup 

exemplars was 2.544 (SE = 0.007) for the less frequent 

model and was 2.472 (SE = 0.007) for the more frequent 

model, t (198) = 6.637, p < .001. The cluster distance between 

the groups was 9.84 (SE = 0.12) for the less frequent model 

and was 9.47 (SE = 0.11) for the more frequent model, t (198) 

= 2.204, p < .05. Thus, more frequent contact with outgroup 

exemplars reduced the internal representation dissimilarities. 

Simulation 2: Nature of Contact  

Next, not all the contacts were known to be effective, but a 

superficial contact was predicted to have the opposite effect 

(Allport, 1954/1979) or has been shown to have a smaller 

effect (Kanas et al., 2013). To incorporate this theory in the 

training regime, some of the units in the output layer did not 

receive a target signal (i.e., zero error derivatives) for the 

outgroup exemplars (Table 2). This means that the network 

was not forced to recognize some aspects of the outgroup 

exemplars. We framed this as the superficial contact model, 

and compared it to the deep contact model, which was 

trained to recognize all the aspects of the outgroup exemplar. 

Eleven units in the input and output layers were connected 

via eight units in the hidden layer in this model.  

As a result, the mean Euclid distance between the 

ingroup-outgroup exemplars was larger for the superficial 

contact model, mean = 1.691 (SE = 0.003) than for the deep 

contact model, mean = 1.604 (SE = 0.005), t (198) = 13.978, p 

< .001. Entropy value as a result of a k-mean cluster 

analysis (k = 3, one cluster for the ingroup, and two clusters 

for the two outgroups) was 0.62 (SE = 0.03) for the 

superficial model, and was 0.77 (SE = 0.02) for the deep 

contact model, t (198) = 3.476, p < .001. Therefore, 

superficial contact attenuated the contact effect to reduce the 

representational dissimilarities between the groups. 

Simulation 3: Social identity complexity 

In addition to the nature of contact with outgroup, we argue 

that the nature of contact within ingroup members also 

matters. Schmid, Hewstonm Tausch, Cairns, and Huges 

(2009) found a positive correlation between the outgroup 

contact frequency and the degree of social identity 

complexity (Roccas & Brewer, 2002). Social identity 

complexity refers to the perceived correlation of one 

category to another within the ingroup members. Those with 

low social identity complexity perceive that their ingroup 

memberships are highly overlapping whereas those with 

high social identity complexity perceive memberships of 

their various ingroups are not overlapping. Schmid et al. 
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(2009) found that people with low identity complexity have 

a stronger outgroup prejudice than those with high 

complexity. Our working assumption here is that low in 

identity complexity means that people have had frequent 

experiences of meeting ingroup members with the same 

identities. In contrast, high in identity similarity complexity 

means that they have frequently encountered with ingroup 

members with various identities. In order to incorporate our 

assumption on such past experiences with ingroup members, 

a key manipulation was made in the training patterns for the 

ingroup exemplars (Table 2). A high complexity model (NB. 

less outgroup prejudice) was trained with the same ingroup-

outgroup training set as Simulation 1 (thus, exemplars 

within a group did not share the same on/off status of the 

units). In contrast, a low complexity model was trained with 

the different ingroup exemplars. As Table 2 shows, four 

exemplars shared the same on/off status of the five units.  

As a result, the mean Euclid distance in the internal 

representations between the ingroup-outgroup exemplars 

was 2.454 (SE = 0.009) for low complexity model (higher 

overlapping categories); and was 2.358 (SE = .008) for the 

high complexity model (fewer overlapping categories), t (198) 

= 7.436, p < .001. The cluster distance between the groups 

was 10.76 (SE = 0.15) for the low complexity model, and 

was 9.01 (SE = 0.12) for the similarity complexity model, t 

(198) = 8.797, p < .001. Therefore, the internal representation 

dissimilarity between the ingroup-outgroup members was 

greater when the model had more frequent experiences to 

encounter ingroup members with the same social identities. 

One may argue that it is not empirically supported but just 

our assumption that those with low social identity 

complexity have more frequently encountered ingroup 

members with the same social identities. However, in this 

way, modelling can provide a possible explanation about 

why social identity complexity and outgroup prejudice 

correlate with each other, and provides an explicit question 

that can be empirically tested in a social psychological study. 

Simulation 4: Cultural Context to Follow Others 

Finally, even though it is not directly relevant to ingroup 

bias, it should be desirable to test the generalizability of the 

current approach to understand other social cognitive 

neuroscience data. There is another test case for an effect of 

past interpersonal interactions (to incorporate into a model 

training regime) on neuroscience data. Specifically, Zhu, 

Zhang, Fan, and Han (2007) found the neural activity in 

medial prefrontal cortex was more similar when thinking 

about self and mothers in Asian culture than Western one. 

Mayer et al. (2013) conducted a follow-up study and found 

a deep encoding (e.g., empathy) of  other close friends also 

recruited this area in Asian participants  (Meyer et al., 2013), 

whereas the activation patterns for strangers were different. 

Then a question here is why such neural representation 

dissimilarities from strangers (and similarities among close 

people) differ across cultures? Markus and Kitayama (1991) 

assimilated various psychological data across continents and 

argued an effect of culture on cognition. Specifically, one 

can safely assume that there is in general a cultural trend to 

follow others in Asia whereas that to self-assert in Western 

cultures. Then, a testable question is, if a model is trained in 

a similar environment as Asian cultures (e.g., people follow 

others), then would neural representations of close people be 

more distinct from those of strangers? 

These different cultural trends were incorporated into the 

training regime in the following way. First, nine ingroup 

and outgroup exemplars were created, respectively (Table 2). 

Each exemplar was presented with one of the five behavior 

units ‘on’ (i.e., in total 18*5 = 90 training patterns). A key 

manipulation involved the temporal order of the to-be-‘on’ 

behavior unit. In the Asian cultural trend model, a context to 

follow others was implemented as a temporal constraint in 

the sequence of the training set. Specifically, if one 

exemplar was presented with Behavior 1 ‘on’, then 

following 17 exemplars were presented with the same 

Behavior unit ‘on’. Then, another behavior unit was ‘on’ for 

the 19
th
 exemplar, and the following 17 (20

th
-36

th
) 

exemplars appeared with the same behavior unit ‘on’. In 

contrast, such a temporal constraint was not made for the 

Western cultural model. In summary, in Simulation 4, the 

manipulation was not made in the training patterns 

themselves but in the sequence of the training patterns. 

Sixteen input and output layers were connected via nine 

units in the hidden layer. In order for the temporal sequence 

effect to come out, the activities in the hidden and output 

layers were feedback to the hidden layer in the next trial 

through the (self-) recurrent connections. During the test, 

the hidden layer activations for the 18 exemplars were 

measured with all the Behavior units ‘off’. 

As a consequence, the mean Euclid distance between the 

ingroup-outgroup exemplars was larger for the Asian 

cultural model, mean = 1.813 (SE = 0.011) than for the 

Western cultural model, mean = 1.757 (SE = 0.009), t (198) = 

3.728, p < .001. The cluster distance between the groups 

was 17.16 (SE = 0.40) for the Asian cultural model, and was 

15.21 (SE = 0.25) for the Western cultural trend model, t 

(198) = 4.086, p < .001. Therefore, training in a temporal 

context to follow others increased the representation 

dissimilarities between close exemplars from others.  

Discussion  

Since the seminal work of Allport (1954/1979), social 

psychologists have found the crucial interpersonal 

experiences that correlate with ingroup bias or outgroup 

prejudice (Pettigrew & Tropp, 2008). In parallel to these 

works, various computational models have been 

implemented to understand the cognitive mechanism to 

reproduce ingroup bias and other social behaviors (Kashima 

et al., 2000; Smith & DeCoster, 1998). Our model is clearly 

a descendant of these models. A key difference, however, 

was that our model was implemented to explain how neural 

representations for social cognition emerge from 

interactions with others. Recently, cognitive neuroscientists 

have clarified that those with greater ingroup bias show 

more distinct neural representations for ingroup faces from 
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outgroup faces (Brosch et al., 2013; Gilbert et al., 2012). We 

tested if this neuroscience finding was relevant to social 

psychological findings. Specifically, the training regime of 

the computational model reflected the past interpersonal 

experiences that social psychologists have found to correlate 

with ingroup bias. From Simulations 1 to 3, we 

demonstrated that these manipulations actually had an effect 

to reduce the representation dissimilarities between groups. 

Thus in the present study, we succeeded in integrating 

findings from different disciplines within a single 

framework, and therefore demonstrated a plausibility of 

ingroup bias being learned, which is difficult to demonstrate 

by a cross-sectional or a retrospective survey. 

A meta-analysis of the experimental and survey data 

(Pettigrew & Tropp, 2008) also suggested the mediators 

(e.g., increased knowledge) by which contact reduces 

outgroup prejudice. Our proposed model also demonstrated 

that increased knowledge about outgroup members 

(Simulation 2) reduces representation dissimilarities. Thus, 

a modelling is a promising approach to demonstrate the 

mechanism by which past interpersonal experiences 

(according to psychological theory) affect social cognition. 

Indeed, we demonstrated the generalizability of this 

approach (Simulation 4) by showing the effect of a temporal 

context to follow others on the neural dissimilarities 

between close others and strangers (Meyer et al., 2013). 

In addition, our model was never instructed to acquire or 

reduce ingroup bias itself in any way. Moreover, any 

component (e.g., unit and layer) of our model was not 

specialised for ingroup bias itself. Rather, the model had 

only a mechanism to recognize an input vector that 

represented an ingroup or outgroup exemplar, a task that 

humans do in daily lives. Nevertheless, the internal 

representations that the model acquired for the task captured 

the nature of the neural representations for ingroup bias. 

Thus, one possibility is that ingroup bias (and other social 

cognitions we expect) is an emergent property of 

interactions with others. In other words, we have 

demonstrated the plausibility of ingroup bias being learned, 

without hardwiring a distinct mechanism tailored for the 

sake of group bias. Related to this, current simulation 

contributes to the understanding of fMRI data (Cowell & 

Cottrell, 2013). Our original target was the data from Brosch 

et al. (2013), which found that the implicit race bias 

measure was correlated with the classification performance 

of the neural activities only in the fusiform face area, not 

other areas. From this pattern, the authors argued the “role 

of independently identified regions of the face-processing 

network” for race decoding, rather than a distributed pattern. 

The current simulation suggests group bias (more 

specifically, the neural representations for group bias) 

would not need a distinct, modular mechanism for group 

bias itself. A future study would be required to incorporate 

other phenomena relevant to ingroup bias within a single 

framework, but we hope this would be an initial step to 

bridge social psychology and social neuroscience by 

computational modelling. 
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Table 2. Input & target vector patterns used for training in Simulations 1-4.

Simulation 1 (10 exemplars)

Ingroup Outgroup A B C D E F G H I J K L M N O P Q R S T

Ingroup exemplar 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 2 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 3 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 4 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 5 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Outgroup exemplar 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Outgroup exemplar 2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

Outgroup exemplar 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

Outgroup exemplar 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

Outgroup exemplar 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Simulation 2 (54 exemplars)

Ingroup Outgroup 1

Ingroup exemplar 1 1 0 1 0 0 1 0 0 1 0 0

Ingroup exemplar 2 1 0 1 0 0 1 0 0 0 1 0

Ingroup exemplar 3 1 0 1 0 0 1 0 0 0 0 1

Ingroup exemplar 18 1 0 0 0 1 0 0 1 0 0 1

Outgroup1 exemplar 1 0 1

・・・

Outgroup1 exemplar 18 0 1

Outgroup2 exemplar 1 0 0

・・・

Outgroup2 exemplar 18 0 0

Simulation 3 (10 exemplars)

Ingroup Outgroup A B C D E F
2 G H I J K L M N O P Q R S T

Low identity complexity

ingroup (high overlap)

Ingroup exemplar 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 2 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 3 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 4 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ingroup exemplar 5 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

High identity complexity

ingroup (low overlap)

Ingroup exemplars 1~5 1 0

Outgroup exemplars 1~5 0 1

Simulation 4

(18 exemplars * 5 behaviors) Ingroup Outgroup Trait A

Ingroup exemplar 1 1 0 1 0 1 0 0 1 0 0

Ingroup exemplar 2 1 0 1 0 1 0 0 0 1 0

Ingroup exemplar 3 1 0 1 0 1 0 0 0 0 1

Ingroup exemplar 9 1 0 0 1 0 0 1 0 0 1

Outgroup1 exemplar 1 0 1

・・・

Outgroup1 exemplar 9 0 1

Notes . 1. These three units (Trait C) in the output layer did not receive a target signal (error derivertive was zero) in a superficial contact condition.

            2. Trait F represents the highly overlapping category in the low complexity ingroup.

            3. In the Asian cultural trend model, one of the five behavior units was randomly selected' per 18 trials (18 succesive exemplars)

                 whereas in the Western cultural trend model, one unit was randomly selected per every trial/exemplar.

0 0

0 0

・・・
The same localist patterns

as 9 ingroup exemplars

Every pattern can take

one of the 5 behaviors

0 0

Every pattern can take

one of the 5 behaviors

1 0

e

Behaviors
3

0

0 0 0 0

1 0 0

a b c d

0

1
The same localist patterns

as 18 ingroup exemplars
・・・

1

Exactly the same as the 5 ingroup exemplars in Simulation 1

Group index

Trait B Trait C

Traits

The same localist patterns

as 18 ingroup exemplars

0

・・・ ・・・

・・・

1

1 0

in total 9 exemplars, formed by

crossing 2 * 3* 3 localist patterns
・・・

Exactly the same as the 5 outgroup exemplars in Simulation 1

0

0

0

Group index Traits

in total 18 exemplars, formed by

crossing 3 * 3* 3 localist patterns

0

0

・・・

Group index Traits

Outgroup 2

Group index

Trait A Trait B Trait C
1

Traits
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