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Abstract

Similarity-based generalization is fundamental to human
cognition, and the ability to draw analogies based on
relational similarities between superficially different domains
is crucial for reasoning and inference. Learning to base
generalization on shared relations rather than (or in the face
of) shared perceptual features has been identified as an
important developmental milestone. However, recent research
has shown that children and adults can flexibly generalize
based on perceptual or relational similarity, depending on
what has been an effective strategy in the past in a given
context. Here we demonstrate that this pattern of behavior
naturally emerges over the course of development in a
domain-general statistical learning model that employs
distributed, sub-symbolic representations. We suggest that
this model offers a parsimonious account of the development
of context-sensitive, similarity-based generalization and may
provide several key advantages over other popular structured
or symbolic approaches to modeling analogical inference.
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Introduction

Is a lemon more similar to a small yellow balloon or a green
grape? The answer, it turns out, is not so straightforward.
All three objects are small and round(ish), but the lemon and
balloon are somewhat larger than the grape and both of
them are yellow. On the other hand, the lemon and grape are
filled with juice, grow on trees, and belong to the same basic
category (fruit), while the balloon is man-made and filled
with air. Your response, therefore, may depend on what type
of similarity (you believe) the questioner has in mind; the
lemon looks more similar to the yellow balloon but is
structurally (and functionally) more similar to the grape.

Without any additional information, most adults would
probably say that the lemon is more similar to the grape.
The shared taxonomy and structural elements of the lemon
and grape trump the superficial similarity of the lemon and
balloon. However, this relational match requires relatively
sophisticated knowledge of lemons and grapes; without it,
the lemon will seem more similar to the balloon.

Indeed, experimental research has found that young
children typically base similarity judgments on perceptual
features before they have the relevant domain knowledge to
make relational matches (Gentner & Ratterman, 1998). In

other words, until young children gain sufficient knowledge
of fruit, they are likely to say that a lemon is more similar to
a yellow balloon than a grape. This developmental change
in similarity matching — from an early reliance on surface-
level, perceptual features to a later reliance on structural or
relational properties — is known as the perceptual-to-
relational shift (Gentner, 1988; Goswami, 1996; Piaget,
1952; Ratterman & Gentner, 1998).

Computational models have been instrumental in helping
us understand the mechanistic underpinnings of relational
reasoning, though they have focused primarily on adult-
level competence (e.g., Falkenhainer, Forbus, & Gentner,
1989; Hummel & Holyoak, 1997). Recently, however,
more attention has been given to the development of
relational reasoning (Doumas, Hummel, & Sandhofer, 2008;
Gentner, Rattermann, Markman, & Kotovsky, 1995; Leech,
Mareschal, & Cooper, 2008; Morrison, Doumas, Richland,
2011; Thibodeau, Flusberg, Glick, & Sternberg, 2013).
Notably, proponents of two modeling approaches that have
been at the forefront of the field (SME, proposed by
Falkenhainer, Forbus, & Gentner, 1989; and LISA,
proposed by Hummel & Holyoak, 1997) have offered
somewhat different (though arguably complementary)
accounts of the emergence of relational reasoning. These
two accounts highlight different aspects of cognitive
development to explain the developmental trajectory of
similarity-based generalization.

Gentner et al. (1995) used SME to show how conceptual
change and knowledge accretion could give rise to the
relational shift. That is, they argue that relational reasoning
emerges as domain-specific knowledge increases (Gentner
& Rattermann, 1991; Gentner, 1988; but see, e.g.,
Goswami, 1995 for a different perspective). In SME,
concepts are hand-coded in a predicate calculus that
represents both objects and their relations in a structured,
symbolic fashion. Knowledge accretion is achieved in the
model by manually re-coding representations (and not, e.g.
through experiential learning). While this model can
accurately capture the perceptual-to-relational shift in this
fashion (i.e., by using “object-centered” representations to
model the performance of younger children and “relation-
centered” representations to model the performance of older
children and adults), it leaves open the question of how
conceptual re-representation emerges as people acquire
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domain knowledge through everyday experience (for an
extended discussion of related issues see Thibodeau et al.,
2013).

Morrison et al. (2011) used LISA to show how the
development of inhibitory control mechanisms could
support a shift in attention from perceptual to relational
structure during generalization. On this account, the
development of flexible cognitive control resources is
crucial for being able to inhibit the allure of a superficial
perceptual match. Importantly, and in contrast to SME, the
basic principles of LISA have been extended in an attempt
to explain how explicitly structured conceptual
representations might be learned from experience (Doumas
et al., 2008; although see Thibodeau et al., 2013 and Leech
et al., 2008 for concerns with this approach).

There are clear advantages to both of these modeling
approaches, especially since SME and LISA have been used
to simulate such a wide range of findings relating to
knowledge representation and reasoning (Gentner & Forbus,
2011; Hummel & Holyoak, 2005). Using these models to
explain the developmental trajectory of relational reasoning,
therefore, represents a parsimonious extension of each
approach that helps explain several key pieces of data.

However, recent research has called into question the idea
that similarity-based generalization follows a universal,
across-the-board, perceptual-to-relational shift (Bulloch &
Opfer, 2009; Opfer & Bulloch, 2007). According to the
predictive validity view, children do not necessarily proceed
from generalization by perceptual features to generalization
by relational structure. Instead, they generalize flexibly over
different types of similarity depending on the context of
their judgment (Bulloch & Opfer, 2009; Opfer & Bulloch,
2007). In certain domains, children (and adults) will have
learned that inferences based on relational similarity are
more reliably predictive of success, while in other domains
inferences based on perceptual similarity may actually be
more successful.

Data supporting the predictive validity view come from
studies in which children and adults are asked to make
inferences about a novel object in different contexts
(Bulloch & Opfer, 2009; Opfer & Bulloch, 2007). Consider
the triad of insects in Figure 1. In each of the three insect
triplets, there are two adults and one juvenile. The triads
were designed such that the insects on the top row (the
“samples”: AA, a; BB, b) represent potential matches for
the insects on the bottom (the “target”: TT, f). In every case,
the target juvenile looked similar to the juvenile from one of
the samples (in this case both b and ¢ are light whereas a is
dark) and the target adults looked similar to the adults in the
other sample (in this case both AA and TT are light whereas
BB is dark).

Bulloch and Opfer (2009) designed two different
conditions to examine whether they could influence how
people would generalize about the target juvenile: one in
which the relational information was relevant (the juvenile
is the offspring of the associated adults) and another in
which the relational information was irrelevant (the juvenile

is the prey of the associated adults). They then had
participants make inferences about the target juvenile,
asking about category membership (is ¢ the same kind as a
or b?), an unobservable property (does ¢ have “gogli” inside
its blood similar to a or b?), and future appearance (will ¢
look like a or b in the future?).

According to the predictive validity perspective, in the
condition where the relation was relevant (i.e., when the
participant was told that the juveniles were the offspring of
the associated adults), participants should choose the sample
in which the adults look like the target adults (i.e., AA).
That is, they should make an inference based on relational
similarity. In the context where the relation was irrelevant
(i.e., when the participant was told that the juveniles were
the prey of the associated adults), participants should choose
the sample in which the juvenile looks like the target
juvenile (i.e., b). That is, they should make an inference
based on the perceptual similarity of the juveniles.
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Figure 1. An example trial from Bulloch and Opfer (2009). The
target juvenile (7) is perceptually more similar to (b) but is
sometimes presented in a relational context that makes it more
similar to (a).

As expected, Bulloch and Opfer (2009) found that adults
based their inferences about the target juvenile on
perceptual properties of the juveniles in the prey context and
relational properties (i.e., the similarity of the adults) in the
offspring context. Patterns of results from three-, four-, and
five-year-old children, looked increasing like those of the
adults. The proportion of relational matches in the offspring
context increased from 61% among three-year-olds to 72%
among four-year-olds and 79% among five-year-olds (adults
chose the relational match 81% of the time in the offspring
context). In contrast, the proportion of relational matches in
the prey context decreased with age, from 56% among
three-year-olds to 55% among four-year-olds and 45%
among five-year-olds (adults chose the relational match 7%
of the time in the prey context). This supports the view that
there is not a universal trend from generalizing by
perceptual features to generalizing by relational structure.
Instead, these findings suggest that children and adults
flexibly generalize using features or relations when
contextually appropriate, based on their prior knowledge.'

! Nevertheless, we would argue that the nature of Bulloch & Opfer
(2009)’s task does not provide strong evidence against the primacy of
perceptual information. As the authors acknowledge, “children came to our
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The Present Study

The data provided by Bulloch & Opfer complicate the
traditional picture of the emergence of relational reasoning
over the course of development. While popular models like
SME and LISA can likely accommodate these findings, to
do so might require ad-hoc changes to existing processing
algorithms in order to account for the role of context and
predictive validity.

Here, we present a series of artificial neural network
simulations to investigate the development of context-
sensitive, similarity-based generalization. The model
architecture and simulated environment build on previous
work that has explored the capacity of certain connectionist
networks to capture and explain the development of
semantic knowledge (Rogers & McClelland, 2004) and
relational reasoning (e.g., Flusberg et al., 2011; Kollias &
McClelland, 2013; Leech, et al.,, 2008; Thibodeau et al.,
2013). This research has shown how and why higher-level
cognitive abilities like analogical reasoning could
spontaneously emerge over the course of development based
on domain-general principles of statistical learning and
distributed representation. The present simulations advance
this work by focusing specifically on the relational shift and
the mechanisms that support context-sensitive inferences.

Notably, this approach helps address some of the
limitations of classical structured and symbolic models like
SME and LISA (while retaining important insights from the
empirical literature; e.g. the causal role that language seems
to play in driving the development of relational reasoning;
see Flusberg et al., 2011; Gentner & Ratterman, 1991;
Thibodeau et al., 2013). In particular, our model is naturally
context-sensitive (a well-known strength of connectionist
networks; Rogers & McClelland, 2004) and embodies the
key principles underlying the predictive validity account of
similarity-based reasoning.

Methods

The environment and structure of our model was designed
to replicate some of the essential features of Bulloch and
Opfer’s (2009) study. As input, the model takes a

task knowing the value of the parent-offspring relation” (p. 120), which
suggests that their participants may, at least in the offspring context,
experience a perceptual-to-relational shift before they turn three.

In addition, the design of the displays does not present a clear contrast
between purely perceptual and purely relational options. Notice that in
Figure 1 the target juvenile () is a better perceptual match to the juvenile
on the right (b) but the target adults (TT) are a better perceptual match to
the adults on the left (AA). Since the inference questions focused on the
target juvenile, it was argued that attending to the perceptual similarity of
the adults represented a relational inference. However, it is unclear if
children who chose the relational option did so because of the relational
condition or because of the salient perceptual similarity between the sample
and target adults. This latter possibility seems especially likely since there
was an overall preference for the “relational” option (even five-year-olds in
the prey condition chose the relational match over 45% of the time).

Further, these results offer no account for numerous other studies that
find evidence of the primacy of perceptual features (e.g., Gentner, 1988;
Gentner & Rattermann; Ratterman & Gentner, 1998).

distributed representation of a juvenile insect and a
relational context. As output, the model learns to complete
the inputs with the appropriate adult, category, or property
(see Table 1). That is, the model learns that a given juvenile
is born to a pair of adults, is eaten by pair of adults, will
look like a pair of adults, is a particular type of bug, and has
specific properties.

Importantly, there is coherent covariation (Rogers &
McClelland, 2004) between the born to, will look like, and
has relations. Juveniles will look like, belong to the same
category as, and have the same property as the adults that
they are born to. In contrast, knowing that a given juvenile
is eaten by a particular pair of adults does not license
inferences about future appearance, category membership,
or internal properties.

Subject
Representation

O (4 units)
-
N

Relation (5 units) Integration

O (6 units)

Figure 2. The network architecture for the feedforward connectionist
model, an adaptation of the Rumelhart network (Rumelhart, 1990).

Subject (15 units)

Output (9 units)

-

During training, the model learns about six juveniles in
each of the five relational contexts (see Figure 1 for an
illustration of the network and Table 2 for simulation
parameters). These juveniles are presented to the model as
distributed patterns over 15 input units. The patterns that
represent the juveniles were designed to be equally different

from one another, with slightly negative pairwise
correlations (7 =-0.2).
juv | born eaten look is has

1 | adults, | adults, | adults, | type, | prop,
2 | adults, | adults; | adults, | type, | prop,
3 | adults, | adults, | adults, | type, | prop,
4 | adults, | adults; | adults, | type, | prop,
5 | adults; | adults, | adults; | type; | prop;
6 | adults; | adults, | adults; | type; | prop;
7 | adults, adults, | type, | prop,
7 adults, | adults, | type, | prop,

Table 1. Training and Test Patterns. The top six rows represent training
patterns and the bottom two represent test patterns. In training, the network
learns about six juvenile bugs in each of five relational contexts for a total
of 30 training patterns. At test, the model is given partial information about
a novel juvenile and is asked to make inferences about the future
appearance, category membership, and internal properties of that juvenile.
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To test the network’s ability to generalize, it is given
partial information about a novel juvenile after it has
learned about the six training juveniles. The pattern that
represents this “test juvenile” was designed to be
perceptually similar to one pair of juveniles that the network
learned about in training and relationally similar to another.
Perceptual similarity is operationalized as overlap in the
distributed input representations (r = 0.4 between the novel
juvenile and each of the perceptually similar juveniles and »
= -0.2 between each of the other juveniles). For instance,
Jjuvenile; might be perceptually similar to juvenile; and
Jjuvenile, (i.e., in terms of its distributed representation) but
relationally similar to juvenile; and juvenile, in the sense
that it might be born to the same adults as juvenile; and
Jjuvenile, (see the bottom two rows of Table 1).

Epochs of Training 30,000

Learning rate 0.005

Noise 0

Initial weight range -0.1/0.1

Error measure Cross-entropy error
Activation function Sigmoid
Momentum 0

Table 2. Simulation parameters.

We presented the network with two kinds of inference
conditions after it had finished learning about the six
training juveniles. In one, the network was given the novel
juvenile and information about whom that juvenile was born
to. In the other, the network was given the novel juvenile
and information about whom that juvenile was eaten by. In
neither case was the network told what the novel juvenile
will look like, is, or has. These were inferences that the
network was asked to make.

We presented the novel information (a single pattern) to
the network until it had fully learned whom the juvenile was
born to or eaten by and monitored the trajectory of its
inferences. Simulations were run ten times in each condition
to ensure that results were not the product of an
idiosyncratic result and to allow for statistical tests.

Our prediction was that the network would initially make
inferences about the novel juvenile that were consistent with
the perceptually similar juveniles (i.e., that the network
would infer juvenile; will look like, is of the same type as,
and has the same properties as juvenile; and juvenile;).
However, we expected that the network would change what
it thought about the novel juvenile in the born to condition
(i.e., to infer that juvenile; is actually more similar to
Jjuvenile; and juvenile, because it is also born to adults,); we
expected no such change in the eaten by condition. In other
words, we expected the network to behave flexibly, learning
to use the relational information when it was predictive
(based on its own prior experiences during training) and to
ignore it when it was not.

Results

As predicted, the network initially made perceptual
matches in both contexts. Learning in the offspring
condition, however, led to a shift in the inference patterns of
the model, consistent with a perceptual-to-relational shift.
Such a shift did not occur in the prey condition since there
was no coherent covariation between the eaten by and
inferential relational contexts (see Figure 3).

will look like

Unit Activation

,,,,,,,,,,,,,,,,,,,,,,

Epochs

Figure 3. The network’s response to the three inference questions by
condition over time in one representative simulation. The top row shows
results from the offspring condition while the bottom shows results from
the prey condition with inferences about future appearance (left), category
membership (middle), and internal property (right). In the offspring
condition, there is a relational shift: initially the network infers that the
novel juvenile will look like adults;, is of type;, and has property; (as
indicated by the strong activation of the solid line at epoch 0); however,
over time it infers that the novel juvenile will look like adults,, is of type,,
and has property,. In the prey condition the network makes the same initial
inferences; however, importantly, it shows no relational shift.

To statistically analyze the inferential tendencies of the
model, we conducted three repeated measures ANOVAs.
The first contrasted pre- and post-learning in the offspring
condition and found a main effect of perceptual inferences,
F[1,35] = 12.61, p < .01 and a strong interaction between
learning and inference type, F/1,35] = 74.54, p < .001.
Before learning, the model was strongly biased toward
making perceptual inferences. After learning, however, the
network showed a dramatic shift towards relational
inferences (see the first and third pairs of bars in Figure 4).
That is, the model initially treated the novel juvenile like the
learned, perceptually similar juveniles. But this changed
when it was told that the novel juvenile was born to a
different set of parents. Over time, it re-conceptualized this
juvenile to make inferences that were consistent with the
juveniles that were born to the same adults.

The second ANOVA contrasted pre- and post-learning in
the prey condition and found a strong main effect of
perceptual inferences, F/1,35] = 60.00, p < .001 and a slight
interaction between learning and inference type, F/1,35] =
7.15, p < .05. As in the offspring condition, the model first
made perceptual inferences. Unlike the offspring condition,
we did not see a crossover after learning, although it did
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become slightly more likely to make a relational inference
(see the first two pairs of bars in Figure 4).

Finally, the third ANOVA contrasted the post-learning
inferences across the two conditions and found a significant
interaction, F/1,35] = 14.50, p < .001. Whereas the network
made more perceptual matches in the prey condition, it
made more relational matches in the offspring condition
(see the second and third pairs of bars in Figure 4).

M perceptual
84 O relational
6 _
4+ 1
24
04
pre-learning eaten by born to

Figure 4. Average activations of units that reflect perceptual and
relational inferences before learning (left), after learning in the
eaten by condition (middle), and after learning in the born to
condition (right). Error bars reflect standard error of the mean.

General Discussion

The results of our simulations support the view that many
important phenomena in the development of similarity-
based generalization can be explained by a general-purpose
model of semantic learning (Rogers & McClelland, 2004).
Specifically, our model captures the documented primacy of
perceptual information (Gentner, 1988) and the context-
flexibility of relational and perceptual generalization (Opfer
& Bulloch, 2009), all without positing analogy-specific
machinery or structured, symbolic representations (as with
SME, Falkenhainer, Forbus, & Gentner, 1989; and LISA,
Hummel & Holyoak, 1997).

On this view, the primacy of perceptual information and
context-flexibility emerge naturally from learned distributed
representations of objects and relations. Of note, the model
provides an account of how conceptual knowledge is re-
organized through experience as it acquires domain-specific
knowledge (Gentner et al., 1995) and how this re-
representation  gives rise to relational reasoning.
Importantly, it does not require the concurrent development
of working memory or inhibitory control (as was the case in
Morrison et al., 2011; although see Kollias & McClelland,
2013 for a fully connectionist account that considers these
important cognitive mechanisms).

With this said, it is important to be clear that we are not
claiming that our model can account for all facets of human
analogical reasoning. Many of the tasks that SME and LISA
model so well rely on processes that we purposefully did not
try to simulate for the sake of theoretical and practical

simplicity (e.g., Bowdle & Gentner, 1997; Morrison et al.,
2004). For instance, whereas we argue that the kinds of
inferences that are made in Bulloch and Opfer (2009)’s task
do not require highly developed mechanisms for inhibitory
control, it is very likely that other kinds of analogy tasks do
(e.g., Gick & Holyoak, 1980). Further, our model does not
offer an account of analogical reasoning in which highly
structured information is learned and leveraged for inference
very quickly (e.g., Gentner & Markman, 1995. For an
extended discussion of these issues, see Thibodeau et al.,
2013).

Conclusion

Similarity-based generalization is fundamental to human
cognition, and the ability to draw analogies based on
abstract relational connections between superficially
different domains is crucial for reasoning and inference
(Gentner, 1983, 2010; Hofstadter, 2001; Penn, Holyoak, &
Povinelli, 2008). Learning to base generalization on shared
relations rather than (or in the face of) shared perceptual
features has been identified as an important developmental
milestone (Piaget, 1952; Gentner, 1988; Leech et al., 2008;
Ratterman & Gentner, 1998). Unlike many other approaches
to analogical reasoning that use symbolic representations
and analogy-specific mapping mechanisms, we have shown
that context-sensitive perceptual and relational reasoning
can emerge over the course of development in a domain-
general learning model that employs distributed, sub-
symbolic representations.
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