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Abstract 
Similarity-based generalization is fundamental to human 
cognition, and the ability to draw analogies based on 
relational similarities between superficially different domains 
is crucial for reasoning and inference. Learning to base 
generalization on shared relations rather than (or in the face 
of) shared perceptual features has been identified as an 
important developmental milestone. However, recent research 
has shown that children and adults can flexibly generalize 
based on perceptual or relational similarity, depending on 
what has been an effective strategy in the past in a given 
context. Here we demonstrate that this pattern of behavior 
naturally emerges over the course of development in a 
domain-general statistical learning model that employs 
distributed, sub-symbolic representations. We suggest that 
this model offers a parsimonious account of the development 
of context-sensitive, similarity-based generalization and may 
provide several key advantages over other popular structured 
or symbolic approaches to modeling analogical inference. 

Keywords: Analogy; similarity; relational shift; distributed 
connectionist model; generalization; statistical learning  

Introduction 
Is a lemon more similar to a small yellow balloon or a green 
grape? The answer, it turns out, is not so straightforward. 
All three objects are small and round(ish), but the lemon and 
balloon are somewhat larger than the grape and both of 
them are yellow. On the other hand, the lemon and grape are 
filled with juice, grow on trees, and belong to the same basic 
category (fruit), while the balloon is man-made and filled 
with air. Your response, therefore, may depend on what type 
of similarity (you believe) the questioner has in mind; the 
lemon looks more similar to the yellow balloon but is 
structurally (and functionally) more similar to the grape.  

Without any additional information, most adults would 
probably say that the lemon is more similar to the grape. 
The shared taxonomy and structural elements of the lemon 
and grape trump the superficial similarity of the lemon and 
balloon. However, this relational match requires relatively 
sophisticated knowledge of lemons and grapes; without it, 
the lemon will seem more similar to the balloon.  

Indeed, experimental research has found that young 
children typically base similarity judgments on perceptual 
features before they have the relevant domain knowledge to 
make relational matches (Gentner & Ratterman, 1998). In 

other words, until young children gain sufficient knowledge 
of fruit, they are likely to say that a lemon is more similar to 
a yellow balloon than a grape. This developmental change 
in similarity matching – from an early reliance on surface-
level, perceptual features to a later reliance on structural or 
relational properties – is known as the perceptual-to-
relational shift (Gentner, 1988; Goswami, 1996; Piaget, 
1952; Ratterman & Gentner, 1998).  

Computational models have been instrumental in helping 
us understand the mechanistic underpinnings of relational 
reasoning, though they have focused primarily on adult-
level competence (e.g., Falkenhainer, Forbus, & Gentner, 
1989; Hummel & Holyoak, 1997). Recently, however,  
more attention has been given to the development of 
relational reasoning (Doumas, Hummel, & Sandhofer, 2008; 
Gentner, Rattermann, Markman, & Kotovsky, 1995; Leech, 
Mareschal, & Cooper, 2008; Morrison, Doumas, Richland, 
2011; Thibodeau, Flusberg, Glick, & Sternberg, 2013). 
Notably, proponents of two modeling approaches that have 
been at the forefront of the field (SME, proposed by 
Falkenhainer, Forbus, & Gentner, 1989; and LISA, 
proposed by Hummel & Holyoak, 1997) have offered 
somewhat different (though arguably complementary) 
accounts of the emergence of relational reasoning. These 
two accounts highlight different aspects of cognitive 
development to explain the developmental trajectory of 
similarity-based generalization. 

Gentner et al. (1995) used SME to show how conceptual 
change and knowledge accretion could give rise to the 
relational shift. That is, they argue that relational reasoning 
emerges as domain-specific knowledge increases (Gentner 
& Rattermann, 1991; Gentner, 1988; but see, e.g., 
Goswami, 1995 for a different perspective). In SME, 
concepts are hand-coded in a predicate calculus that 
represents both objects and their relations in a structured, 
symbolic fashion. Knowledge accretion is achieved in the 
model by manually re-coding representations (and not, e.g. 
through experiential learning). While this model can 
accurately capture the perceptual-to-relational shift in this 
fashion (i.e., by using “object-centered” representations to 
model the performance of younger children and “relation-
centered” representations to model the performance of older 
children and adults), it leaves open the question of how 
conceptual re-representation emerges as people acquire 
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domain knowledge through everyday experience (for an 
extended discussion of related issues see Thibodeau et al., 
2013).  

Morrison et al. (2011) used LISA to show how the 
development of inhibitory control mechanisms could 
support a shift in attention from perceptual to relational 
structure during generalization. On this account, the 
development of flexible cognitive control resources is 
crucial for being able to inhibit the allure of a superficial 
perceptual match. Importantly, and in contrast to SME, the 
basic principles of LISA have been extended in an attempt 
to explain how explicitly structured conceptual 
representations might be learned from experience (Doumas 
et al., 2008; although see Thibodeau et al., 2013 and Leech 
et al., 2008 for concerns with this approach).  

There are clear advantages to both of these modeling 
approaches, especially since SME and LISA have been used 
to simulate such a wide range of findings relating to 
knowledge representation and reasoning (Gentner & Forbus, 
2011; Hummel & Holyoak, 2005). Using these models to 
explain the developmental trajectory of relational reasoning, 
therefore, represents a parsimonious extension of each 
approach that helps explain several key pieces of data. 

However, recent research has called into question the idea 
that similarity-based generalization follows a universal, 
across-the-board, perceptual-to-relational shift (Bulloch & 
Opfer, 2009; Opfer & Bulloch, 2007). According to the 
predictive validity view, children do not necessarily proceed 
from generalization by perceptual features to generalization 
by relational structure. Instead, they generalize flexibly over 
different types of similarity depending on the context of 
their judgment (Bulloch & Opfer, 2009; Opfer & Bulloch, 
2007). In certain domains, children (and adults) will have 
learned that inferences based on relational similarity are 
more reliably predictive of success, while in other domains 
inferences based on perceptual similarity may actually be 
more successful.  

Data supporting the predictive validity view come from 
studies in which children and adults are asked to make 
inferences about a novel object in different contexts 
(Bulloch & Opfer, 2009; Opfer & Bulloch, 2007). Consider 
the triad of insects in Figure 1. In each of the three insect 
triplets, there are two adults and one juvenile. The triads 
were designed such that the insects on the top row (the 
“samples”: AA, a; BB, b) represent potential matches for 
the insects on the bottom (the “target”: TT, t). In every case, 
the target juvenile looked similar to the juvenile from one of 
the samples (in this case both b and t are light whereas a is 
dark) and the target adults looked similar to the adults in the 
other sample (in this case both AA and TT are light whereas 
BB is dark).  

Bulloch and Opfer (2009) designed two different 
conditions to examine whether they could influence how 
people would generalize about the target juvenile: one in 
which the relational information was relevant (the juvenile 
is the offspring of the associated adults) and another in 
which the relational information was irrelevant (the juvenile 

is the prey of the associated adults). They then had 
participants make inferences about the target juvenile, 
asking about category membership (is t the same kind as a 
or b?), an unobservable property (does t have “gogli” inside 
its blood similar to a or b?), and future appearance (will t 
look like a or b in the future?).  

According to the predictive validity perspective, in the 
condition where the relation was relevant (i.e., when the 
participant was told that the juveniles were the offspring of 
the associated adults), participants should choose the sample 
in which the adults look like the target adults (i.e., AA). 
That is, they should make an inference based on relational 
similarity. In the context where the relation was irrelevant 
(i.e., when the participant was told that the juveniles were 
the prey of the associated adults), participants should choose 
the sample in which the juvenile looks like the target 
juvenile (i.e., b). That is, they should make an inference 
based on the perceptual similarity of the juveniles. 

 
 

 
Figure 1. An example trial from Bulloch and Opfer (2009). The 
target juvenile (t) is perceptually more similar to (b) but is 
sometimes presented in a relational context that makes it more 
similar to (a).  
 

As expected, Bulloch and Opfer (2009) found that adults 
based their inferences about the target juvenile on 
perceptual properties of the juveniles in the prey context and 
relational properties (i.e., the similarity of the adults) in the 
offspring context. Patterns of results from three-, four-, and 
five-year-old children, looked increasing like those of the 
adults. The proportion of relational matches in the offspring 
context increased from 61% among three-year-olds to 72% 
among four-year-olds and 79% among five-year-olds (adults 
chose the relational match 81% of the time in the offspring 
context). In contrast, the proportion of relational matches in 
the prey context decreased with age, from 56% among 
three-year-olds to 55% among four-year-olds and 45% 
among five-year-olds (adults chose the relational match 7% 
of the time in the prey context). This supports the view that 
there is not a universal trend from generalizing by 
perceptual features to generalizing by relational structure. 
Instead, these findings suggest that children and adults 
flexibly generalize using features or relations when 
contextually appropriate, based on their prior knowledge.1 

                                                             
1 Nevertheless, we would argue that the nature of Bulloch & Opfer 

(2009)’s task does not provide strong evidence against the primacy of 
perceptual information. As the authors acknowledge, “children came to our 
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The Present Study 
The data provided by Bulloch & Opfer complicate the 
traditional picture of the emergence of relational reasoning 
over the course of development. While popular models like 
SME and LISA can likely accommodate these findings, to 
do so might require ad-hoc changes to existing processing 
algorithms in order to account for the role of context and 
predictive validity.  

Here, we present a series of artificial neural network 
simulations to investigate the development of context-
sensitive, similarity-based generalization. The model 
architecture and simulated environment build on previous 
work that has explored the capacity of certain connectionist 
networks to capture and explain the development of 
semantic knowledge (Rogers & McClelland, 2004) and 
relational reasoning (e.g., Flusberg et al., 2011; Kollias & 
McClelland, 2013; Leech, et al., 2008; Thibodeau et al., 
2013). This research has shown how and why higher-level 
cognitive abilities like analogical reasoning could 
spontaneously emerge over the course of development based 
on domain-general principles of statistical learning and 
distributed representation. The present simulations advance 
this work by focusing specifically on the relational shift and 
the mechanisms that support context-sensitive inferences.  

Notably, this approach helps address some of the 
limitations of classical structured and symbolic models like 
SME and LISA (while retaining important insights from the 
empirical literature; e.g. the causal role that language seems 
to play in driving the development of relational reasoning; 
see Flusberg et al., 2011; Gentner & Ratterman, 1991; 
Thibodeau et al., 2013). In particular, our model is naturally 
context-sensitive (a well-known strength of connectionist 
networks; Rogers & McClelland, 2004) and embodies the 
key principles underlying the predictive validity account of 
similarity-based reasoning.  

Methods 
The environment and structure of our model was designed 

to replicate some of the essential features of Bulloch and 
Opfer’s (2009) study. As input, the model takes a 

                                                                                                       
task knowing the value of the parent-offspring relation” (p. 120), which 
suggests that their participants may, at least in the offspring context, 
experience a perceptual-to-relational shift before they turn three.  

In addition, the design of the displays does not present a clear contrast 
between purely perceptual and purely relational options. Notice that in 
Figure 1 the target juvenile (t) is a better perceptual match to the juvenile 
on the right (b) but the target adults (TT) are a better perceptual match to 
the adults on the left (AA). Since the inference questions focused on the 
target juvenile, it was argued that attending to the perceptual similarity of 
the adults represented a relational inference. However, it is unclear if 
children who chose the relational option did so because of the relational 
condition or because of the salient perceptual similarity between the sample 
and target adults. This latter possibility seems especially likely since there 
was an overall preference for the “relational” option (even five-year-olds in 
the prey condition chose the relational match over 45% of the time).  

Further, these results offer no account for numerous other studies that 
find evidence of the primacy of perceptual features (e.g., Gentner, 1988; 
Gentner & Rattermann; Ratterman & Gentner, 1998). 

 

distributed representation of a juvenile insect and a 
relational context. As output, the model learns to complete 
the inputs with the appropriate adult, category, or property 
(see Table 1). That is, the model learns that a given juvenile 
is born to a pair of adults, is eaten by pair of adults, will 
look like a pair of adults, is a particular type of bug, and has 
specific properties. 

Importantly, there is coherent covariation (Rogers & 
McClelland, 2004) between the born to, will look like, and 
has relations. Juveniles will look like, belong to the same 
category as, and have the same property as the adults that 
they are born to. In contrast, knowing that a given juvenile 
is eaten by a particular pair of adults does not license 
inferences about future appearance, category membership, 
or internal properties. 

 
Subject (15 units)

Relation (5 units)

Subject 
Representation 
(4 units)

Integration 
(6 units)

Output (9 units)

Parameters
Epochs

Learning rate

Noise

Initial weight 
range

Error 
measure

Activation 
function

Momentum

50,000

0.005

0

-0.1/0.1

Cross-entropy 
error

Sigmoid

0

 
Figure 2. The network architecture for the feedforward connectionist 
model, an adaptation of the Rumelhart network (Rumelhart, 1990). 

 
During training, the model learns about six juveniles in 

each of the five relational contexts (see Figure 1 for an 
illustration of the network and Table 2 for simulation 
parameters). These juveniles are presented to the model as 
distributed patterns over 15 input units. The patterns that 
represent the juveniles were designed to be equally different 
from one another, with slightly negative pairwise 
correlations (r = -0.2). 

 

 

juvenile is born to a pair of adults, is eaten by pair of adults, will look like a pair of adults, is a 
particular type of bug, and has specific properties.  
 
 
 

juv born eaten look  is has 

1 adults1 adults2  adults1 type1 prop1 

2 adults1 adults3 adults1 type1 prop1 

3 adults2 adults1  adults2 type2 prop2 

4 adults2 adults3 adults2 type2 prop2 

5 adults3 adults1  adults3 type3 prop3 

6 adults3 adults2 adults3 type3 prop3 
      

7 adults2   adults2 type2 prop2 

7   adults2 adults1 type1 prop1 
Table 1. Training and Test Patterns. The top six rows represent training patterns and the bottom 
two represent test patterns. In training, the network learns about six juvenile bugs in each of five 
relational contexts for a total of 30 training patterns. At test, the model is given partial 
information about a novel juvenile and is asked to make inferences about the future appearance, 
category membership, and internal properties of that juvenile. 
 

Importantly, there is coherent covariation (Rogers & McClelland, 2004) between the 
born to, will look like, and has relations. Juveniles will look like, belong to the same category as, 
and have the same property as the adults that they are born to. In contrast, knowing that a given 
juvenile is eaten by a particular pair of adults does not license inferences about future appearance, 
category membership, or internal properties. 

During training, the model learns about six juveniles in each of the five relational 
contexts (see Figure 1 for an illustration of the network and Table 2 for simulation parameters). 
These juveniles are presented to the model as distributed patterns over 15 input units. The 
patterns that represent the juveniles were designed to be equally different from one another, with 
slightly negative pairwise correlations (r = -0.2).  

 

 
Table 1. Training and Test Patterns. The top six rows represent training 
patterns and the bottom two represent test patterns. In training, the network 
learns about six juvenile bugs in each of five relational contexts for a total 
of 30 training patterns. At test, the model is given partial information about 
a novel juvenile and is asked to make inferences about the future 
appearance, category membership, and internal properties of that juvenile. 
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To test the network’s ability to generalize, it is given 
partial information about a novel juvenile after it has 
learned about the six training juveniles. The pattern that 
represents this “test juvenile” was designed to be 
perceptually similar to one pair of juveniles that the network 
learned about in training and relationally similar to another. 
Perceptual similarity is operationalized as overlap in the 
distributed input representations (r = 0.4 between the novel 
juvenile and each of the perceptually similar juveniles and r 
= -0.2 between each of the other juveniles). For instance, 
juvenile7 might be perceptually similar to juvenile1 and 
juvenile2 (i.e., in terms of its distributed representation) but 
relationally similar to juvenile3 and juvenile4 in the sense 
that it might be born to the same adults as juvenile3 and 
juvenile4 (see the bottom two rows of Table 1). 

 
 

 
Epochs of Training 30,000 
Learning rate 0.005 
Noise 0 
Initial weight range -0.1/0.1 
Error measure Cross-entropy error 
Activation function Sigmoid 
Momentum 0 

Table 2. Simulation parameters. 
 
 

We presented the network with two kinds of inference 
conditions after it had finished learning about the six 
training juveniles. In one, the network was given the novel 
juvenile and information about whom that juvenile was born 
to. In the other, the network was given the novel juvenile 
and information about whom that juvenile was eaten by. In 
neither case was the network told what the novel juvenile 
will look like, is, or has. These were inferences that the 
network was asked to make.  

We presented the novel information (a single pattern) to 
the network until it had fully learned whom the juvenile was 
born to or eaten by and monitored the trajectory of its 
inferences. Simulations were run ten times in each condition 
to ensure that results were not the product of an 
idiosyncratic result and to allow for statistical tests. 

Our prediction was that the network would initially make 
inferences about the novel juvenile that were consistent with 
the perceptually similar juveniles (i.e., that the network 
would infer juvenile7 will look like, is of the same type as, 
and has the same properties as juvenile1 and juvenile2). 
However, we expected that the network would change what 
it thought about the novel juvenile in the born to condition 
(i.e., to infer that juvenile7 is actually more similar to 
juvenile3 and juvenile4 because it is also born to adults2); we 
expected no such change in the eaten by condition. In other 
words, we expected the network to behave flexibly, learning 
to use the relational information when it was predictive 
(based on its own prior experiences during training) and to 
ignore it when it was not.  

Results 
As predicted, the network initially made perceptual 

matches in both contexts. Learning in the offspring 
condition, however, led to a shift in the inference patterns of 
the model, consistent with a perceptual-to-relational shift. 
Such a shift did not occur in the prey condition since there 
was no coherent covariation between the eaten by and 
inferential relational contexts (see Figure 3). 
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Figure 3. The network’s response to the three inference questions by 
condition over time in one representative simulation. The top row shows 
results from the offspring condition while the bottom shows results from 
the prey condition with inferences about future appearance (left), category 
membership (middle), and internal property (right). In the offspring 
condition, there is a relational shift: initially the network infers that the 
novel juvenile will look like adults1, is of type1, and has property1 (as 
indicated by the strong activation of the solid line at epoch 0); however, 
over time it infers that the novel juvenile will look like adults2, is of type2, 
and has property2. In the prey condition the network makes the same initial 
inferences; however, importantly, it shows no relational shift.  

 
To statistically analyze the inferential tendencies of the 

model, we conducted three repeated measures ANOVAs. 
The first contrasted pre- and post-learning in the offspring 
condition and found a main effect of perceptual inferences, 
F[1,35] = 12.61, p < .01 and a strong interaction between 
learning and inference type, F[1,35] = 74.54, p < .001. 
Before learning, the model was strongly biased toward 
making perceptual inferences. After learning, however, the 
network showed a dramatic shift towards relational 
inferences (see the first and third pairs of bars in Figure 4). 
That is, the model initially treated the novel juvenile like the 
learned, perceptually similar juveniles. But this changed 
when it was told that the novel juvenile was born to a 
different set of parents. Over time, it re-conceptualized this 
juvenile to make inferences that were consistent with the 
juveniles that were born to the same adults. 

The second ANOVA contrasted pre- and post-learning in 
the prey condition and found a strong main effect of 
perceptual inferences, F[1,35] = 60.00, p < .001 and a slight 
interaction between learning and inference type, F[1,35] = 
7.15, p < .05. As in the offspring condition, the model first 
made perceptual inferences. Unlike the offspring condition, 
we did not see a crossover after learning, although it did 
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become slightly more likely to make a relational inference 
(see the first two pairs of bars in Figure 4). 

Finally, the third ANOVA contrasted the post-learning 
inferences across the two conditions and found a significant 
interaction, F[1,35] = 14.50, p < .001. Whereas the network 
made more perceptual matches in the prey condition, it 
made more relational matches in the offspring condition 
(see the second and third pairs of bars in Figure 4). 
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Figure 4. Average activations of units that reflect perceptual and 
relational inferences before learning (left), after learning in the 
eaten by condition (middle), and after learning in the born to 
condition (right). Error bars reflect standard error of the mean.  

General Discussion 
The results of our simulations support the view that many 
important phenomena in the development of similarity-
based generalization can be explained by a general-purpose 
model of semantic learning (Rogers & McClelland, 2004). 
Specifically, our model captures the documented primacy of 
perceptual information (Gentner, 1988) and the context-
flexibility of relational and perceptual generalization (Opfer 
& Bulloch, 2009), all without positing analogy-specific 
machinery or structured, symbolic representations (as with 
SME, Falkenhainer, Forbus, & Gentner, 1989; and LISA, 
Hummel & Holyoak, 1997).  

On this view, the primacy of perceptual information and 
context-flexibility emerge naturally from learned distributed 
representations of objects and relations. Of note, the model 
provides an account of how conceptual knowledge is re-
organized through experience as it acquires domain-specific 
knowledge (Gentner et al., 1995) and how this re-
representation gives rise to relational reasoning. 
Importantly, it does not require the concurrent development 
of working memory or inhibitory control (as was the case in 
Morrison et al., 2011; although see Kollias & McClelland, 
2013 for a fully connectionist account that considers these 
important cognitive mechanisms).  

With this said, it is important to be clear that we are not 
claiming that our model can account for all facets of human 
analogical reasoning. Many of the tasks that SME and LISA 
model so well rely on processes that we purposefully did not 
try to simulate for the sake of theoretical and practical 

simplicity (e.g., Bowdle & Gentner, 1997; Morrison et al., 
2004). For instance, whereas we argue that the kinds of 
inferences that are made in Bulloch and Opfer (2009)’s task 
do not require highly developed mechanisms for inhibitory 
control, it is very likely that other kinds of analogy tasks do 
(e.g., Gick & Holyoak, 1980). Further, our model does not 
offer an account of analogical reasoning in which highly 
structured information is learned and leveraged for inference 
very quickly (e.g., Gentner & Markman, 1995. For an 
extended discussion of these issues, see Thibodeau et al., 
2013). 

Conclusion 
Similarity-based generalization is fundamental to human 
cognition, and the ability to draw analogies based on 
abstract relational connections between superficially 
different domains is crucial for reasoning and inference 
(Gentner, 1983, 2010; Hofstadter, 2001; Penn, Holyoak, & 
Povinelli, 2008). Learning to base generalization on shared 
relations rather than (or in the face of) shared perceptual 
features has been identified as an important developmental 
milestone (Piaget, 1952; Gentner, 1988; Leech et al., 2008; 
Ratterman & Gentner, 1998). Unlike many other approaches 
to analogical reasoning that use symbolic representations 
and analogy-specific mapping mechanisms, we have shown 
that context-sensitive perceptual and relational reasoning 
can emerge over the course of development in a domain-
general learning model that employs distributed, sub-
symbolic representations.  
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