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Abstract 

The ability to accurately assess math problem solving strategy 
is an important part of understanding the effects of practice. 
Unfortunately the measures researchers trust are often 
unreliable and ill suited for studying the effects of practice. In 
the current study we are interested in identifying intermediary 
strategies that emerge as people switch from computational to 
retrieval strategies. To build a more accurate assessment of 
strategy we combine latency, neural evidence, and verbal 
reports using a mixture model. We compare the model’s 
predictions of strategy use with concurrent assessments 
collected during the problem solving. The results suggest that 
while participants consider a partial computation-retrieval 
strategy, distinct from pure computation, our model finds no 
evidence of such a partial state; however, distinction is found 
between early and well-practiced retrieval. These results 
suggest a discrepancy between the distinctions people make 
when reporting strategy use and the distinctions in the 
cognitive processes underlying strategy use. 

Keywords: fMRI; Mixture Model; Problem Solving; Strategy 
use. 

Introduction 
Tools to assess math strategy use are critical to the study 

of math problem solving. A researcher can glean only so 
much from knowing a person’s solution to a task because it 
provides little information about the processes that were 
used to arrive at the solution. Take, for example, the 
problem of adding up all the numbers from 1 to 100. The 
solver could mentally keep a running total, adding each 
number, or creating a formula to arrive at the answer (i.e., 
100*(100+1)/2). The strategy a student uses to solve a math 
problem reflects a valuable measure of their understanding 
of the mathematical concepts underlying the problem. 

 As students gain practice working with problems, the 
strategies they use to solve the problems change. Practice 
often causes participants to switch from strategies that use 
calculations (referred to here as computational strategies) to 
strategies that involve recall of previously learned facts 
(referred to here as retrieval strategies) (Imbo & 
Vandierendonck, 2008; Ischebeck et al., 2007). According 
to the adaptive strategy choice model, the shift to retrieval 
strategies arises out of an increased association between the 
math problem and the solution such that a participant can 
retrieve the answer from memory (Siegler & Shipley, 1995). 
Work studying children learning arithmetic suggests that 
strategies emerge and/or decline in use through a mix of 

metacognitive strategy discovery and associative 
mechanisms of gradual learning (Shrager and Siegler, 
1998). This idea, summarized by Siegler’s ‘overlapping 
waves theory’, describes the gradual changes in childrens’ 
strategy use over time from less efficient to more efficient 
strategies. The changes in strategy use are an important 
feature for understanding learning, and consequently the 
ability to accurately assess these changes is necessary for 
the study of math learning. 

 The different methods for assessing strategy use have 
tradeoffs, when being used to assess a dynamic learning 
task. Assessing strategy use becomes especially difficult 
when studying math learning in the fMRI scanner. A verbal 
protocol in the context of an fMRI study cannot be collected 
without impacting the quality of the data. Speaking 
modulates breathing, which in turn has been shown to have 
an effect on the blood-oxygen-level-dependent (BOLD) 
response (Birn, Smith, Jones, & Bandettini, 2008). A 
number of experiments have explored means to simplify 
concurrent verbal assessment to reduce its reactivity. For 
instance, in several studies participants were provided with a 
list of strategies after each problem and encouraged to 
choose the option that best represented the strategy that they 
used (Campbell & Timm, 2000; Grabner et al., 2011; Imbo 
& Vandierendonck, 2008). In support of the effectiveness of 
this technique, Grabner et al. (2011) found similar brain 
responses for items reported to be solved with the same 
strategy. This method of concurrent assessment, however, 
has two flaws. First, suggesting alternative strategies may 
alter the participant’s problem-solving methodology, and 
second, a participant is forced to choose among the provided 
strategies, which may not include the specific method used 
in problem solving. These two flaws can be avoided by use 
of a retrospective strategy assessment. 

 Retrospective strategy assessments (RSAs) are a less 
reactive form of strategy assessment, but are also less 
accurate (Russo, Johnson, & Stephens, 1989). During 
retrospective strategy assessments, researchers ask the 
participant to report strategy use after the entire task has 
been completed, often with a list of problems to help cue 
memory (Grabner et al., 2009). The advantage of RSAs is 
that task data remain unaffected by the assessment of 
strategy. Additionally, the RSA allows for a more detailed 
report on specific strategy than concurrent assessments. 
Nevertheless, this form of assessment is ill suited for 
dynamic learning tasks in which solution strategies change 
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with practice because they only provide information about 
the final strategy state of a problem. Thus, while RSAs do 
not provide item-by-item information, they can still be 
useful for identifying general strategy patterns. 

Both concurrent and RSAs assume that participants are 
fully aware and able to describe the strategies they use. To 
validate participant reports, researchers can use other 
indicators of the cognitive processes underlying strategy 
use. Problem solving time and fMRI data can be applied as 
an indirect method for assessing strategy use. Numerous 
studies that compared computational and retrieval strategies 
found that the time it takes to solve a problem significantly 
differs based on the strategy used, with retrieval taking 
much less time than computation (Campbell & Timm, 
2000). Reaction time data—while a robust predictor of 
computational versus retrieval strategies—has limited 
sensitivity when used to detect intermediate or mixed 
strategies. The amount of time it takes to execute strategies 
changes with practice, so distinguishing between a fast 
computation and a slow retrieval using latency is difficult 
(Delaney, Reder, Staszewski, & Ritter, 1998). 

 Using fMRI to measure the brain’s representation of 
these different strategies offers an indirect means of 
assessment as well. fMRI studies of math training have 
found distinctions in neural responses to highly practiced 
problems (problems thought to be solved by retrieval) and 
problems that are novel. Several math-training studies report 
that novel problems—in contrast to practiced problems—
activate the frontal-parietal network where as the reverse 
contrast increase activity in the angular gyrus (Arsalidou & 
Taylor, 2011; Delazer et al., 2005; Ishebeck et al., 2006). In 
cases where the participant may not be aware of gradual 
changes in strategy, latency and fMRI measures may 
provide insight into these changes.  

In a previous study, we combined different sources of 
data to increase the accuracy of the assessment of strategy 
use within the fMRI scanner (Tenison, Fincham & 
Anderson, 2014). With this method we identified 4 classes 
of strategies used to solve practiced and novel math 
problems; we built this model using fMRI data, problem-
solving latency, and retrospective strategy assessment data 
(Tenison et al., 2014). Based on RSAs and latency data, we 
proposed that these states might indicate that participants 
used a very slow computational strategy, a very fast 
retrieval, or two intermediary strategies (one fast 
computational, and one slow retrieval). The retrospective 
reports from this study suggested that when participants 
practice solving problems, these intermediary strategies 
emerge from computation and are used until the participant 
is confident enough to retrieve the answer. These reports 
seem to suggest that adults experience overlapping waves of 
strategy use transitioning to an intermediary strategy before 
shifting to retrieval strategies.  

The present study aims to test this model and shed light 
on these intermediary strategies. In the current experiment, 
we scan participants while they learn math problems to gain 
a more accurate picture of how intermediary strategies 

emerge and decline with practice. The current study uses a 
multiple-choice concurrent strategy assessment to act as a 
measure of ‘ground truth’ to test our model against. We 
hypothesized that the model will distinguish four strategies, 
a finding that is in alignment with previous research 
(Tenison et al., 2014). Furthermore, we predicted that 
participants would switch from using computational 
strategies, to intermediate strategies, to retrieval strategies as 
they gain practice. We used the concurrent reports to 
explore the sensitivity with which this assessment method 
can detect strategies used to solve these problems.  

Methods 

Participants 
Twenty university students (9 females; mean age 22/ SD 
2.3) participated in the study. Participants gave informed 
written consent and received monetary compensation for 
their participation. All participants were right handed. The 
university ethics board approved the study. 

Stimuli and experimental design 
To investigate the change in strategy that occurs when 
learning a new type of operation, we trained participants on 
a novel operation. This operation, called a ‘Pyramid 
problem’, uses the same algorithm as that in the prior 
experiment by Tenison et al. (2014). To solve these 
problems participants must keep a running total in their head 
as they add together several integers. For example, 11$4 
would be expanded to 11+10+9+8, and thus, the correct 
value is 38. We controlled for difficulty between 
experimental conditions. 

We used two assessments of strategy use, a concurrent 
and a retrospective assessment. The concurrent assessment 
presented a list of strategies from which participants were 
encouraged to choose the strategy that best matched the one 
used to solve the previous problem. We compiled the 
strategy options by considering the frequency of reported 
use in a previous experiment using the same problems 
(Tenison et al. 2014) The instructions at the start of each 
scan included definitions of the different available strategy 
choices. “Retrieve” was defined as remembering the 
answer; “calculate” was defined as using arithmetic to find 
the answer; “partial” was described as partially calculating 
and partially remembering the Pyramid problem. 
Participants were instructed to indicate if they used an 
“other” strategy for any strategy that did not fit within the 
first 3 categories. The concurrent assessment was presented 
on the screen after participants finished entering their 
answer to the Pyramid problem. Participants were asked, 
“How did you solve the problem?” and were given the 
choices of “1) Retrieve 2) Calculate 3) Partial 4) Other”. 
Only one participant indicated use of the “other” strategy, 
information from the retrospective report indicated that an 
abbreviated computation strategy had been used. For our 
later analysis, we recoded this as the “calculate” strategy 
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since the strategy described was similar to other 
participants’ reports of computation.  

Following the completion of the scan, participants 
completed a retrospective strategy assessment in which they 
solved 15 paper-based problems that included all the 
practiced and some of the novel problems. After solving 
each problem participants were instructed to write down a 
detailed explanation of how the problem was solved. The 
participants’ strategy self-reports were coded based on three 
categories: retrieval, calculated, and partial.  

The experiment used a numeric keypad with the number 
arranged in a standard keyboard format. Participants used 
the keypad to type out the answers to the math problems and 
to indicate the problem solving strategies that were used. 

Scanning Procedure 
Participants completed 6 fMRI scans. Participants were 
exposed to a set of highly practiced problems (We will refer 
to these as practiced problems) and set of limited practice 
problems (We will refer to these as novel problems). This 
allowed us to contrast the difference in strategy use between 
the two sets. In total, the experiment featured 3 practiced 
problems, 18 novel problems and 6 warm up problems. 
Each scan began with a warm up problem of which the 
response was discarded and then a random mix of 6 novel 
problems and 18 practiced problems (3 problems with each 
problem repeated 6 times). Novel problems matched the 
practiced problems in difficulty. During the experiment, 
participants saw the novel problems twice over the course of 
6 scans (thus the novel problem was repeated when 
participants had solved over 50 problems and were unlikely 
to remember having seen the problem before). Participants 
also completed a concurrent strategy assessment after each 
problem during the 2nd, 4th, and 6th scans. Participants did 
not complete a concurrent assessment on the 1st, 3rd and 5th 
scans. The alternating of scans featuring or not featuring an 
assessment allowed the experimenter to check the reactivity 
of the assessment (no reaction was found).  

Pyramid problems were presented on the screen following 
a 2 second fixation period. Once the problem appeared on 
the screen, the participant was allowed a maximum of 30 
seconds to indicate knowledge of a solution by pressing the 
return key on the numeric keypad. After pressing ‘return’, 
participants had 5 seconds to input a solution using the 
keypad and press the return key. After answering the 
problem, the participant was given correctness feedback and 
information about how the problem should have been 
solved. If it was the 2nd, 4th, or 6th scan, a screen appeared 
that asked participants, “How did you solve the problem?” 
Participants were given 5 seconds to select the number that 
best corresponded to the strategy used. At the end of each 
problem solving trial, a 12 second 1-back task was 
presented onscreen to prevent metacognitive reflection on 
the previous problem and allow the hemodynamic response 
of the brain to return to baseline. Problem solving time was 
defined as the time between the appearance of the math 

problem and the point at which the participant indicated a 
readiness to input the answer.  

MRI data acquisition 
Images were acquired using gradient echo-echo planar 
image acquisition on a Siemens 3T Verio Scanner using a 
32 channel RF head coil, with 2 s. repetition time (TR), 30 
ms. echo time, 79° flip angle, and 20 cm. field of view. The 
experiment acquired 34 axial slices on each TR using a 3.2 
mm thick, 64×64 matrix. This produces voxels that are 3.2 
mm high and 3.125 x 3.125 mm2. The anterior commissure-
posterior commissure line was on the 11th slice from the 
bottom scan slice. Acquired images were pre-processed and 
analyzed using AFNI (Cox, 1996). Functional images were 
motion-corrected using 6-parameter 3D registration. All 
images were then slice-time centered at 1 sec and co-
registered to a common reference structural MRI by means 
of a 12-parameter 3D registration and smoothed with an 6 
mm full-width-half-maximum 3D Gaussian filter to 
accommodate individual differences in anatomy. 

fMRI Analysis 
To create a single measure of strategy use from the fMRI 
data we used a classification analysis to quantify how 
similar a given trial was to other retrieval trials. Without a 
direct report of retrieval, we trained our classifier on the 
distinction between practiced and novel problems, since we 
knew novel problem could not be solved by retrieval, 
whereas most practiced problems would be solved by 
retrieval. For the purposes of this paper, we will summarize 
the processing steps applied to our data, explicit justification 
of our actions are reported in the Tenison et al. (2014). To 
prepare the fMRI data for a linear discriminate analysis 
(LDA), we went through a number of steps to restrict the set 
of features used by the classifier to avoid over-fitting the 
data and impacting the reliability of our results (Pereira et 
al., 2009). For the first step we subdivided the brain into 
4x4x4 voxel cubes (a voxel is 3.2 x 3.125 x 3.125mm) over 
32 slices of the 64x64 acquisition matrix to create an initial 
408 ‘mega-voxel’ regions of interest (ROIs) (Anderson, 
Betts, Ferris, & Fincham, 2010). The second step was to 
eliminate regions that had highly variable fMRI signals. A 
measure of variability was calculated for each of the 6 
imaging blocks by dividing the block range by the mean. 
ROIs containing more than 15 TRs across all participants 
that fluctuated more than 15% during a block were 
eliminated. The reduced sample comprised 288, 4x4x4 
voxel regions of raw data. The majority of the regions 
eliminated from the analysis were the most dorsal and 
ventral slices or on the edges of the other slices. For the 288 
regions, we estimated 23 regressors for each subject for 
each block: one input regressor for all the trials, one 
feedback regressor for all trials, and 21 solving period 
regressors, one for each problem. We constructed the design 
matrix regressors by convolving the boxcar functions of 
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each of the regressors with a hemodynamic function1. A 
GLM was used to estimate the beta values for each problem 
as well as the input and feedback periods of the scan block. 
Combining our results across blocks we get an estimate of 
engagement (a beta from the GLM) during problem solving 
for each of the 6 x 21 = 106 trials and these are the values 
that we will use in our classification analyses. 

As a third step, we performed dimensionality reduction 
using Principle Components Analysis (PCA), which creates 
a set of uncorrelated variables from linear combinations of 
the ROI activity. The PCA was performed on the z-scores of 
the beta values for the 288 regions. Using z-scores rather 
than raw values allowed for comparison across subjects. To 
eliminate fluctuations in the BOLD signal that were 
physiologically implausible, z-scores were Winsorized such 
that scores greater than 5 or less than -5 were changed to 5 
or -5 respectively. We then preformed a linear discriminate 
analysis (LDA) on the first 50 factors extracted from the 
PCA. We used the LDA to identify which of these factors 
contributed to distinguishing between practiced and novel 
problems. Because we were interested in identifying similar 
features that exist across participants, we used a leave-one-
out cross-validation method. We trained on all but one 
participant and then tested on the remaining participant. 
Besides returning a predicted category for each item, an 
LDA generates a continuously varying evidence measure for 
category membership and a posterior probability that an 
item is from a category. Both of these measures were used 
in subsequent analysis. 

Results 

Effects of Practice 
Practicing a problem had clear effects on the speed and 
strategy with which participants solved the pyramid 
problems. A repeated measures ANOVA indicates that the 
time to solve practiced problems decreased, but the time to 
solve novel problems remained constant. The analysis 
revealed a significant main effect of problem group, 
F(1,18)=69.28, p<0.0001, scan block, F(5,90)=18.66, 
p<0.0001, and a significant problem by scan block 
interaction, F(5,90)=14.95, p<0.0001. There were 
corresponding changes in the strategy use reported for the 
practiced problems. There was an increase in reports of 
retrieval over the three blocks on which concurrent reports 
were obtained, F (2,38)=42.04, p<0.0001, a decrease in 
reports of both computation, F (2,38)=8.396, p=0.001, and 
partial strategies, F (2,38)=18.598, p<0.0001. On novel 
problems, participants did not indicate any significant 
changes in their use of strategy during the experiment. 
Retrospective reports echo the overall differences in strategy 
use between practiced and novel problems reported in the 
concurrent assessments. Table 1 shows the mean 

                                                             
1 Assuming the standard SPM hemodynamic response – Friston 

et al. (1998), the difference between two gamma functions used 
was gamma (6,1) – gamma (16,1) 

percentages of strategy use reported for both problem types 
on the concurrent and retrospective assessment. 
  

Table 1: Percent Strategy Use Reported 
 

Strategy Concurrent Retrospective 
 Practice Novel Practice Novel 
Retrieval 81.7 1.3 76.4 4.8 
Computation 6.8 89 16.4 85.6 
Partial 11.4 9.6 7.4 9.6 

Classifier Performance and Output 
As described in the methods, we trained a classifier to 

distinguish trained trials from untrained trials. We used 
leave-one-subject-out classification technique in which we 
trained the classifier on the distinction for all participants on 
one and then tested its ability to predict trials for the 
remaining participant. The classifier was highly robust in 
the cross subjects tests, predicting all subjects better than 
chance. The average d-prime measure of performance for a 
particular subject in this analysis was 1.71, t(19) = 14.5, 
p<0.001, with a hit rate of 60% and a false alarm rate of 
11%. Mapping the weights from the classifier back to the 
brain we can observe areas associated with computation and 
retrieval used in this classification (Figure 1). For purposes 
of further use in this paper, the major contribution of this 
classifier is that it labels each trial with the probability that it 
was trained. We will use this evidence score as one source 
of information about the strategy used to solve a problem. 

 
Figure 1: Warm voxels are more active for untrained 

problems, cool voxels are more active for trained problems. 
Locus of the prefrontal cortex (PFC), horizontal intraparaital 

sulcus (HIPS) are marked on the left graph, angular gyrus 
(AG) is marked on the right. The z-value is for x=y=0 in 

Talairach coordinates.  

Modeling Strategy Use 
We employed a type of mixture model called a ‘location 

model’ that used three measures of strategy use (latency, 
fMRI evidences scores, and retrospective reports) in order to 
predict the strategic state representative for each problem. 
This model identifies the hidden states that are associated 
probabilistically with the three observable measures. We use 
expectation maximization to fit the model to these three 
measures to identify the hidden process states (Aitkin & 
Rubin, 1985; Bailey & Elkna, 1994). 

Applying this model to the data best fit 6 states, however, 
a detailed investigation of these states indicated that the 

2976



model was separating states to capture an underlying 
correlation between the evidence scores and latency (log 
latency is correlated .71 with the evidence scores). The 
mixture model treats these two dimensions as independent 
and to capture the correlation it was creating various states 
along the latency-evidence continuum. Therefore, we 
decided to combine and orthogonalize these two measures 
by use of a PCA. The first component of the PCA proved to 
carry all the information accounting for 88.7% of the 
variance. This first component can be taken as a general 
“strength” measure and then used it, in combination with the 
retrospective reports, to train the mixture. 

Rather than fitting the 4 states fit in Tenison et al. (2014), 
we best fit 3 states. Our mixture model assigns to each trial 
a probability that it is in one of the 3 possible states. We 
assigned each trial to the highest probability state (the mean 
probability of these states are .73). Using this classification, 
Table 2 shows the mean latencies, evidence scores, and 
percent of problems with a retrospective report of retrieval 
for the three resulting states.  In addition, Table 2 reports the 
proportion of problems in each state that were practiced. 
States 1 and 2 are almost exclusively practiced trials with 
the major difference being slightly slower latencies and 
higher evidence scores. Problems in States 1 and 2 are 
solved quickly, retrospectively reported as retrieval, and 
have low fMRI evidence of computation. State 3 contains a 
majority of untrained problems, long latencies, high 
evidence of computation and few retrospective reports of 
retrieval. It seems clear that State 1 is a retrieval state and 
State 3 a calculate state. The status of State 2 is somewhat 
ambiguous.  

 
Table 2: Parameter estimates for the 3 State Model 

 
 State1 State2 State3 
Latency (sec) 1.3 2.5 7 
Evidence -2.1 -.19 .71 
% Retrieval 94% 79.5% 14.4% 
% Practiced 99.8% 96.5% 39% 

 
A major interest of this experiment was to use the 

concurrent reports to check the validity of the state 
assignments obtained with the non-obtrusive measures of 
latency, brain evidence, and retrospective reports. We have 
these concurrent reports for problems solved on the 2nd, 
4th, and 6th block. Table 3 shows the state assignments of 
the problems that were assessed. 
 

Table 3: State Assignments for Concurrently Assessed 
Items. 

 
 State1 State2 State3 
Calculate 1.6% 8.5% 67.5% 
Partial 0.8% 13.7% 18.8% 
Retrieval 97% 77.8% 13.8% 

 

Consistent with the evidence in Table 3, participants 
overwhelmingly rate State 1 trials as retrieval and the other 
85% of State 3 problems as calculate or partial. State 2 
appears to be a slow retrieval state. The fact that almost 
80% are called retrieval and less than 10% calculate 
suggests that this is really a retrieval state. Participants mean 
latencies in this state are rather slow (2.51 sec.) for a pure 
retrieval, suggesting some hesitancy in retrieving. Perhaps it 
takes them a moment to recognize that this is a problem they 
can retrieve. Figure 2 shows for each block the proportion of 
problems assigned in to each state. As participants gain 
practice they switch from slow retrieval to fast retrieval. 

 
Figure 2 

Percent of State Assignments for Trained Problems 

Discussion 
This experiment set out to gain a better understanding of the 
intermediary strategies that emerge as people transition from 
the use of computational strategies to retrieval strategies 
with practice. Our results indicate a distinction between 
early and late retrieval processes that people do not make 
when reporting their strategies. 
  Changes in problem-solving latencies and concurrent 
reports indicate that people increased in speed and changed 
their strategy use as they gained practice with problems. The 
retrospective report we collected echoed these results, 
indicating that by the end of the study, practiced problems 
were solved predominately by retrieval and novel problems 
were solved using computational strategies. Additionally, 
we were successfully able to apply a classifier to the fMRI 
data to distinguish practiced and novel problems. Among 
the variety of regions used to make this distinction were 
areas used for arithmetic computation and retrieval 
(Arsalidou & Taylor, 2011). Using the convergence of 
latency, fMRI evidence and the retrospective reports we fit a 
previously developed model. Immediately, we noted that by 
studying the active effects of learning, adjustments had to be 
made to our model that had been developed for a more static 
task. Training affected both the latency and the fMRI data; 
thus, we needed to run PCA to de-correlate these measures. 
With this adjustment our model fit 3 states: a computation 
state, a retrieval state, and an intermediary retrieval state. 
The low percentage of untrained problems in States 1 and 2 
provide evidence that these states reflect the effects of 
training on retrieval strategy. Additionally, the gradual 
decline in State 2 and increase in State 1 assignments during 
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the task suggest that these states might reflect changes in 
retrieval due to practice. 

Retrospective reports of a partial computation-retrieval 
strategy lead us to expect the model to identify such a state. 
Instead, the model identified a state that participants 
generally identified as retrieval in concurrent reports. This 
state contained items that took longer to solve and showed 
more neural similarity to computation than the fast retrieval 
state. It is possible that participants are executing a 
deliberate search of memory in order to make these 
retrievals. We did not gather any reports of such a strategy 
in the RSA and it seems unlikely that participants may even 
consider effortful retrieval as different from automatic 
retrieval. While retrieval and computation are distinct 
enough to recognize, people may not be aware of changes in 
computation and retrieval that occur when they are learning. 
In cases of gradual changes in strategy we suggest that 
measures such as problem solving latency and fMRI provide 
a more nuanced picture of strategy use. Future work could 
benefit from an ROI analysis of how math relevant regions 
distinguish the model-identified states. Such an analysis 
would be useful in further understanding the states and the 
cognitive processes they involve. 
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