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Abstract

The ability to accurately assess math problem solving strategy
is an important part of understanding the effects of practice.
Unfortunately the measures researchers trust are often
unreliable and ill suited for studying the effects of practice. In
the current study we are interested in identifying intermediary
strategies that emerge as people switch from computational to
retrieval strategies. To build a more accurate assessment of
strategy we combine latency, neural evidence, and verbal
reports using a mixture model. We compare the model’s
predictions of strategy use with concurrent assessments
collected during the problem solving. The results suggest that
while participants consider a partial computation-retrieval
strategy, distinct from pure computation, our model finds no
evidence of such a partial state; however, distinction is found
between early and well-practiced retrieval. These results
suggest a discrepancy between the distinctions people make
when reporting strategy use and the distinctions in the
cognitive processes underlying strategy use.

Keywords: fMRI; Mixture Model; Problem Solving; Strategy
use.

Introduction

Tools to assess math strategy use are critical to the study
of math problem solving. A researcher can glean only so
much from knowing a person’s solution to a task because it
provides little information about the processes that were
used to arrive at the solution. Take, for example, the
problem of adding up all the numbers from 1 to 100. The
solver could mentally keep a running total, adding each
number, or creating a formula to arrive at the answer (i.e.,
100*(100+1)/2). The strategy a student uses to solve a math
problem reflects a valuable measure of their understanding
of the mathematical concepts underlying the problem.

As students gain practice working with problems, the
strategies they use to solve the problems change. Practice
often causes participants to switch from strategies that use
calculations (referred to here as computational strategies) to
strategies that involve recall of previously learned facts
(referred to here as retrieval strategies) (Imbo &
Vandierendonck, 2008; Ischebeck et al., 2007). According
to the adaptive strategy choice model, the shift to retrieval
strategies arises out of an increased association between the
math problem and the solution such that a participant can
retrieve the answer from memory (Siegler & Shipley, 1995).
Work studying children learning arithmetic suggests that
strategies emerge and/or decline in use through a mix of

metacognitive  strategy  discovery and  associative
mechanisms of gradual learning (Shrager and Siegler,
1998). This idea, summarized by Siegler’s ‘overlapping
waves theory’, describes the gradual changes in childrens’
strategy use over time from less efficient to more efficient
strategies. The changes in strategy use are an important
feature for understanding learning, and consequently the
ability to accurately assess these changes is necessary for
the study of math learning.

The different methods for assessing strategy use have
tradeoffs, when being used to assess a dynamic learning
task. Assessing strategy use becomes especially difficult
when studying math learning in the fMRI scanner. A verbal
protocol in the context of an fMRI study cannot be collected
without impacting the quality of the data. Speaking
modulates breathing, which in turn has been shown to have
an effect on the blood-oxygen-level-dependent (BOLD)
response (Birn, Smith, Jones, & Bandettini, 2008). A
number of experiments have explored means to simplify
concurrent verbal assessment to reduce its reactivity. For
instance, in several studies participants were provided with a
list of strategies after each problem and encouraged to
choose the option that best represented the strategy that they
used (Campbell & Timm, 2000; Grabner et al., 2011; Imbo
& Vandierendonck, 2008). In support of the effectiveness of
this technique, Grabner et al. (2011) found similar brain
responses for items reported to be solved with the same
strategy. This method of concurrent assessment, however,
has two flaws. First, suggesting alternative strategies may
alter the participant’s problem-solving methodology, and
second, a participant is forced to choose among the provided
strategies, which may not include the specific method used
in problem solving. These two flaws can be avoided by use
of a retrospective strategy assessment.

Retrospective strategy assessments (RSAs) are a less
reactive form of strategy assessment, but are also less
accurate (Russo, Johnson, & Stephens, 1989). During
retrospective strategy assessments, researchers ask the
participant to report strategy use after the entire task has
been completed, often with a list of problems to help cue
memory (Grabner et al., 2009). The advantage of RSAs is
that task data remain unaffected by the assessment of
strategy. Additionally, the RSA allows for a more detailed
report on specific strategy than concurrent assessments.
Nevertheless, this form of assessment is ill suited for
dynamic learning tasks in which solution strategies change
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with practice because they only provide information about
the final strategy state of a problem. Thus, while RSAs do
not provide item-by-item information, they can still be
useful for identifying general strategy patterns.

Both concurrent and RSAs assume that participants are
fully aware and able to describe the strategies they use. To
validate participant reports, researchers can use other
indicators of the cognitive processes underlying strategy
use. Problem solving time and fMRI data can be applied as
an indirect method for assessing strategy use. Numerous
studies that compared computational and retrieval strategies
found that the time it takes to solve a problem significantly
differs based on the strategy used, with retrieval taking
much less time than computation (Campbell & Timm,
2000). Reaction time data—while a robust predictor of
computational versus retrieval strategies—has limited
sensitivity when used to detect intermediate or mixed
strategies. The amount of time it takes to execute strategies
changes with practice, so distinguishing between a fast
computation and a slow retrieval using latency is difficult
(Delaney, Reder, Staszewski, & Ritter, 1998).

Using fMRI to measure the brain’s representation of
these different strategies offers an indirect means of
assessment as well. fMRI studies of math training have
found distinctions in neural responses to highly practiced
problems (problems thought to be solved by retrieval) and
problems that are novel. Several math-training studies report
that novel problems—in contrast to practiced problems—
activate the frontal-parietal network where as the reverse
contrast increase activity in the angular gyrus (Arsalidou &
Taylor, 2011; Delazer et al., 2005; Ishebeck et al., 2006). In
cases where the participant may not be aware of gradual
changes in strategy, latency and fMRI measures may
provide insight into these changes.

In a previous study, we combined different sources of
data to increase the accuracy of the assessment of strategy
use within the fMRI scanner (Tenison, Fincham &
Anderson, 2014). With this method we identified 4 classes
of strategies used to solve practiced and novel math
problems; we built this model using fMRI data, problem-
solving latency, and retrospective strategy assessment data
(Tenison et al., 2014). Based on RSAs and latency data, we
proposed that these states might indicate that participants
used a very slow computational strategy, a very fast
retrieval, or two intermediary strategies (one fast
computational, and one slow retrieval). The retrospective
reports from this study suggested that when participants
practice solving problems, these intermediary strategies
emerge from computation and are used until the participant
is confident enough to retrieve the answer. These reports
seem to suggest that adults experience overlapping waves of
strategy use transitioning to an intermediary strategy before
shifting to retrieval strategies.

The present study aims to test this model and shed light
on these intermediary strategies. In the current experiment,
we scan participants while they learn math problems to gain
a more accurate picture of how intermediary strategies

emerge and decline with practice. The current study uses a
multiple-choice concurrent strategy assessment to act as a
measure of ‘ground truth’ to test our model against. We
hypothesized that the model will distinguish four strategies,
a finding that is in alignment with previous research
(Tenison et al., 2014). Furthermore, we predicted that
participants would switch from using computational
strategies, to intermediate strategies, to retrieval strategies as
they gain practice. We used the concurrent reports to
explore the sensitivity with which this assessment method
can detect strategies used to solve these problems.

Methods

Participants

Twenty university students (9 females; mean age 22/ SD
2.3) participated in the study. Participants gave informed
written consent and received monetary compensation for
their participation. All participants were right handed. The
university ethics board approved the study.

Stimuli and experimental design

To investigate the change in strategy that occurs when
learning a new type of operation, we trained participants on
a novel operation. This operation, called a ‘Pyramid
problem’, uses the same algorithm as that in the prior
experiment by Tenison et al. (2014). To solve these
problems participants must keep a running total in their head
as they add together several integers. For example, 1154
would be expanded to 11+10+9+8, and thus, the correct
value is 38. We controlled for difficulty between
experimental conditions.

We used two assessments of strategy use, a concurrent
and a retrospective assessment. The concurrent assessment
presented a list of strategies from which participants were
encouraged to choose the strategy that best matched the one
used to solve the previous problem. We compiled the
strategy options by considering the frequency of reported
use in a previous experiment using the same problems
(Tenison et al. 2014) The instructions at the start of each
scan included definitions of the different available strategy
choices. “Retrieve” was defined as remembering the
answer; “calculate” was defined as using arithmetic to find
the answer; “partial” was described as partially calculating
and partially remembering the Pyramid problem.
Participants were instructed to indicate if they used an
“other” strategy for any strategy that did not fit within the
first 3 categories. The concurrent assessment was presented
on the screen after participants finished entering their
answer to the Pyramid problem. Participants were asked,
“How did you solve the problem?” and were given the
choices of “1) Retrieve 2) Calculate 3) Partial 4) Other”.
Only one participant indicated use of the “other” strategy,
information from the retrospective report indicated that an
abbreviated computation strategy had been used. For our
later analysis, we recoded this as the “calculate” strategy
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since the strategy described was similar to other
participants’ reports of computation.

Following the completion of the scan, participants
completed a retrospective strategy assessment in which they
solved 15 paper-based problems that included all the
practiced and some of the novel problems. After solving
each problem participants were instructed to write down a
detailed explanation of how the problem was solved. The
participants’ strategy self-reports were coded based on three
categories: retrieval, calculated, and partial.

The experiment used a numeric keypad with the number
arranged in a standard keyboard format. Participants used
the keypad to type out the answers to the math problems and

to indicate the problem solving strategies that were used.

Scanning Procedure

Participants completed 6 fMRI scans. Participants were
exposed to a set of highly practiced problems (We will refer
to these as practiced problems) and set of limited practice
problems (We will refer to these as novel problems). This
allowed us to contrast the difference in strategy use between
the two sets. In total, the experiment featured 3 practiced
problems, 18 novel problems and 6 warm up problems.
Each scan began with a warm up problem of which the
response was discarded and then a random mix of 6 novel
problems and 18 practiced problems (3 problems with each
problem repeated 6 times). Novel problems matched the
practiced problems in difficulty. During the experiment,
participants saw the novel problems twice over the course of
6 scans (thus the novel problem was repeated when
participants had solved over 50 problems and were unlikely
to remember having seen the problem before). Participants
also completed a concurrent strategy assessment after each
problem during the 2nd, 4th, and 6th scans. Participants did
not complete a concurrent assessment on the 1st, 3rd and 5th
scans. The alternating of scans featuring or not featuring an
assessment allowed the experimenter to check the reactivity
of the assessment (no reaction was found).

Pyramid problems were presented on the screen following
a 2 second fixation period. Once the problem appeared on
the screen, the participant was allowed a maximum of 30
seconds to indicate knowledge of a solution by pressing the
return key on the numeric keypad. After pressing ‘return’,
participants had 5 seconds to input a solution using the
keypad and press the return key. After answering the
problem, the participant was given correctness feedback and
information about how the problem should have been
solved. If it was the 2nd, 4th, or 6th scan, a screen appeared
that asked participants, “How did you solve the problem?”
Participants were given 5 seconds to select the number that
best corresponded to the strategy used. At the end of each
problem solving trial, a 12 second 1-back task was
presented onscreen to prevent metacognitive reflection on
the previous problem and allow the hemodynamic response
of the brain to return to baseline. Problem solving time was
defined as the time between the appearance of the math

problem and the point at which the participant indicated a
readiness to input the answer.

MRI data acquisition

Images were acquired using gradient echo-echo planar
image acquisition on a Siemens 3T Verio Scanner using a
32 channel RF head coil, with 2 s. repetition time (TR), 30
ms. echo time, 79° flip angle, and 20 cm. field of view. The
experiment acquired 34 axial slices on each TR using a 3.2
mm thick, 64x64 matrix. This produces voxels that are 3.2
mm high and 3.125 x 3.125 mm2. The anterior commissure-
posterior commissure line was on the 11th slice from the
bottom scan slice. Acquired images were pre-processed and
analyzed using AFNI (Cox, 1996). Functional images were
motion-corrected using 6-parameter 3D registration. All
images were then slice-time centered at 1 sec and co-
registered to a common reference structural MRI by means
of a 12-parameter 3D registration and smoothed with an 6
mm full-width-half-maximum 3D Gaussian filter to
accommodate individual differences in anatomy.

fMRI Analysis

To create a single measure of strategy use from the fMRI
data we used a classification analysis to quantify how
similar a given trial was to other retrieval trials. Without a
direct report of retrieval, we trained our classifier on the
distinction between practiced and novel problems, since we
knew novel problem could not be solved by retrieval,
whereas most practiced problems would be solved by
retrieval. For the purposes of this paper, we will summarize
the processing steps applied to our data, explicit justification
of our actions are reported in the Tenison et al. (2014). To
prepare the fMRI data for a linear discriminate analysis
(LDA), we went through a number of steps to restrict the set
of features used by the classifier to avoid over-fitting the
data and impacting the reliability of our results (Pereira et
al., 2009). For the first step we subdivided the brain into
4x4x4 voxel cubes (a voxel is 3.2 x 3.125 x 3.125mm) over
32 slices of the 64x64 acquisition matrix to create an initial
408 ‘mega-voxel’ regions of interest (ROIs) (Anderson,
Betts, Ferris, & Fincham, 2010). The second step was to
eliminate regions that had highly variable fMRI signals. A
measure of variability was calculated for each of the 6
imaging blocks by dividing the block range by the mean.
ROIs containing more than 15 TRs across all participants
that fluctuated more than 15% during a block were
eliminated. The reduced sample comprised 288, 4x4x4
voxel regions of raw data. The majority of the regions
eliminated from the analysis were the most dorsal and
ventral slices or on the edges of the other slices. For the 288
regions, we estimated 23 regressors for each subject for
each block: one input regressor for all the trials, one
feedback regressor for all trials, and 21 solving period
regressors, one for each problem. We constructed the design
matrix regressors by convolving the boxcar functions of
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each of the regressors with a hemodynamic function'. A
GLM was used to estimate the beta values for each problem
as well as the input and feedback periods of the scan block.
Combining our results across blocks we get an estimate of
engagement (a beta from the GLM) during problem solving
for each of the 6 x 21 = 106 trials and these are the values
that we will use in our classification analyses.

As a third step, we performed dimensionality reduction
using Principle Components Analysis (PCA), which creates
a set of uncorrelated variables from linear combinations of
the ROI activity. The PCA was performed on the z-scores of
the beta values for the 288 regions. Using z-scores rather
than raw values allowed for comparison across subjects. To
eliminate fluctuations in the BOLD signal that were
physiologically implausible, z-scores were Winsorized such
that scores greater than 5 or less than -5 were changed to 5
or -5 respectively. We then preformed a linear discriminate
analysis (LDA) on the first 50 factors extracted from the
PCA. We used the LDA to identify which of these factors
contributed to distinguishing between practiced and novel
problems. Because we were interested in identifying similar
features that exist across participants, we used a leave-one-
out cross-validation method. We trained on all but one
participant and then tested on the remaining participant.
Besides returning a predicted category for each item, an
LDA generates a continuously varying evidence measure for
category membership and a posterior probability that an
item is from a category. Both of these measures were used
in subsequent analysis.

Results

Effects of Practice

Practicing a problem had clear effects on the speed and
strategy with which participants solved the pyramid
problems. A repeated measures ANOVA indicates that the
time to solve practiced problems decreased, but the time to
solve novel problems remained constant. The analysis
revealed a significant main effect of problem group,
F(1,18)=69.28, p<0.0001, scan block, F(5,90)=18.66,
p<0.0001, and a significant problem by scan block
interaction,  F(5,90)=14.95, p<0.0001. There were
corresponding changes in the strategy use reported for the
practiced problems. There was an increase in reports of
retrieval over the three blocks on which concurrent reports
were obtained, F' (2,38)=42.04, p<0.0001, a decrease in
reports of both computation, F (2,38)=8.396, p=0.001, and
partial strategies, F (2,38)=18.598, p<0.0001. On novel
problems, participants did not indicate any significant
changes in their use of strategy during the experiment.
Retrospective reports echo the overall differences in strategy
use between practiced and novel problems reported in the
concurrent assessments. Table 1 shows the mean

! Assuming the standard SPM hemodynamic response — Friston
et al. (1998), the difference between two gamma functions used
was gamma (6,1) — gamma (16,1)

percentages of strategy use reported for both problem types
on the concurrent and retrospective assessment.

Table 1: Percent Strategy Use Reported

Strategy Concurrent Retrospective
Practice  Novel Practice Novel
Retrieval 81.7 1.3 76.4 4.8
Computation 6.8 89 16.4 85.6
Partial 11.4 9.6 7.4 9.6

Classifier Performance and OQutput

As described in the methods, we trained a classifier to
distinguish trained trials from untrained trials. We used
leave-one-subject-out classification technique in which we
trained the classifier on the distinction for all participants on
one and then tested its ability to predict trials for the
remaining participant. The classifier was highly robust in
the cross subjects tests, predicting all subjects better than
chance. The average d-prime measure of performance for a
particular subject in this analysis was 1.71, t(19) = 14.5,
p<0.001, with a hit rate of 60% and a false alarm rate of
11%. Mapping the weights from the classifier back to the
brain we can observe areas associated with computation and
retrieval used in this classification (Figure 1). For purposes
of further use in this paper, the major contribution of this
classifier is that it labels each trial with the probability that it
was trained. We will use this evidence score as one source
of information about the strategy used to solve a problem.
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Figure 1: Warm voxels are more active for untrained
problems, cool voxels are more active for trained problems.
Locus of the prefrontal cortex (PFC), horizontal intraparaital

sulcus (HIPS) are marked on the left graph, angular gyrus
(AG) is marked on the right. The z-value is for x=y=0 in
Talairach coordinates.

Modeling Strategy Use

We employed a type of mixture model called a ‘location
model’ that used three measures of strategy use (latency,
fMRI evidences scores, and retrospective reports) in order to
predict the strategic state representative for each problem.
This model identifies the hidden states that are associated
probabilistically with the three observable measures. We use
expectation maximization to fit the model to these three
measures to identify the hidden process states (Aitkin &
Rubin, 1985; Bailey & Elkna, 1994).

Applying this model to the data best fit 6 states, however,
a detailed investigation of these states indicated that the
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model was separating states to capture an underlying
correlation between the evidence scores and latency (log
latency is correlated .71 with the evidence scores). The
mixture model treats these two dimensions as independent
and to capture the correlation it was creating various states
along the latency-evidence continuum. Therefore, we
decided to combine and orthogonalize these two measures
by use of a PCA. The first component of the PCA proved to
carry all the information accounting for 88.7% of the
variance. This first component can be taken as a general
“strength” measure and then used it, in combination with the
retrospective reports, to train the mixture.

Rather than fitting the 4 states fit in Tenison et al. (2014),
we best fit 3 states. Our mixture model assigns to each trial
a probability that it is in one of the 3 possible states. We
assigned each trial to the highest probability state (the mean
probability of these states are .73). Using this classification,
Table 2 shows the mean latencies, evidence scores, and
percent of problems with a retrospective report of retrieval
for the three resulting states. In addition, Table 2 reports the
proportion of problems in each state that were practiced.
States 1 and 2 are almost exclusively practiced trials with
the major difference being slightly slower latencies and
higher evidence scores. Problems in States 1 and 2 are
solved quickly, retrospectively reported as retrieval, and
have low fMRI evidence of computation. State 3 contains a
majority of untrained problems, long latencies, high
evidence of computation and few retrospective reports of
retrieval. It seems clear that State 1 is a retrieval state and
State 3 a calculate state. The status of State 2 is somewhat
ambiguous.

Table 2: Parameter estimates for the 3 State Model

Statel State2 State3
Latency (sec) 1.3 2.5 7
Evidence 2.1 -.19 71
% Retrieval 94% 79.5% 14.4%
% Practiced  99.8%  96.5% 39%

A major interest of this experiment was to use the
concurrent reports to check the validity of the state
assignments obtained with the non-obtrusive measures of
latency, brain evidence, and retrospective reports. We have
these concurrent reports for problems solved on the 2nd,
4th, and 6th block. Table 3 shows the state assignments of
the problems that were assessed.

Table 3: State Assignments for Concurrently Assessed

Items.
Statel State2  State3
Calculate 1.6% 8.5% 67.5%
Partial 0.8% 13.7% 18.8%
Retrieval 979, 77.8% 13.8%

Consistent with the evidence in Table 3, participants
overwhelmingly rate State 1 trials as retrieval and the other
85% of State 3 problems as calculate or partial. State 2
appears to be a slow retrieval state. The fact that almost
80% are called retrieval and less than 10% calculate
suggests that this is really a retrieval state. Participants mean
latencies in this state are rather slow (2.51 sec.) for a pure
retrieval, suggesting some hesitancy in retrieving. Perhaps it
takes them a moment to recognize that this is a problem they
can retrieve. Figure 2 shows for each block the proportion of
problems assigned in to each state. As participants gain
practice they switch from slow retrieval to fast retrieval.
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Figure 2
Percent of State Assignments for Trained Problems

Discussion

This experiment set out to gain a better understanding of the
intermediary strategies that emerge as people transition from
the use of computational strategies to retrieval strategies
with practice. Our results indicate a distinction between
early and late retrieval processes that people do not make
when reporting their strategies.

Changes in problem-solving latencies and concurrent
reports indicate that people increased in speed and changed
their strategy use as they gained practice with problems. The
retrospective report we collected echoed these results,
indicating that by the end of the study, practiced problems
were solved predominately by retrieval and novel problems
were solved using computational strategies. Additionally,
we were successfully able to apply a classifier to the fMRI
data to distinguish practiced and novel problems. Among
the variety of regions used to make this distinction were
areas used for arithmetic computation and retrieval
(Arsalidou & Taylor, 2011). Using the convergence of
latency, fMRI evidence and the retrospective reports we fit a
previously developed model. Immediately, we noted that by
studying the active effects of learning, adjustments had to be
made to our model that had been developed for a more static
task. Training affected both the latency and the fMRI data;
thus, we needed to run PCA to de-correlate these measures.
With this adjustment our model fit 3 states: a computation
state, a retrieval state, and an intermediary retrieval state.
The low percentage of untrained problems in States 1 and 2
provide evidence that these states reflect the effects of
training on retrieval strategy. Additionally, the gradual
decline in State 2 and increase in State 1 assignments during
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the task suggest that these states might reflect changes in
retrieval due to practice.

Retrospective reports of a partial computation-retrieval
strategy lead us to expect the model to identify such a state.
Instead, the model identified a state that participants
generally identified as retrieval in concurrent reports. This
state contained items that took longer to solve and showed
more neural similarity to computation than the fast retrieval
state. It is possible that participants are executing a
deliberate search of memory in order to make these
retrievals. We did not gather any reports of such a strategy
in the RSA and it seems unlikely that participants may even
consider effortful retrieval as different from automatic
retrieval. While retrieval and computation are distinct
enough to recognize, people may not be aware of changes in
computation and retrieval that occur when they are learning.
In cases of gradual changes in strategy we suggest that
measures such as problem solving latency and fMRI provide
a more nuanced picture of strategy use. Future work could
benefit from an ROI analysis of how math relevant regions
distinguish the model-identified states. Such an analysis
would be useful in further understanding the states and the
cognitive processes they involve.
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