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Abstract 

Previous studies have suggested that learning is improved 
when people actively intervene rather than when they 
passively observe in causal structure learning tasks. Two 
experiments were conducted to investigate whether a 
facilitative effect will occur in the judgment of causal strength. 
In Experiment 1, participants were asked to learn causal 
strength in a situation where the target cause and context 
independently produced the effect. The intervention group 
could manipulate the state of the cause, which was later 
presented to the observation group (i.e., yoked-control 
procedure). The results demonstrated that participants made 
similar evaluations for the target cause, but not for the context. 
Experiment 2 was designed to examine whether different 
estimations were because of facilitation or bias in which 
participants undervalue other causes. The results provide 
support for a facilitative effect, but suggest that the 
improvement with intervention may be limited to the 
estimation of weak causal strength. 

Keywords: causal reasoning; causal inference; intervention; 
causal power; yoked control procedure. 

Introduction 

The ability to learn causal relations is essential for adapting 

to complex environments. Causal knowledge enables people 

to explain past events, to control present situations, and to 

predict future consequences. When someone catches a cold, 

for example, this might be attributed to viruses and lack of 

sleep. The person might take medicine to control this 

condition, with the expectation of getting better. It has been 

recognized that both children and adults easily represent 

causal relations (Gopnik & Schulz, 2007; Sloman, 2005; see 

also Holyoak & Cheng, 2011 for a review). 

Information about causal relations can be acquired by 

passive observation and active intervention. Whereas 

learning by observation includes an observation of a 

system’s autonomous behavior, learning by intervention 

involves an exogenous manipulation to the causal system 

that changes the state of the variable in some way (Pearl, 

2000; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). 

In the above example, observation corresponds to seeing 

your friend take medicine, while intervention corresponds to 

making your friend take medicine. Both observation and 

intervention provide the state (i.e., presence or absence) of 

the cause and its effect, but they differ in how this 

information is conveyed. 

Differences between observation and intervention have 

been well documented in structure learning tasks where 

participants are required to infer causal directions among 

events. Steyvers et al. (2003) investigated people’s ability to 

infer causal structure from both observation and 

intervention. The results demonstrated that performance 

improved when people were allowed to intervene in the 

causal system. Similar results were obtained in Lagnado and 

Sloman (2004). The benefit of intervention is explained by 

the fact that interventions can discriminate Markov 

equivalent models which mere observation cannot. For 

instance, observations about co-occurrences imply statistical 

relations between two events X and Y; however, they 

cannot differentiate whether X causes Y or Y causes X. If 

event X is manipulated and nothing happens, the possibility 

that X causes Y is eliminated. The relation that Y causes X 

is confirmed by the fact that a manipulation of Y changes 

the state of X. Sobel and Kushnir (2006) revealed that 

learners were better at inferring causal structure when they 

intervened of their own free will, rather than observing data 

from another’s intervention. They discussed that causal 

learning is facilitated because learners who intervened freely 

were able to receive the data in a desired order, and 

concluded that decision making is an important part of 

causal learning from intervention. 

In contrast to many studies about causal structure learning, 

only a few studies have focused on differences between 

observation and intervention when people make judgments 

of causal strength. Whether intervention facilitates 

estimation of causal strength remains unknown. Hattori and 

Oaksford (2007) investigated the differences between 

observation and intervention when assessing causal strength. 

Participants were asked to learn the strength of the causal 

relation between using a particular type of fertilizer and 

plants blooming, by either observation or intervention. Their 

results demonstrated that people tended to ignore the 

information that both cause and effect were absent (i.e., cell 

d information in a 2 × 2 contingency table) when learning 

with observation. However, the study is limited in two ways. 

First, they did not make comparisons between the causal 

ratings of the observation group and those of the 

intervention group, nor between participants’ ratings and 

normative values, such as causal power (Cheng, 1997), 

because the experiment was conducted to establish the 

criteria for meta-analysis. In addition, covariation 

information for each group was programmed separately, 
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resulting in a difference in the presented information 

between the observation and intervention groups. Therefore, 

the measured difference between observation and 

intervention might result from the cause density effect, in 

which estimated causal strength becomes higher as the 

probability of the cause increases (e.g., Perales & Shanks, 

2007), or from the outcome density effect, in which 

estimated causal strength becomes higher as the probability 

of the outcome increases (e.g., Shanks, 1985). This problem 

can be resolved by using a yoked control procedure. In this 

procedure, the same sequence of trials generated by a 

participant in the intervention group is presented to a yoked 

participant in the observation group. No previous research 

has provided direct evidence about the role of intervention 

in judgments of causal strength with a yoked control 

procedure. 

Recent studies on causal learning from intervention have 

suggested that people can select the more informative 

situation to assess causal strength (e.g., Barberia, Baetu, 

Sansa, & Baker, 2010; Green & Over, 2009). Barberia et al. 

(2010) demonstrated that participants preferred to test 

generative causes in the low base rate context where the 

alternative causes have little effectiveness. In such contexts, 

the effectiveness of the target cause is not confounded by 

the effectiveness of the alternative causes. Learning by 

intervention includes the opportunity for informative 

selection; in contrast, learning by observation does not. 

Although the yoked control procedure equalizes the 

presented information, receiving information in a desired 

order would serve as a facilitator. Therefore, we 

hypothesized that intervention leads to more accurate 

estimation of causal strength. 

The purpose of the present study is to investigate whether 

intervention facilitates evaluation of causal strength. In 

Experiment 1, participants were asked to learn causal 

strength in the situation where the target cause and context 

independently produced the effect. In Experiment 2, another 

cause was added in order to highlight the difference between 

observation and intervention. If intervention improves 

judgments of causal strength, ratings of the intervention 

group should be closer to the normative values than those of 

the observation group. 

Experiment 1 

In order to investigate the difference between observation 

and intervention, we used a common-effect causal structure 

in which two causes independently produced the effect. One 

cause is the target cause which participants could 

manipulate; the other cause is the context which is always 

present regardless of the state of the target cause (i.e., 

P(context) = 1). Therefore, when participants observe the 

presence of the effect, they cannot be sure whether it 

occurred because of the target cause or because of the 

context. In the cover story of the experiment, the target 

cause and context corresponded to the missiles and 

minefield respectively. Participants were asked to assess the 

likelihood that the missile caused the tank to blow up. The 

common-effect structure provides the state of the target 

cause with different informative values. When the target 

cause is present, participants receive information about the 

joint influence of the cause and context. In contrast, the 

absence of the target cause conveys information about the 

causal strength of the context. In order to precisely assess 

the causal power of the target cause, participants have to 

grasp the causal power of the context. The intervention 

group could select the information in their desired order. 

The causal power of the target cause, q(target cause), is the 

likelihood that the cause will generate an effect in a context 

with no alternative causes (Cheng, 1997). When the target 

cause and context influence the occurrence of the effect 

independently, q(target cause) is calculated as follows: 
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In this equation, P(effect|cause, context) is the probability of 

the effect given the presence of the cause and context. 

P(effect|¬cause, context) is the probability of the effect 

given the absence of the cause and the presence of the 

context. The causal power of the context, q(context), is defined 

as follows: 
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These indices are easily calculated on the basis of the 

presented information. Participants were asked to estimate 

the causal power of the target cause and context. The 

distinctive feature of the present study lies in using a yoked 

control procedure and a common-effect causal model. The 

hypothesis predicts that people become better at inferring 

the causal strength when they are allowed to intervene in the 

target cause. 

Method 

Participants and design Twenty-four undergraduates from 

Kwansei Gakuin University received course credit for 

taking part in this experiment. They were randomly 

assigned to one of two groups resulting from the 

manipulation of the type of learning (observation or 

intervention). 

Instructions Participants received verbal and written 

instructions in Japanese, and were asked to confirm that 

they understood the instructions. An English translation of 

outlines of the instructions was provided below: 

 

Imagine that you are a researcher in military facilities 

attempting to determine the effectiveness of new anti-

tank missiles. The term “effectiveness” means how 

likely the missile will blow up the tanks. 

When a missile hits a tank, it causes the tank to 

blow up. However, the tank will not be destroyed if 

the missile fails to hit it. In addition, the target tank 
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runs through a minefield. Thus, when a tank explodes 

in the minefield, you cannot be sure whether it 

exploded because of the missile or because of a mine. 

Of course, if you do not launch a missile at the tank 

and it explodes, then you know that it must have 

exploded because of a mine. Note that the target tank 

always runs in a different area of the minefield and 

therefore a single explosion by a mine does not imply 

that the tank will never explode because of a mine. 

Your task is to observe whether missiles cause the 

tank to blow up and to judge how effective the 

missiles are. Note that the experimental task does not 

require any knowledge of missiles and tanks. (The 

remaining instructions describe how to progress 

through the learning phase and test phase.) 

 

Learning Phase The learning phase consisted of 40 trials 

that presented information about the launch of missiles and 

the tank’s explosion. Participants were requested to observe 

the states of the missiles and tanks, and to infer causal 

relationship between them. They were randomly assigned to 

either the intervention or the observation group. Participants 

in the intervention group were told to decide whether to 

launch a missile. First, a tank was displayed on a screen. 

There were also two buttons on the screen: one for 

launching the missile, and the other for not launching the 

missile. After they made a choice, the state of the missile 

was presented. The presence of the missile was indicated by 

the picture of the missile. The absence of the missile was 

represented by the appearance of the missile labeled with a 

cross mark. At the same time, a button labeled “NEXT” was 

displayed on the screen. After clicking the button, the 

outcome of launching the missile was shown. The 

destruction of the tank was indicated by the appearance of 

an explosion; in contrast, the tank remained unchanged 

when the missile failed to hit. The screen was returned to its 

primary state 1.5s after the result was displayed. 

The same procedure was used for participants in the 

observation group, except that they did not decide whether 

to launch the missiles. First, a tank and the state of the 

missile (presence or absence) were shown on the screen. 

After participants clicked the “NEXT” button, the state of 

the tank was provided. For each participant in the 

observation group, the states of the missiles and the 

subsequent outcomes were yoked to those of a participant in 

the intervention group. Thus, the covariation information 

between the two groups was identical. Each participant 

completed four contingency conditions of 40 trials. The 

different conditions were .25-.25, .75-.75, .75-0, and .75-.25 

(Table 1). The first term refers to the probability of the tank 

blowing-up on a trial with a launched missile (i.e., 

P(effect|target cause, context)) and the second term to the 

probability of the tank’s destruction on a trial with no 

launched missile (i.e., P(effect|¬target cause, context)). In 

the .25-.25 condition, for example, the tank exploded 25% 

of the times, regardless of whether the missile was launched. 

That is, the missile had no causal power [q(target cause) = 0] and  

Table 1: Causal Power of Target Cause and Context 

in Each Condition in Experiment 1 

Causal power .25-.25 .75-.75 .75-0 .75-.25

q (target cause) 0 0 .75 .67

q (context) .25 .75 0 .25

Contingency conditions

 
Note. The name of conditions represent P(effect|target cause, 

context), P(effect|¬target cause, context) in order. 

 

the mine had weak causal power [q(context) = .25]. Similarly, 

the causal power of the missile was zero in the .75-.75 

condition [q(target cause) = 0]. The outcome density in the .75-

.75 condition was higher than that in the .25-.25 condition 

because of the high causal strength of the mine [q(context) 

= .75]. In contrast, the missile had strong causal power and 

the mine had no causal power in the .75-0 condition [i.e., 

q(target cause) = .75, q(context) = 0]. In the .75-.25 condition, both 

missiles and mines caused the tank to blow up. Whereas the 

missile had strong causal power [q(target cause) = .75], the mine 

had weak causal power [q(context) = .25]. Thus, the causal 

power of the missile and mine differed in each contingency 

condition. In addition, the actual contingency varied slightly 

from participant to participant because the participants’ 

actions were out of our control. To reduce the potential 

variance of the actual contingency, 90% of the outcome 

states were determined in a manner that converged with the 

programmed values and the remaining 10% were 

determined at random. The order of the contingency 

conditions was counterbalanced with the constraint that two 

ineffective missile conditions (i.e., .25-.25 condition, .75-.75 

condition) did not follow each other. 

Test phase After 40 trials had been completed, participants 

were asked to estimate the causal strength of the target 

cause and context. A rating scale was presented on the 

screen together with the question, “To what extent does the 

missile cause the tank to blow up?” A rating was made on a 

scale from 0 (the missile does not cause the tank to blow up 

at all) to 100 (the tank causes the tank to blow up every 

time). Subsequently, participants were requested to infer the 

causal power of the context in a similar manner. Then, after 

a brief delay, participants began the learning and test phases 

for the next contingency condition. They were instructed 

that their judgments should be made independently of their 

answers in prior conditions. 

Results and Discussion 

Figure 1 shows the mean ratings for target cause and context 

in each condition. Separate analyses of variance for target 

cause and context with the type of learning (observation, 

intervention) as a between-participants factor, and the 

contingency condition (.25-.25, .75-.75, .75-0, .75-.25) as a 

within-participants factor were conducted. The analysis for 

the target cause revealed a significant effect of the 

contingency condition, F(3, 66) = 35.21, MSE = 340.01, p 

< .001, η
 2

 G = .51, but no effect of the type of learning, F(1, 

22) = 0.21, MSE = 567.95, p = .648, η
 2

 G  = .003. The 
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interaction between the type of learning and the contingency 

condition was not significant, F(3, 66) = 0.58, MSE = 

340.01, p = .631, η
 2

 G = .02. Individual comparisons of the 

contingency condition revealed significant differences 

among the four conditions (ps < .01), except for the 

comparison between the .75-0 and .75-.25 conditions (p 

= .31). These results suggest that both the intervention and 

observation group roughly differentiated the causal strength 

of the target cause in each contingency condition. Although 

the target cause had no causal power in the .25-.25 and .75-

.75 conditions [i.e., q(target cause) = 0], causal ratings in .75-.75 

condition were higher than that in .25-.25 condition. This 

pattern of results clearly demonstrates the outcome density 

bias, which suggests that the probability of the outcome 

positively affects judgments of causal strength (e.g., Shanks, 

1985). 

The parallel analysis for the context yielded significant 

main effects of the type of learning, F(1, 22) = 7.11, MSE = 

398.98, p = .014, η
 2

 G = .09, and the contingency condition, 

F(3, 66) = 59.93, MSE = 282.15, p < .001, η
 2

 G = .65, but no 

interaction between the type of learning and the contingency 

condition, F(3, 66) = 0.35, MSE = 282.15, p = .790, η
 2

 G = .01. 

Individual comparisons revealed significant differences 

among all conditions (ps < .001), except for the comparison 

between the .25-.25 condition and the .75-.25 condition (p 

= .35). As the causal power of the context can be obtained 

from the probability of the effect being present given the 

absence of the target cause (see Table 1), participants in the 

intervention group made more accurate estimations than 

those in the observation group. 

Although the results of Experiment 1 are consistent with 

the hypothesis that intervention leads to more accurate 

estimation of causal strength, there is still an alternative 

interpretation to consider: the lower estimation of causal 

strength of the context might be due to the possibility that 

the intervention causes participants to undervalue alternative 

causes besides those in which they intervened. Indeed, 

Kushnir, Wellman, and Gelman (2009) reported the self-

agency bias in which people weigh their own action as more 

effective than the action of others. There remains a 

possibility that participants in the intervention group 

exhibited a self-agency bias and undervalued the causal 

power of the context. Experiment 2 was conducted to assess 

this possibility. 

Experiment 2 

Experiment 1 demonstrated that participants made similar 

evaluations of the target cause regardless of whether they 

intervened or observed, but made different estimates of the 

causal power of the context. The results were interpreted as 

an indication that interventions lead to more accurate 

inferences for context. However, there is an alternative 

interpretation that intervention results in the decreased 

evaluations of the other causes due to a self-agency bias. 

Experiment 2 was designed to investigate these two 

interpretations. The experimental procedure was similar to 

that of Experiment 1, but another cause was introduced in 

addition to the target cause and context. Adding another 

cause enabled us to differentiate whether interventions 

facilitate the estimation of causal strength or decrease 

estimations of other causes. If people accurately estimate for 

causal strength with interventions, the deviations from 

normative values in the intervention group should be 

smaller than those in the observation group. If interventions 

simply make people undervalue other causes, participants in 

the intervention group should make light of the causal 

strength of another cause and context. 

Method 

Participants and design Eighteen undergraduates from 

Kwansei Gakuin University participated in the experiment 

and received course credit. None of them took part in 

Experiment 1. As in Experiment 1, they were randomly 

assigned to either the observation or intervention group. 

Procedure The procedure corresponded to the one in 

Experiment 1, except that another cause was introduced in 

addition to the target cause and context. In the instructions, 
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Figure 1. Mean causal ratings of the intervention and observation group in each contingency condition of Experiment 1, for 

target cause (left panel) and context (right panel). The error bars represent standard errors of the mean. 
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the cover story was explained and participants were told to 

infer the influence of the new missile (i.e., target cause) on 

the tank’s explosion. Participants were informed that the 

tank’s explosion could also be caused by the mine (i.e., 

context) or by another missile also targeted at the tank (i.e., 

another cause). 

In the learning phase, participants received information 

about the target cause, another cause, and the context on 40 

trials. Whereas the context was always present (i.e., 

P(context) = 1), another cause was present in the half of the 

trials (i.e, P(another cause) = .5). The probability that the 

target cause occurred in the trial depended on the choices of 

the intervention group. Participants in the intervention group 

could choose the state of the target cause with knowledge of 

whether another cause was present or not; in contrast, 

participants in the observation group were shown the states 

of the target cause and another cause. Each participant 

completed four contingency conditions. The different 

conditions were .75-.75-.75, .25-.75-.25, .75-.25-.25, 

and .75-.75-.25 (Table 2). The first term refers to the 

probability of the tank blowing up on a trial with a launched 

missile (i.e., P(effect|target cause, ¬another cause, context)), 

and the second term to the probability of the tank’s 

destruction on a trial with another launched missile (i.e., 

P(effect|¬target cause, another cause, context)), and the 

third term to the probability of the tank’s explosion on a 

trial with no launched missile (i.e., P(effect|¬target cause, 

¬another cause, context)). Thus, each condition differed in 

the causal power of the target cause, another cause, and the 

context. 

In the test phase, participants were told to judge the causal 

strength of the target cause, another cause, and the context 

in the same way as in Experiment 1. After a brief delay, 

participants completed the learning and test phases for the 

next contingency condition. The order of the contingency 

condition was counterbalanced across participants via a 

Graeco-Latin square design. 

Table 2: Causal Power of Target Cause, Another Cause, 

and Context in Each Condition in Experiment 2 

Causal power .75-.75-.75 .25-.75-.25 .75-.25-.25 .75-.75-.25

q (target cause) 0 0 .67 .67

q (another cause) 0 .67 0 .67

q (context) .75 .25 .25 .25

Contingency conditions

 
Note. The contingency conditions represent P(effect|target 

cause, ¬another cause, context), P(effect|¬target cause, 

another cause, context), and P(effect|¬target cause, ¬another 

cause, context) in order. 

 

Results and Discussion 

Figure 2 shows the mean ratings for target cause, another 

cause and the context in each condition. Separate analyses 

of variance for target cause, another cause, and the context 

with the type of learning (observation, intervention) as a 

between-participants factor, and the contingency condition 

(.75-.75-.75, .25-.75-.25, .75-.25-.25, .75-.75-.25) as a 

within-participants factor were conducted. The analysis for 

the target cause yielded only a significant main effect of the 

contingency condition, F(3, 48) = 13.26, MSE = 344.45, p 

< .001, η
 2

 G = .38 (all other Fs < 1). As in Experiment 1, both 

the observation and intervention groups demonstrated strong 

outcome density bias in the .75-.75-.75 condition where the 

target cause had no causal power. Although comparisons 

between participants’ judgments and causal powers suggest 

that participants in the intervention group made more 

accurate estimations than those in the observation group in 

the .25-.75-.25 condition, the difference was not statistically 

significant. 

The parallel analysis for another cause revealed a 

significant effect of the contingency condition, F(3, 48) = 

25.60, MSE = 240.38, p < .001, η
 2

 G = .51, but no significant 

effect of the type of learning, F(1, 16) = 1.17, MSE = 377.59, 

p = .296, η
 2

 G = .02. There was no significant interaction, F < 

1. If participants exhibited a self-agency bias in the 
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Figure 2. Mean ratings of the intervention and observation group in each contingency condition of Experiment 1, for target 

cause (left panel), another cause (center panel), and context (right panel). The error bars represent standard errors of the mean. 
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judgments of another cause, participants in the intervention 

group would make lower estimations than the observation 

group when the causal power of another cause was high. 

However, both groups made similar estimations when 

another cause had strong causal strength (i.e., .25-.75-.25 

and .75-.75-.25 conditions). Instead, participants in the 

intervention group seemed to make better estimates when 

another cause had weak causal power (i.e., .75-.25-.25 

condition). 

The parallel analysis for context revealed a significant 

effect of the contingency condition, F(3, 48) = 13.56, MSE 

= 315.13, p < .001, η
 2

 G = .34, but no effect of the type of 

learning, F(1, 16) = 1.27, MSE = 613.26, p = .276, η
 2

 G = .03. 

The interaction between the type of learning and the 

contingency condition was not significant, F < 1. These 

results suggest that participants could differentiate the 

strong context from the weak context. 

In order to investigate the difference between learning by 

observation and learning by intervention in greater detail, 

we calculated the root mean square error (RMSE) of the 

causal judgments (mean square deviation between judgment 

and causal power). As a result, the RMSEs of the 

intervention group (RMSE(target cause) = 33.4, RMSE(another cause) 

= 33.3, RMSE(context) = 20.7) were lower than those of the 

observation group (RMSE(target cause) = 35.4, RMSE(another cause) 

= 36.7, RMSE(context) = 26.4) in all types of the causal 

judgments. These results support the hypothesis that 

intervention leads to more accurate estimation of causal 

strength. 

General Discussion 

The present study demonstrates that learning by intervention 

leads to more accurate judgments of causal strength than 

learning by observation. Although these results are 

consistent with the previous findings in causal structure 

learning tasks, the improvement with intervention is limited 

in two ways. First, intervention does not facilitate all 

judgments, but improves judgments when causal strength is 

weak. In order to accurately assess the weak causal power, 

people have to pay attention to information about negative 

relationships (i.e., cell b and c information in a 2 × 2 

contingency table). Maldonado, Jimenez, Herrera, Perales, 

and Catena (2006) reported that people tend to ignore such 

information in incidental situations. Since the intervention 

group could select the type of information they received, 

they might have been more likely to consider negative 

evidence into account than the observation group. That is, 

the benefit of the intervention might result from increased 

attention to information about negative relationships. This 

possibility can be assessed by asking participants to estimate 

the number of trials of each type that have been presented in 

learning phase. Second, participants overestimated the 

causal strength even though the target cause was irrelevant 

to the occurrence of the effect (i.e., outcome density bias). 

Since the effect is often present, there is little chance to 

disconfirm the positive relationship between action and 

outcome. Future research will reveal how intervention leads 

to judgments that are more accurate and distorts judgments 

of non-contingent relationships. 
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