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Abstract

Considerable effort has been put to understand how infants
may utilize statistical regularities of speech in early word
segmentation. Some studies suggest that infants are able to
discover word boundaries at the points of high
unpredictability across subsequent linguistic units such as
phonemes or syllables. Meanwhile, the possible role of the
statistical regularities in the temporal organization of the
speech at a pre-linguistic acoustic level has not been widely
addressed. The current work examines how the short-term
temporal predictability of the acoustic speech signal
correlates with linguistically motivated phone-, syllable-, and
word-level units. The results indicate that the points of low
predictability correlate mainly with the boundaries between
phone-like segments. This suggests that the same statistical
learning mechanisms hypothesized to operate at the word
level can also aid in temporal organization of the speech
stream into phone-like temporal segments before knowing the
phonemic or syllabic units of the language.
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Introduction

Segmentation of continuous speech into linguistically
relevant units is essential for successful language acquisition
(LA). Segmentation can take place at a number of levels, as
the speech can be linguistically characterized in terms of
units such as phones, syllables, and words, and with the
latter always consisting of the former.

In the early LA research, infants’ ability to segment words
from speech has received a large amount of attention as the
words are the main functional units of the language,
standing for entities, events, actions, and states of the
surrounding world. In the word segmentation studies, one of
the major findings is that the infants can use statistical
regularities in the speech input in order to discover
boundaries between words (Saffran, Aslin & Newport,
1996). Also, these statistical learning mechanisms do not
seem to be specific to words or even language faculty but
operate across many levels of representation and perceptual
domains (see, e.g., Romberg & Saffran, 2010, for a recent
review).

Importantly, a large body of the existing work on
statistical word learning assumes that the infants are capable
of representing speech input in terms of linguistically
relevant units such as phones or syllables. Given the
representational units, the infants are supposedly tracking
transitional probabilities (TPs) between these units across
time and use low-probability transitions as indications for

word boundaries while the high-probability regions form
representational units (Saffran et al., 1996). This strategy is
valid as long as the TPs within words are higher than the
TPs across word boundaries. However, the infant’s access to
linguistic units such as phones or syllables and their
statistics cannot be taken for granted. It is still unclear
whether early adaptation to phonetic units drives lexical
learning (c.f., NLM-e theory by Kuhl et al., 2008) or
whether early lexical learning actually precedes, or at least
parallels, the acquisition of sub-word representation of
spoken language (e.g., Werker & Curtin, 2005). The “sub-
word units —first” approach is challenged by the fact that the
bottom-up organization of speech signal into temporally and
categorically discrete units is far from trivial. Learning a
phonetic or syllabic representation of the spoken language
includes both the segmentation problem (division of the
signal in time) and the categorization problem (assigning
context-, talker-, and speaking style-dependent acoustic
observations into a correct number of linguistic categories).
Importantly, infants do not have access to any ground truth
in either of the two tasks while learning the native language,
suggesting that some speech-external factors such as
feedback from lexical level or social interaction are required
for successful learning.

Still, it seems that even the basic problem of segmenting
speech into sub-word units has been largely overlooked in
the existing LA research. For example, it is unclear how
well natural co-articulated speech can be segmented into
sub-word units before learning the phonetic or lexical units
of the language, and whether infants actually do such
segmentation. Possibly the most concrete reference to early
sub-word segmentation in the existing literature is the
Kuhl’s concept of basic cuts: a perceptual mechanism that
provides an initial low-level chunking of the speech stream
into primitive phone-like units and which then gradually
improves towards native language phone system through
language exposure (Kuhl, 2004, and references therein).
Segmentation into syllabic units is also central to many
theories of LA (e.g., Jusczyk, 1993) although explicit and
well-controlled studies on the segmentation process itself
are few.

In the speech engineering community, both phone- and
syllable-level segmentation have been widely studied. The
general finding is that the spectral changes (or “jumps”) in
speech are good candidates for phone boundaries as they
correlate with the changes in articulator positions (e.g.,
Almpanidis & Kotropulos, 2008; Esposito & Aversano,
2005; ten Bosch & Cranen, 2007; Scharenborg et al., 2007).
On the other hand, it is known that syllabic segmentation
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can be achieved by detecting minima from the smoothed
temporal envelope of speech signals (see Villing, Ward &
Timoney, 2006, for a performance overview). It is likely
that the auditory system achieves “basic cuts” based on an
innate perceptual mechanism that detects sufficiently large
spectral changes in the input and/or uses the temporal
envelope to parse speech into rhythmic units.

However, there is another open possibility that it is not
the magnitude of the spectral or envelope change as such
that drives the segmentation processes, but maybe the short-
term statistical regularities of the acoustic speech signal
enables segmentation of the input into perceptually relevant
units. As it is already known that the distributional learning
plays a role in the word segmentation (Saffran et al., 1996)
and in the categorization of native speech sounds (e.g.,
Maye, Werker & Gerken, 2002; Kuhl, 2004), it is of interest
whether similar learning mechanism could aid the
organization of the speech into syllabic or phonetic units in
time. If this would be the case, then only a single learning
mechanism operating on different levels of representation
would be needed to explain both early low-level sub-word
organization, word-level segmentation (Saffran et al., 1996),
and many other aspect of perceptual processing associated
with statistical learning (see Romberg & Saffran, 2010 and
references therein).

In order to investigate the sub-word segmentation from
statistical learning point of view, the current paper presents
results from simulations where the transition probability
analysis is carried out at the level of millisecond-scale
acoustic features. The hypothesis is that the points of low
TP in time have some correspondence to the boundaries
between linguistically motivated units, and therefore we
compare the model output to manual transcription of the
signals at the phone-, syllable-, and word-levels.

Data

TIMIT corpus (Garofolo et al., 1993) containing American
English continuous speech from multiple talkers and
dialects was chosen for the experiments due to its rich and
balanced phonetic content and due to the availability of
high-quality phone- and word-level transcriptions of the
utterances. Since TIMIT is recorded in a controlled noise-
free environment, the focus is purely on the analysis of
speech structure without any interfering effects from
background noise or, e.g., multiple overlapping talkers.

As the original TIMIT only contains phone- and word-
level transcriptions, syllable annotation was generated from
the phonetic transcription using the tsylb2-algorithm
(Fisher, 1996) that uses the phonological rules described in
Kahn (1976) for the transformation. Phonetic alphabet used
in tsylb2 was matched to the TIMIT in a similar fashion to
the study of Villing, Ward & Timoney (2006). The syllabic
transformation was carried out using the tsylb2 parameters
associated with “ordinary conversational speech”. The
phone level boundaries were used as they are described in
the original TIMIT format. This includes the boundaries

between plosive closures and bursts (e.g., [k] + [kcl]) since
they can be considered as articulatory distinct segments.

In the simulations, the standard TIMIT NIST training set
(462 talkers, 4620 utterances, both male and female talkers)
was used to learn the TPs between the acoustic events (see
Methods). Then the NIST core test set containing 192
previously unseen utterances from 24 talkers was used to
evaluate the segmentation performance. Overall duration of
the data was approx. 4 hours (177080 phone segments) for
training and 10 minutes (7333 phones) for testing.

Methods

The basic acoustic unit analyzed in the current work consists
of spectral features that are computed from fixed-size short-
term (millisecond scale) segments of speech. These features
are then quantized into Q possible signal stafes in an
unsupervised manner and TPs between the states are used as
a model for acoustic predictability of the speech (Figure 1).
Finally, points of low TP are extracted as candidate segment
boundaries. As the TP analysis is carried out in an abstract
state space, the model is agnostic to the exact magnitude of
the spectral changes but the changes are simply reflected in
the state changes across time.

Importantly, the obtained signal states do not correspond
to phonetic categories of the language as the bottom-up
clustering of spectral features into talker- and context-
independent phonemic units is not possible without
additional information such as lexical knowledge or
articulatory constraints (e.g., Feldman, Griffiths & Morgan,
2009; see Risdnen, 2012, for a review). The quantization
simply acts as a conversion from the continuous
multivariate input into a discrete categorical sequence
suitable for standard TP analysis. However, the clustering
used to create the quantization codebook will necessarily
introduce a rough “perceptual re-organization by language
exposure” as the cluster boundaries will reflect the
distributional characteristics of the speech spectra.

Note that the current work does not imply that infants
would analyze acoustic signal in terms of @ different
discrete units or categories (as it is unlikely that infant brain
would represent a discrete probability distribution for TPs
between discrete syllables; cf., Saffran et al., 1996). Instead,
the goal of the pre-processing and quantization is to simply
enable the analysis of statistical regularities in the signal
using the simplest possible mathematical form similarly to
the discussion on “tracking of TPs” in the context of
perceptual learning.

Learning

speech x(t) —){ MFCC H vQ H Learn TPs Statistical
model
-

-
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» Analyze Minima segment
speech x'(t) _){ MFcc H va H TPs detection boundaries

Figure 1: A schematic view of the TP-based segmentation
process. VQ stands for vector quantization.
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Pre-processing of speech

One of the challenges with the acoustic analysis is that the
relevant units are not known in advance. This means that the
raw speech signal has to be represented using non-linguistic
features that capture similar time-frequency information
than what the auditory system is capable of extracting. Here,
standard Mel-frequency cepstral coefficients (MFCCs) were
used as they compactly represent the essential spectral
content of speech with low-dimensional feature vectors and
approximate the spectral resolution of human hearing.

MFCCs are obtained by first computing the power
spectrum of the speech signal using fast Fourier transform
(FFT) in a sliding window of length 20 ms and a step size of
10 ms. For each window position, the obtained FFT-
spectrum is filtered through a Mel-scale filterbank with 26
triangular bandpass filters in order to approximate the
frequency resolution of the auditory system. Finally, the
logarithm of the Mel-spectrum is taken and discrete cosine
transform is applied to the log-Mel spectrum to obtain the
MFCC coefficients (Figure 2, second panel). The first 12
coefficients c;...c1; and the ¢y coefficient corresponding to
the signal energy were chosen for further processing as they
are sufficient for describing the spectral envelope of speech.
Mean and variance of each cepstral coefficient was z-score
normalized across each utterance before further processing.

In order to perform TP analysis on the spectrum, MFCCs
were quantized into a discrete state space by first clustering
10000 randomly chosen MFCC vectors of the training data
into a codebook of Q clusters with the standard k-means
algorithm. Then all MFCC vectors were assigned to the
nearest cluster centroid in terms of Euclidean distance and
replaced by the corresponding state index. As a result, the
speech signal of L frames becomes represented as a
sequence of discrete states X = {wy, wa, ..., w.}, wE [1, O],
t € [0, L], with one state occurring every 10 ms (Figure 2,
third panel; see also Réisdnen, 2011).

Transition probability analysis

During training, the TPs between subsequent states were
computed for a number of lags k= {1, 2, 3, ..., K}, where a
lag k transition means a state-pair {w.; w,} with any
undefined elements w,.;...w, in between. The probability
of the signal X as function of time was defined as

K
p(t=[k/21 %)= 3 pOv[wii) M

where | denotes downward rounding to an integer. The
pw|w.) were simply calculated from the transition
frequencies flw|w.;)/fiw.x) counted from the training data.
As defined in Eq. (1), the statistics of the signal were
modeled as a mixture of TPs at different temporal distances
across the current time frame of analysis, corresponding to
an approximation of a higher-order Markov chain but
making it learnable from finite data. This allowed the model
to capture the temporal dependencies that extend beyond the
neighboring states as the acoustic dependencies in speech
are known to extend up to approximately 250-ms in time

€ o0.0sF
= \
3 o "
g i
_0'057 L L L L L L
0 02 04 06 08 1 12 14 16 1.8
12 il 1 1
5 10 1 o 1 ] 1 I.II I. 1
] K - y
i L o . .
o 2 | - - L] 1
0 02 04 06 08 1 12 14 16 1.8

(]
o

state index

- N

o o
=

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.
time (s)

Figure 2: An example of the processing stages for an
utterance “His shoulder felt as if it were broken”. Top: The
original speech waveform. Second panel: MFCC spectrum
computed from the speech signal. Third panel:
Corresponding VQ-state indices. Bottom: Transition
probability (TP) curve. Red vertical lines show the minima,
a.k.a. the boundary hypotheses, extracted from the TPs.

and that the human auditory system also analyzes signal
content on the same time scale (Rdsénen & Laine, 2013).

During the segmentation stage, probabilities of the
transitions in a previously unseen signal X’ = {wy, wy, ...}
were simply evaluated according to Eq. (1), leading to a
probability curve as a function of time (Figure 2, bottom).
The final set of low probability points (LPPs) were
extracted from the probabilities by using a simple valley
detection procedure. A segment boundary was hypothesized
to each local minimum that was preceded by a TP-value
larger by at least § units, where J is a user set parameter.
The use of a fixed global threshold for minima detection
was also studied and it was found to lead to very similar
results than the local minima detection procedure. However,
the fixed threshold requires additional rules to deal with
multiple neighboring points that are all below the threshold
in order to avoid unnecessary over-segmentation.

Evaluation

The overall segmentation quality was evaluated in terms of
the overall agreement between the LPPs and the reference
annotation, quantified by the F-value in Eq. (2) that is
obtained as the harmonic mean of the precision in Eq. (3)
and recall in Eq. (4).

F =2*PRC *RCL/(PRC + RCL) )
PRC = Nhil/Nhypo (3)
RCL =Ny,i/Noot “4)

In the equations, Ny; is the number of correctly detected
segment boundaries, Ny, is the total number of boundary
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Figure 3: Results from the simulations. Top row: phone, syllable, and word segmentation results with the best parameter
combination of K = 10 and Q = 8 as a function of the detection threshold é. Y-axis shows the recall (left), precision (center),
and F-value (right). The thick blue solid lines, the red dashed lines, and the black dash-dotted lines correspond to the results
calculated with respect to the annotated phone, syllable, and word boundaries, respectively. Thin lines show the
corresponding baseline performances from the random boundary generation. Standard deviations (SDs) across multiple runs
are shown with horizontal bars. SDs of the random baselines are not shown for the sake of visual clarity but are of the same
scale as the SDs of the other results. Bottom row: Phone segmentation F-value as a function of the maximum number of lags
K in Eq. (1) with fixed Q = 8 (left), F-value as function of the quantization codebook size with fixed K = 10 (center), and F-
value as a function of the training data length (measured in phone tokens) for different codebook sizes (right).

hypotheses generated by the model, and N, is the total
number of reference boundaries in the annotation.

For a reference phone boundary to be considered as
correctly detected, the algorithm was required to produce a
hypothesized boundary within £20 ms of the reference
boundary as this roughly corresponds to the variability in
the phonetic annotation across multiple annotators (Kvale,
1993). Since the syllable- and word boundaries are a subset
of the phone boundaries in the annotation, the allowed
deviation for syllables and words was also set to +20 ms.

Chance-level performance was measured for all test
conditions by generating the same number of boundaries for
each utterance than what was produced by the actual
algorithm and randomizing the final locations of the
boundaries along the utterance duration.

Results

Figure 3 shows the results from the TIMIT core test set
segmentation. Top row shows the performance as a function
of the detection threshold 6 using quantization codebook
size of Q = 8 and a maximum TP analysis lag of K = 10
(100 ms). In the plots, the variability and the associated SDs
in the results are caused by the random initialization in the
generation of the quantization codebook.

The main observation is that the short-term acoustic
dependencies are mainly associated with phone-level
structure, TP minima detection leading to notably above
chance-level phone segmentation accuracy. In contrast, the
syllable- and word-level performances are much worse.
Recall for all three levels of representation is approximately
equal for all thresholds. On the other hand, precision for
phones is always superior to syllables, while precision for
syllables is always superior to words. This suggests that the
syllable boundaries are simply a subset of the detected
phone boundaries without any specific threshold level
(depth of minima) being more associated with syllabic
structure in comparison to the phones.

In overall, the best phone segmentation result is F = 0.73,
corresponding to approximately 70% of boundaries
correctly detected with a precision of 74%. This is a
surprisingly good performance level considering the lack of
specially tailored signal processing solutions typically used
to fine-tune the phone segmentation performance. As a
reference, the typical performances of dedicated phone
segmentation algorithms are in the range of 0.74-0.76 for
the F-value on the same TIMIT corpus (e.g., Almpanidis &
Kotropulos, 2008; Esposito & Aversano, 2005; Scharenborg
et al., 2007).
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Regarding the statistical significance, it is evident that the
mean phone segmentation performance is far above the
chance level for the majority of the threshold values. As for
the syllables, the performance is significantly above the
chance-level (p < 0.01) for thresholds d < 2.65. In the case
of word boundaries, the performance is above chance level
(p <0.01) for 6 <2.71.

As for the model parameters, there are four main factors
that can affect the results: the size of the codebook, MFCC
window size and step size, and the maximum lag K up to
which TPs are measured. The size of the MFCC window
was found be optimal around 12-30 ms with a step size of
10 ms. No qualitative changes in the relative performance of
different linguistic units were observed when these two
parameters were adjusted. This finding is expected as the
speech signal is quasi-stationary within the given time scale
and the FFT step in MFCC computation assumes signal
stationarity within the analysis window.

Bottom left panel in Figure 3 shows the phone
segmentation performance as a function of the maximum
temporal lag K up to which TPs were measured. The
performance seems to saturate after the maximum lag of K =
6, confirming that there is wuseful structure beyond
neighboring frames. As for the codebook sizes, the best
results are obtained with surprisingly small codebooks of
size O = 6 and 8 (Figure 3, bottom middle). However, the
performance is relatively good even for the largest
codebook sizes tested. The syllable- and word-level
performances (not shown) follow similar saturating trend as
a function of lags as the phone level but with notable lower
overall performance. As for the codebook size, the syllable-
or word-level performances do not change significantly
when the codebook size is adjusted (also not shown
separately). This is in contrast with the phone level where
larger codebooks tend to decrease the overall agreement
between the algorithm output and the manually annotated
reference.

Finally, the right panel at the bottom of Figure 3 shows
the F-value as a function of training data length for different
codebook sizes. The result shows that the finer the spectral
resolution of the model, the more there is improvement with
more learning. Interestingly, it seems that only one or two
utterances are sufficient for reasonable performance with
very small codebooks. This suggests that part of the phone
segmentation with small codebooks is achieved due to the
spectral change detection, realized as a transition from a
state to another. Since there are more transitions from a state
to itself than to other states with small codebooks (see also
Figure 2), it may be the case that the majority of the non-self
transitions have zero probability at an early stage, leading to
a segment boundary. Still, there is significant improvement
from longer training times even for QO = 8. For larger
codebooks, the effect of learning is more evident as the
simple state change detection in these cases would lead to
large amounts of over-segmentation. In general, these
results confirm that the segmentation is not only based on
change detection but properly learned TPs are required for

the best performance, although the size of the codebook
may impose an implicit tradeoff between change detection
and statistical segmentation.

Discussion and conclusions

The current work shows that there is clear temporal
statistical structure associated with speech that helps
segmentation of the input into phone-like units before any
linguistic knowledge is acquired. However, the statistical
approach does not exceed the traditional spectral change
detection in performance, especially when dedicated phone
segmentation algorithms are considered. Actually, the
spectral “jumps” and unpredictability of the spectrum can be
seen as the two sides of a same coin where one always has a
consequence to another. Therefore the current study does
not argue that the “basic cuts” in the auditory system would
be necessarily based on statistical predictability of the
signal. Instead, the current work simply shows that there is a
probabilistic interpretation to the low-level temporal
organization of the speech signal and a simple statistical
learning mechanism has the potential to adapt to this
structure in order to parse the signal into units that roughly
correspond to linguistically defined phones. Note that the
statistical learning here refers broadly to the use of recurring
similarities in the signal and not to the explicit analysis of
TPs between abstract discrete states. Instead, the TP
analysis should be seen as a methodological tool to probe
the existence or absence of such statistical structure.
Although it is questionable whether a learning-based
mechanism to segmentation is more plausible than a simple
hard-wired spectral change detector in terms of human
auditory processing, the current model is attractive due to its
similarity to the behavioral findings on TP-based word-level
segmentation (Saffran et al., 1996; see Romberg & Saffran,
2010, for a review) and also to the existing computational
models on statistical learning at the acoustic level (see
Résénen, 2012, for a review). For example, if the global TP
model in Eq. (1) is partitioned into multiple different models
with their own local TP statistics (as in Résénen, 2011), or
gains support from cross-situational visual cues (see
Résdnen, 2012), the TP analysis leads to the learning of
words instead of phones. Short-term statistical dependencies
of speech also explain the how and why the auditory system
combines signal input over time in order to form coherent
auditory percepts (Rdsdnen & Laine, 2013), while TP
analysis at the level of prosodic features reveals that points
of low predictability in these features correlate with
perception of stress in speech (Kakouros & Résénen,
accepted for publication). All this evidence suggests that the
same basic computational mechanisms operating on signal-
level regularities has explanatory power over both sub-word
and word level segmentation and on suprasegmental
perception of speech. The main difference is only the time-
scale of the statistical analysis, acoustic features that are
analyzed, and the potential access to additional constraints
such as cross-situational cues in other perceptual modalities.

2821



As for the syllable level, it seems that the syllabic
segmentation is not straightforward with the spectral
features. It seems as if the syllable boundaries are simply a
random subset of the phone boundaries in the current
simulations. No studied parameter combination (temporal or
spectral) was able to provide clear indication of increased
precision at the syllable level in comparison to the phone
level. However, this is partially expected as the syllabic
structure mainly provides a rhythmic frame to the
phonetic/phonemic content of speech and is primarily
conveyed by the energy envelope of the speech signal, not
by the spectral content studied in the current work.

Finally, a note regarding the overall quantitative
segmentation performance is in place. Due to the
uncertainties associated with the annotation process (see
Kvale, 1993), the reference annotation should not be taken
as the ultimate ground truth for a perfect division of the
speech signal into linguistically defined units. This is even
more emphasized in the syllabic reference that is based on a
conversion from the phonetic transcription to syllabic units
using a set of linguistic rules (Kahn, 1976), not direct
annotation of syllabic units based on subjective perception.

In the future work, it would be beneficial to investigate
combination of the current model with a statistical model of
categorical and lexical learning from real speech. As the
quantization of the acoustic input could be gradually
improved with distributional learning of the spectral
properties related to actual lexical contrasts, this could also
lead to improvement in the temporal segmentation. In this
way, the entire spectrotemporal parsing of the speech into
linguistically relevant units would gradually improve with
experience, as already suggested by Kuhl (2004). Also,
given a suitable speech corpus, it would be beneficial to
replicate the current study using speech from only one or
two talkers and infant directed speech to see how the
complexity of the data affects the results.
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