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Abstract

There is debate in the numerical cognition literature
concerning symbolic and nonsymbolic number representation
systems as foundations for more complex mathematical skills.
The purpose of this study was to investigate the relation
between these number representation systems and calculation
fluency. The present study used 51 university students.
Participants completed symbolic and nonsymbolic magnitude
comparison and ordinality tasks on an iPad as well as a pen-
and-paper version of the addition and subtraction-
multiplication subtest of the Kit of Factor-Referenced
Cognitive Tests (French, Ekstron, & Price, 1963). Data
reductions were performed and a symbolic and a nonsymbolic
factor were constructed. A multiple regression analysis
revealed that the symbolic factor was a significant predictor
of calculation fluency, but the nonsymbolic factor was not.
Two separate repeated measures ANOVAs revealed 3-way
interactions between task, distance, and format for both
accuracy and response time. These results support the view
that the two systems develop separately.

Introduction

Basic numeracy skills are essential for success across the
lifetime. The understanding and processing of numerical
quantity and relations between numbers have been
associated with a variety of positive life outcomes including
academic  achievement, occupational salary, and
homeownership (Bynner, & Parsons, 1997; Finnie & Meng,
2001). This paper addresses a current debate in numerical
cognition over which number representation system
contributes to mathematical ability: symbolic number
representation or nonsymbolic number representation.
Symbolic number representation refers to the presentation of
numbers as abstract symbols, such as Arabic digits (e.g., 1,
2, 3) or as words (e.g., “six”), Given that current theories of
numerical cognition suggest that complex mathematical
skills (such as multi-digit arithmetic) develop from
foundational skills in basic numeracy (Butterworth, 2005), it
is important to determine the relative importance of both the
symbolic and nonsymbolic representation systems with
regards to the development of basic numeracy skills. Some
researchers argue that the symbolic number representation
system is mapped onto the nonsymbolic representation
system (Dehaene, 1992; Mundy & Gilmore, 2009; Verguts
& Fias, 2004) whereas other researchers argue these two
systems develop separately (Bulthé, De Smedt, & Op de
Beeck, 2014; Holloway & Ansari 2009; Lyons, Ansari, &
Beilock, 2012). The present study investigated the symbolic

and nonsymbolic controversy in numerical cognition using
magnitude comparison and ordinality tasks.

On the mapping view, symbolic numbers are mapped
onto an existing nonsymbolic number representation system
as the acquisition of symbols occurs. Mundy and Gilmore
(2009) assessed the predictive relation between symbolic
comparison, nonsymbolic comparison, and the accuracy of
the mapping between these two systems to predict
performance on a test of school mathematics. The
researchers found that performance on all three tasks
predicted mathematical performance. They argue that these
results indicate that the strength of the mapping between the
representation systems as the best predictor of mathematical
ability. In a neural simulation study, Verguts and Fias

(2004) demonstrated how artificial neurons in an
unsupervised learning model could map symbolic
representation  onto  existing nonsymbolic number

representation systems through repeated pairing of stimuli.
Additionally, Halberda, Mazzocco, and Feigenson (2008)
found that children’s nonsymbolic number approximation
skills at age 14 were related to their earlier calculation skills.
These behavioural and neural simulation data suggest the
nonsymbolic system is the basis for the development of the
symbolic system and complex calculation skill.

In contrast to this view, other research suggests that these
two number representation systems develop separately from
each other, with the symbolic system not arising through the
innate nonsymbolic system (Bulthé et al., 2014; Holloway
& Ansari 2009). Holloway and Ansari (2009) examined
whether the ability of children aged 6-8 to compare
symbolic and nonsymbolic magnitudes was related to
individual differences in standardized math scores. They
found that children’s ability to discriminate relative
magnitude in symbolic trials was associated with their
ability to perform simple arithmetic. This association
however, was not seen in nonsymbolic trials, providing
evidence for distinction between the two number
representation systems. Similar results have also been found
in adult participants. Lyons et al. (2012) compared
performance on symbolic, nonsymbolic, and mixed
comparison tasks in university students and found that it
was substantially more difficult to compare a mix of
symbolic (digits) and nonsymbolic (dots) quantities than it
was to compare two nonsymbolic quantities. Their results
suggest that symbolic numerals do not provide direct access
to the numerosities the numerals represent. In other words,
seeing the number 5 may not bring about a conception of 5
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objects, suggesting an indirect cognitive link between the
two systems in adulthood. Recent neuroimaging data also
supports a two systems view. Bulthé et al. (2014) conducted
a multi-voxel pattern analysis fMRI study with the aim of
identifying neural correlates that underlie symbolic and
nonsymbolic magnitude processing. They found no
significant neural patterns for nonsymbolic to symbolic
magnitudes, which they took to suggest a divergence
between the neural representations of symbolic and
nonsymbolic magnitudes.

Both of these views provide distinct predictions and
explanations concerning the relation between performance
on nonsymbolic tasks, symbolic tasks, and arithmetic tests.
The mapping view proposes that symbolic representation is
built on nonsymbolic representation, which both underlie
more complex arithmetic. As such, during complex
arithmetic tasks, both representation systems would be
involved. Therefore, the mapping view suggests that
performance on both symbolic and nonsymbolic tasks will
predict mathematical ability — and indeed there is evidence
to support this view (Mundy & Gilmore, 2009).
Additionally, the mapping view suggests that symbolic
representation mediates the relation between nonsymbolic
representation and mathematic ability, as complex
mathematics is built on symbolic representation, which is in
turn built on nonsymbolic representation (Verguts & Fias
2004). Conversely the two separate systems view would
suggest that only symbolic representation predicts
mathematic ability as symbolic and nonsymbolic number
representation systems involve two separate cognitive
mechanisms. This relation is demonstrated with children by
Holloway and Ansari (2009). These researchers argue that

although each system is a foundational numerical
mechanism, only symbolic representation underlies
arithmetic.

The two number representation views provide contrasting
interpretations of the distance effect. The distance effect is
the finding that participants will have slower response times
(RTs) during a comparison task when the numerical
distance between stimuli is small (e.g., 4-5) compared to
when numerical distance is large (e.g., 3-9). The distance
effect is an index of the strength of the relation between
external representations (symbolic or nonsymbolic) and
mental representations of number, with a smaller distance
effect reflecting a stronger relation (Dehaene, Dupoux, &
Mehler, 1990; Moyer & Landauer, 1967). The distance
effect results from fuzzy mapping between external and
internal representations of number (Butterworth & Reigosa,
2008; Holloway & Ansari, 2009). Otherwise stated, integers
that are close together will share more features in their
mental representations than integers further apart in
magnitude. Therefore, comparison becomes more difficult
as numerical distance between stimuli decreases. As such,
individuals with larger distance effects would have less
distinct mental representations of number. It is expected that
the size of the distance effect observed among participants
will be predictive of their calculation fluency, such that

individuals with a smaller distance effect will show greater
calculation fluency and individuals with larger distance
effects will show poorer calculation fluency.

A reverse distance effect has been observed in symbolic
ordinality tasks, where participants are asked to make
judgements about whether a set of digits are in order. As the
numerical distance between numbers increases, participants
are generally less accurate and slower than when the
numerical distance between stimuli is small (e.g., 1, 2, 3).
Lyons and Beilock (2009) argue that this observed reverse
distance effect may arise due to increased familiarity with
ascending numbers with a small numerical distance, as these
sequences occur most commonly and because numerical
symbols are strongly ordinal (also see Turconi, Campbell, &
Seron. 2006). Given the weak association between the two
number representation systems observed by Lyons et al.
(2012) during comparison tasks, the two separate systems
view suggests that the reverse distance effect observed in
symbolic ordinality tasks will be reduced or appear as a
standard distance effect in nonsymbolic ordinality tasks — as
nonsymbolic stimuli are not frequently presented in ordinal
sequences and because symbolic stimuli in comparison tasks
do not seem to bring about a quick and accurate
representation of their nonsymbolic equivalents (Lyons et
al., 2012).

The mapping view might predict that the distance effects
for ordinality may be similar for symbolic and nonsymbolic
stimuli and suggest that RTs for nonsymbolic trials would
be slower than in symbolic trials, similar to the trend
observed in comparison tasks (Mundy & Gilmore 2009,
Verguts & Fias, 2004). In this way, the mapping view
predicts an additive relation between symbolic and
nonsymbolic stimuli. According to the mapping view, in the
ordinality task, nonsymbolic stimuli may link to symbolic
representations, which in turn link to numerosity.

Lyons and Beilock (2009) suggest two interrelated
aspects of numerical representations: a sense of quantity and
of relative order. Many studies have examined the relation
between quantity and numerical representation through
comparison tasks (e.g., Holloway & Ansari, 2009;
Lonnemann, Linkersdorfer, Hasselhorn, Lindberg, 2011).
Tasks looking at relative order (ordinality tasks) require an
additional operation in relation to magnitude comparison
tasks. Rather than simply comparing one number to another
(e.g., 3 to 4) to determine which is numerically larger, an
individual must determine if the full sequence of three
numbers are in ascending or descending order (e.g., 3-4-5).
As such, it can be argued that an ordinality task requires
both a sense of quantity and of relative order and thus
provides a foundational measure of numeracy.

The present study examined effects of task (number
comparison vs. ordinality), distance (small vs. large), and
format (symbolic vs. nonsymbolic) on accuracy and
response time. Additionally, the symbolic and nonsymbolic
RTs for both the ordinality and magnitude comparison tasks
were used to analyze the predictive relation between the
number representation systems and calculation fluency. If
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symbolic and nonsymbolic number representation are
supported by separate systems, the results should show that
performance on symbolic tasks, but not nonsymbolic tasks,
predicts mathematical ability. Moreover, a task x format x
distance interaction, wherein a reverse distance effect is
observed for the nonsymbolic format in the ordinality task
would provide further support for the separate systems view.

Method

Participants

The participants for the study consisted of 51 undergraduate
students (M = 19.8 + 1.0 years, Range = 18-23 years), from
King’s University College and Western University (27
male, 24 female). All participants completed their
elementary and secondary education in Canada.
Participation for this study was on a voluntary basis.

Materials

Magnitude Comparison Task. Two single digit numbers
(ranging from 1 to 9) were presented on an iPad screen, and
participants were asked to choose the numerically larger
number as fast as they could without making any errors.
Problems appeared in two different formats: symbolic
(Arabic digits) and nonsymbolic (dots). On nonsymbolic
tasks, surface area of the dots was congruent, (larger number
with a larger surface area than the smaller number), non-
congruent (larger number with a smaller surface area than
the smaller number), or matched (both numbers take up the
same surface area), each for a third of the trials. Stimuli
remained on the screen for 7800ms or until the participant
made a choice, and the time between trials was 1000ms.
Participants performed two blocks of 54 trials (one
symbolic, one nonsymbolic) and the presentation order of
these blocks was counterbalanced based on participant
number. The order of the problems presented in each block
was randomized. As in Holloway and Ansari (2009), small
distances in this task were those in which displayed
numerosities differed by one (e.g., 2 and 3) and large
distances were those in which displayed numerosities
differed by five (e.g., 2 and 7).

Ordinality Task The ordinality task employed in this
experiment was a modified version of the task used by
Lyons and Beilock (2009). In this task, participants were
presented with three boxes, each containing a distinct set of
either digits or dots, for 1000ms. After 1000ms, the stimuli
disappeared, and the participant was asked to determine if
the presented stimuli were in order (ascending or
descending). For example, stimuli sets of “1, 2, 3, 6, 5, 4”
and “3, 5, 7” were all considered as “in order”, whereas a
stimuli set of “3, 7, 5” was considered to be “not in order”.
From the time of stimuli presentation, participants were
given up to 7800ms (including the 1000ms the stimuli
remained on the screen) to make their response, and the
inter-trial interval was 1000ms. Participants performed two

blocks of trials (one symbolic, one nonsymbolic), with each
set of trials performed twice for a total of 214 trials. The
presentation of the first block was counterbalanced based on
participant number. The order of the problems placed in
each block was randomized. As in Lyons (2013), small
distances in this task were those in which displayed
numerosities differed by one (e.g., 1, 2, 3) and large
distances were those in which numerosities differed by 3
(e.g.,3,6,9).

Calculation Fluency Participants completed the addition
and subtraction-multiplication subtests of the Kit of Factor-
Referenced Cognitive Tests (French, Ekstrom & Price,
1963). Each subtest of this paper-and-pencil task consisted
of two-pages of multi-digit arithmetic problems (two pages
of three digit addition problems, and two pages containing
both two-digit subtraction problems and two-digit
multiplication problems). Participants were instructed to
solve the problems as quickly and accurately as possible and
were given two minutes per page. Calculation fluency was
measured as the total number of correct solutions on both
tests, and reflects an individual’s ability to quickly and
accurately execute simple arithmetic procedures on multi-
digit problems.

Procedure

Participants were seated in a quiet room in front of an iPad.
Once comfortable, participants completed the magnitude
comparison and ordinality tasks on an iPad. Following the
iPad tasks, the iPad was removed and participants
completed the Kit of Factor-Referenced Cognitive Test.
These tasks were completed in one session lasting
approximately one hour.

Results

Data Reduction

Two Principal Components Analyses (PCA) were used to
examine tasks indexing symbolic RTs and tasks that index
nonsymbolic RTs. PCA was used for the present data
reduction because this data reduction is largely exploratory
in nature. Four criteria were employed to guide the decision
making process for the analyses: (1) percent of variance
explained (should exceed 60%), (2) factor loadings (should
exceed .40), (3) visual inspection of scree plots, and (4)
eigenvalues exceeding 1, in accordance with de Winter,
Dodou, and Wieringa’s (2009) research on factor analyses
with small sample sizes. Tasks indexing symbolic RT (i.e.,
symbolic magnitude comparison RT and symbolic
ordinality ascending trials RT) were entered into a PCA and
yielded a one-factor solution that accounted for 79.6% of
the variance among the measures with the following
loadings: symbolic magnitude comparison RT (.89) and
symbolic ordinality ascending trials RT (.89), both of these
loadings exceed .40. Both a visual analysis of the scree plot
and the initial eigenvalue for component one (1.59)
supported the extraction of a single factor. Factor scores
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were used as the symbolic RT measure in the subsequent
multiple regression analysis.

Measures indexing nonsymbolic RT (i.e., nonsymbolic
magnitude comparison RT and nonsymbolic ordinality
ascending trials RT) were entered into a PCA. A one-factor
solution emerged that accounted for 71.4% of the variance
among the measures with the following loadings:
nonsymbolic magnitude comparison RT (.85) and
nonsymbolic ordinality ascending trials RT (.85), both of
these values exceed .40. A visual analysis of the scree plot
and the initial eigenvalue for component one (1.43). Factor
scores were used as the nonsymbolic RT measure in the
subsequent multiple regression analysis.

Distinguishing Symbolic and Nonsymbolic Systems

Pearson’s bivariate correlation was used to analyze the
relation between calculation fluency, the symbolic factor,
and the nonsymbolic factor. There was a significant
correlation between the symbolic factor and calculation
fluency, r = -.39, p = .005. This correlation indicates that
faster RTs were associated with higher calculation fluency.
There was no observed correlation between the nonsymbolic
factor and calculation fluency, » = -.01, ns. Finally, there
was a significant correlation between the symbolic factor
and the nonsymbolic factor, » = .54, p < .001. As RTs for
the symbolic factor increased, so did RTs for the
nonsymbolic factor. Pearson’s Correlations for calculation
fluency, symbolic and nonsymbolic comparison (RT and
accuracy), and symbolic and nonsymbolic ordinality (RT
and accuracy) can be found in Table 1.

Data were analyzed using multiple regression to
determine whether performance on symbolic and
nonsymbolic magnitude comparison and ordinality tasks
predicted calculation fluency. The results of the multiple
regression indicated the two predictors explained 21% of the
variance in calculation fluency, R° = 21, F(2,49) = 6.35, p =
.004. It was found that the symbolic factor was a significant
predictor of calculation fluency, f =-.54, t = -3.56 p = .001.
The nonsymbolic factor was not found to be a significant
predictor of calculation fluency, f = .28, 1= 1.87,
ns. The symbolic factor accounted for 21% of the unique
variance in calculation fluency whereas the nonsymbolic
factor accounted for 7% of the unique variance in
calculation fluency.

These results support the hypothesis that the symbolic and
nonsymbolic systems are distinct and that only the symbolic
system predicts calculation fluency.

Accuracy

To assess replication of the results found by Lyons and
Beilock (2009), a 2(task: magnitude comparison, ordinality)
x 2(distance: small, large) x 2(format: symbolic,
nonsymbolic) repeated measures factorial ANOVA was
performed with percent error as the dependent variable.
There was a main effect of task; participants made fewer
errors while performing the magnitude comparison task (M
= 2.4%, SD = .32%) than while performing the ordinality
task (M = 16.1%, SD = 1.84%), F(1,50) = 55.85, p < .001,
N = .53, power = 1.0. There was a main effect of format;
participants made fewer errors when presented with
symbolic stimuli (M = 6.0%, SD = .99%) than when
presented with nonsymbolic stimuli (M = 12.4%, SD =
1.84%), F(1,50) = 38.29, p < .001, n*> = .43, power = 1.0.
There was no significant main effect of distance, F(1,50) =
1.92, ns, n2 = .04, power = .27. This result, however, is due
to a qualitative three-way interaction described below.

There was an interaction between task and format,
F(1,50) = 40.04, p < .001, n* = .45, power = 1.0. The effect
of format was greater for the ordinality task than for
comparison. There was an interaction between format and
distance, F(1,50) = 18.96, p < .001, n2 = .28, power = .99.
Interpretation of this interaction is aided by considering the
significant task x format x distance interaction shown in
Figure 1, F(1,50) = 15.99, p < .001, n* = .24, power = .98.
For magnitude comparison there was a standard distance
effect for both formats, whereas for ordinality there was a
standard distance effect for nonsymbolic stimuli and a
reverse distance effect for symbolic stimuli. These results
provide a replication of Lyons and Beilock (2009).

Magnitude Comparison Ordinality
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Figure 1: Interaction between task, format, and distance
with accuracy as dependent variable. Confidence intervals
were constructed using the procedure from Jarmasz and
Hollands (2009).

Table 1: Correlations among student measures (N = 51)

1 2 3 4 5 6 ¥ 8
1. Calculation Fluency
2. Symbolic Compare RT -31*
3. Symbolic Ordinal RT -39%* L60%*
4. Symbolic Compare DE -17 .26 .24
5. Symbolic Ordinal DE 25 -.02 =41 -.04
6. Non-Symbolic Compare RT .04 A48%* .28* .01 -.06
7. Non-Symbolic Ordinal RT -.06 39%* S50k -.19 -.05 A3k
8. Non-Symbolic Compare DE .09 35% .14 -11 -.16 66%* .30%
9. Non-Symbolic Ordinal DE .08 .18 .10 .20 .07 .06 -.03 .18

*p <05, ¥*p < .01
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Response Time

To assess replication of the results found by Lyons and
Beilock (2009), a 2(task: magnitude comparison, ordinality)
x 2(distance: small, large) x 2(format: symbolic,
nonsymbolic) repeated measures factorial ANOVA was
performed with RT (ms) as the dependent variable. There
was a main effect of task, participants responded more
quickly during the magnitude comparison task (M = 893, SD
= 34) than during the ordinality task (M = 1357, SD = 38),
F(1,50) = 154.14, p < .001, * = .76, power = 1.0.

There was also a main effect of format, participants were
more quick to respond to symbolic stimulus (M = 875, SD =
27) than to nonsymbolic stimulus (M = 1375, SD = 45),
F(1,50) = 155.55, p < .001, n* = .76, power = 1.0. There
was a significant main effect of distance. When the
numerical distance was small, participants were slower to
respond (M = 1255, SD = 41) than when the numerical
distance was large (M = 995, SD = 29), F(1,50) = 72.68, p <
001, % =.59, power = 1.0.

There was an interaction between task and distance,
F(1,50) = 97.07, p < .001, n* = .66, power = 1.0. The
distance effect was greater for magnitude comparison than
for ordinality. An interaction was observed between format
and distance, F(1,50) = 110.78, p <.001, n2 =.69, power =
1.0. Interpretation of this interaction is aided by considering
the significant task x format x distance interaction shown in
Figure 2, F(1,50) = 16.82, p < .001, n* = . 25, power = .98.
For magnitude comparison there was a standard distance
effect for both formats, whereas for ordinality there was a
standard distance effect for nonsymbolic stimuli and a
reverse distance effect for symbolic stimuli. These results
provide a replication of Lyons and Beilock (2009).

Magnitude Comparison Ordinality
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Figure 2: Interaction between task, format, and distance
with RT as dependent variable. Confidence intervals were
constructed using the procedure from Jarmasz and Hollands
(2009).

Discussion

There is controversy in the numerical cognition literature
concerning how the symbolic and nonsymbolic number
representation systems underlie the development of more
complex numerical skills, like multi-digit arithmetic (Bulthé
et al.,, 2014; Dehaene, 1992; Holloway & Ansari 2009;
Mundy & Gilmore, 2009). The results of the present study

suggest that, in adulthood, the symbolic number
representation system plays a more central role in predicting
calculation fluency. After combining RT scores for
symbolic magnitude comparison and ordinality tasks into a
symbolic factor and combining RT scores for nonsymbolic
magnitude comparison and ordinality tasks into a
nonsymbolic factor, a multiple regression analysis revealed
that the symbolic factor was predictive of calculation
fluency, but the nonsymbolic factor was not. These results
do not support a relation between the nonsymbolic number
representation system and complex mathematics skill but do
support a relation between the symbolic number
representation system and calculation fluency. These results
are similar to those found by Lyons et al. (2012), who
suggest that symbolic representation begins to overshadow
nonsymbolic representation as development progresses.
These results provide evidence for the existence of two
separately developing number representation systems.

As the two separate systems view would suggest, the
distance effects were different between tasks and across
formats. We observed a much stronger distance effect for
nonsymbolic stimuli in the comparison task. For the
ordinality task, we observed a reverse distance effect for
symbolic stimuli, as found in Lyons and Beilock (2009). In
their study, the reverse distance effect was accounted for by
increased familiarity with sequences in small numerical
distances commonly appearing in order (e.g., 1, 2, 3). In our
study, nonsymbolic trials yielded a standard distance effect.
This result supports the familiarity hypothesis proposed by
Lyons and Beilock (2009). Additionally, the correlation
between symbolic ordinality RT and calculation fluency
(see Table 1) is consistent with another hypothesis proposed
by Lyons and Beilock (2011), wherein the development of
ordinal understanding can be seen as a stepping stone to the
understanding of symbolic numerical framework. In a
symbolic numerical framework, each number carries a
distinct and exact numerical value, contrasting the
approximate nature of the nonsymbolic number system, and
allows for the realization of numerical quantities that would
be nearly impossible to recognize and/or comprehend with
the nonsymbolic number system.

This correlation with calculation fluency was not seen in
nonsymbolic ordinality trials, which is consistent with the
view that the two systems determine ordinality in different
ways, one through a set of iterative comparisons
(nonsymbolic) and one through consideration of the entire
ordered sequence (symbolic; Lyons, 2013). This difference
is in line with the view that the two systems develop
separately, as it is expected that the two systems would use
the same processes when determining order if they
developed together.

The positive relation between symbolic, but not
nonsymbolic, task performance and calculation fluency is
consistent with the two separate systems view. This view is
further supported by the replication of a reverse distance
effect in symbolic stimuli, in contrast to a standard distance
effect in nonsymbolic stimuli, in the ordinality task. This
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finding provides support for the claim that the ordinality
task is performed in different ways depending on the system
engaged (Lyons, 2013). Only the symbolic, and not the
nonsymbolic system, appears capable of considering an
entire ordered sequence. This process may be key to
understanding numerosity in a symbolic framework (Lyons,
2011). As such, the findings of this paper suggest that the
development of such a symbolic framework does not result
from a mapping of symbolic information onto the
nonsymbolic system, as each system uses different
mechanisms for determining order. Given that the need for a
symbolic number system stems from the requirement to
accurately recognize and comprehend numbers in a manner
that the nonsymbolic system lacks the affordances to do
(due to its approximate nature), it makes sense that the
development of a new symbolic system would not map
information onto a system that cannot accurately
comprehend it. Future studies should investigate in
particular the emergence of symbolic ordinality capabilities
in children and the relation of these capabilities to symbolic,
nonsymbolic, and general mathematical abilities.
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