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Abstract

Computer simulations have been used to study various
aspects about the emergence of communication. But there
have been only a few works on the underlying representation
processes occurring during the interpretation by an agent of a
representation produced by another agent. Here we present a
study on representation processes in the emergence of
communication occurring in a frequently used cognitive
architecture in such experiments, artificial neural networks.
We investigate the neural network’s activations during the
emergence of communication in search for representational
and referential processes. Results show that it is possible to
evaluate such processes along the evolution of
communication and analyze interpretation accordingly.
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Introduction

Computer experiments involving the simulation of
interactions between agents have been used to study various
aspects of communication and language (for a review of
works, see Nolfi and Mirolli, 2010, Christiansen and Kirby,
2003, Wagner et al. 2003). In these experiments,
communication and linguistic processes are simulated in a
social context, involving multiple agents. The process in
focus is not pre-defined, but it rather emerges during and by
means of agents’ interactions. As the main form of
interaction between agents, in most of these synthetic
experiments, communication has, particularly, been a
significant research subject. As communication involves the
production and interpretation of representations, to
understand the underlying representation processes is an
important issue. Even so, in computational studies on the
emergence of communication, little or nothing is discussed
on the representational processes taking place, therefore it
remains still a rather open research trend.

To study representation processes, it is necessary to
examine the interpretation process occurring in the artificial
agent and thus to inspect its cognitive dynamics. A
frequently used cognitive architecture to control agents
during the emergence of communication is neural networks.
Here we propose to investigate the activation patterns of
neural networks to evaluate representational processes
during the emergence of communication. As a theoretical
framework to define representation, its model, constituents

and varieties, we apply theoretical principles from
C.S.Peirce’s pragmatic theory of signs.

We reproduce the experiment on the emergence of
communication as proposed by Mirolli and Parisi (2008), in
which the agents are controlled by a feed-forward neural
network, receiving visual and auditory inputs and producing
motor actions and auditory outputs. The main objective is to
compare the middle layer’s activations from visual input
and from auditory input and verify if an auditory input can
act as a representation of an object perceived by a visual
input, and determine the type of representation occurring.

In the next section, we review related work on simulation
of the emergence of communication using neural networks.
Next, we briefly describe the theoretical principles from
Peirce theory of signs. We then describe our computational
experiment to study representation and interpretation
processes in communication events. Finally, we outline our
results and conclusions and point out perspectives on the
study of representations in the emergence of sign processes.

Related Work

There have been several works on computational
experiments related to the emergence of communication in a
community of artificial agents (Nolfi and Mirolli, 2010,
Christiansen and Kirby, 2003, Wagner et al. 2003).
However, discussions on the underlying representation
processes, particularly in those using neural networks, find
little space in such literature. We will review a few
representative works that deal with the emergence of
communication among agents controlled by neural networks
that are relevant in the context of this work.

Robots were evolved by de Greeff and Nolfi (2010) to
execute a navigation task in which two robots had to
exchange places in two target areas. The robots could use
wireless sensors for an ‘explicit signal’ communication or
they could use their spatial position as an ‘implicit signal’.
At the end of an evolution process of neural networks that
control the robots, de Greeff and Nolfi (2010) described that
the robots were able to use 2 or 3 explicit signals to execute
the proposed task, but also used one implicit signal to
achieve that. They stated that explicit signals codify certain
conditions in which the emitter robot finds itself and that the
implicit signal is a visual perception of the position of the
other robot, and that each signal produces a different
reaction. Signals are said to be deictic, dependent of spatial-
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temporal context, but there was no further discussion on
what and how robots representationally interpret such
signals.

Mirolli and Parisi (2008) studied the problem of how
communication can emerge without cooperation given that
the production and response to signals are adaptively
neutral, taken in isolation. In their simulation, two creatures
stand in a corridor, with one standing in one end, in front of
a mushroom (edible or poisonous), and the other one
standing in the other end. The two creatures are controlled
by a feed forward neural network and can perceive the
mushroom and listen to signals, being able to move forward
or stand still and to produce signals. Their results show that
a reliable communication system does not stabilize since
individuals are competing, thus the communication system
alternates between a reliable one and a deceiving one. Along
results discussions, the authors defined (internal)
representations as activation patterns in the hidden units of
the neural network and used them to evaluate categorization
patterns in the neural network. Yet nothing is discussed
about what the communicated signal would represent and
how it could represent something else.

We have previously simulated the emergence of
interpretation of different types of representations in
communicative interactions (Loula et al., 2010), and have
also studied further the cognitive conditions to the
emergence of such interpretation processes (Loula et al,
2011). However, these previously done experiments used
finite state machines as cognitive architectures and focused
on the emergence of interpretation with fixed production of
a single representation with only one referent. We have also
evaluated representation processes in the emergence of both
interpretation and production of multiple representations,
with multiple referents, with agents using feed-forward
neural networks as cognitive architecture (Loula et al.,
2013). Agents were evolved for a resource collecting task,
and the neural network architecture could contain a direct
connection between auditory inputs and motor actions or
auditory inputs could be associated with visual categories
establishing an associate memory used for representation
interpretation. The activation of the neural network was
studied to evaluate representation processes and to
categorize different types of representations. The neural
network, however, used a localist activation with only one
neuron activating at each time, with auditory inputs and
visual inputs connected to different neurons that could be
connected, in turn, forming an explicit associative memory.

Up to now, we have not found other works that have
studied representations in the emergence of communication.
Although not related to the emergence of communication,
Mirolli (2012) conducted an analysis of representations in a
recurrent neural network in a minimum cognition
experiment by Beer (2003). The experiment consisted of a
single agent with limited vision in a scenario where two
different types of object would fall from the top. The agent
task was to get close to one type of object and to move away
from the other one. Mirolli (2012) reproduced the

experiment investigating if, when and in what circumstances
the agent uses representations. He defined representations as
an internal state that can be correlated to an external feature,
with this correlation being functional to the agent. To search
for representations, he inspected the middle layer of the
neural network, but in the original experiment, he did not
identify representations. In an alternative experimental
configuration, the task was changed and the agent would
need some sort of internal memory to handle it. This time,
he was able to identify the use of representations.

Peirce’s theory of sign

In order to study representational processes through
computational experiments, it is important to clearly
describe theoretical principles supporting them. In order to
investigate representations in cognitive systems, it is
necessary to have an appropriate theoretical framework that
could explain the phenomena of interest, provide constraints
in building synthetic experiments, and provide means to
analyze the phenomena. There is a long history of debates
around the theme of representations in cognitive science but
no adequate theoretical framework has been consolidated in
the research field, thus it is necessary to describe the
framework in use.

In computational simulation works dealing with the
emergence of communication, there is always something
that is communicated from an agent to another one, and that
is given various names: signal, symbol, sound, word,
expression, or utterance. In most of these works, that what is
communicated also seems to have representation
capabilities. We have used the term representation, in the
first section, to emphasize this and also to apply a more
familiar word as wused by the artificial intelligence
community. Nevertheless, we will now use the expression
‘sign’, as a technical term in our theoretical background.

C.S.Peirce defined semiotics as the ‘formal science of
signs’. Peirce’s semiotics is considered a strongly consistent
theory and his theory and models for sign process have been
applied and had deep impact in various research fields:
philosophy, psychology, theoretical biology, and cognitive
sciences.

A sign is defined, following Peirce (1958), as something
that refers to something else, an object (which the sign
represents in some respect) and produces an effect
(interpretant) in the interpreter. For an artificial agent in the
context of communication, a sign can be interpreted as
being related to some object, its referent, and it produces a
motor action as an outcome, due to this sign-object relation.

Signs establish a relation with the object in a variety of
ways. And depending on this relation, a sign can become
either a symbol, an index or an icon, and this is the ‘most
fundamental division of signs’. Hence, signs and symbols
are not the same thing; a symbol is a special class of sign.
Icons are signs that stand for their objects by a similarity or
resemblance, no matter if they show any spatio-temporal
physical correlation with an existent object. In this case, a
sign refers to an object in virtue of a certain quality which is
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shared between them. Indexes are signs which refer to their
objects due to a direct physical connection between them.
Since, in this case, the sign should be determined by the
object (e.g. by means of a causal relationship) both must
exist as actual events. Spatio-temporal co-variation is the
most characteristic property of indexical processes. Symbols
are signs that are related to their object through a
determinative relation of law, rule or convention. A symbol
becomes a sign of some object merely or mainly by the fact
that it is used and understood as such by the interpreter, who
establishes this connection.

The experiment

In order to study representations processes, we start from
the experiment proposed by Mirolli and Parisi (2008). They
evolved a population of artificial creatures controlled by
feed forward neural networks, which are able to perceive
edible and poisonous mushroom and to communicate with
each other.

The scenario consists of a one-dimensional corridor with
12 positions where one mushroom and two creatures are
placed at a time. There are 420 different types of
mushrooms, with visual features codified in a 10 bit vector,
being half of those mushrooms edible and half poisonous.
Only when a creature is standing in a position right next to
the mushroom, it can perceive its visual features. To
simulate communication, the signal output from the creature
standing next to the mushroom is copied to the signal input
in the other creature.

During simulation, two creatures are placed in the
corridor, the first (speaker) in one end, next to the
mushroom, and the other (hearer) in the opposite end. In the
proposed task, the hearer creature should go forward and
collect the edible mushroom and to stand still if it is a
poisonous one, so every creature in a population of 100
creatures is evaluated as a hearer 420 times, one for each
type of mushroom, with a random speaker each time. Note
that, at the beginning, the hearer cannot perceive the type of
mushroom present in the environment, so to achieve success
it could first move next to the mushroom and then visually
perceive it, or it could use the auditory output from the
speaker to decide which action it should take. Creatures are
evaluated positively according to the number of edible
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Figure 1: The architecture of the neural network
controlling creatures.

mushrooms collected, and negatively according to the
number of poisonous mushroom collected and also by the
number of forward movements. The creatures are not
evaluated as speakers. After all creatures are evaluated, an
artificial evolution process occurs: 50 creatures are selected
proportionally to their task evaluation, and these selected
creatures become parents of the next generation of 100 new
creatures (with variation of parents’ weights with 0.1% of
chance). The simulation continues for 2000 generations.

Creatures are controlled by a three-layer neural network,
with visual input for the mushrooms’ visual features,
communicative signal input for communication, motor
output to determine if it moves forward or stands still, and a
communicative signal output (Figure 1). It is important to
notice that visual inputs and auditory inputs are connected
to the same middle layer’s neurons and only these neurons
produce motor and auditory outputs. In this topology,
consequently, the hearer’s behavior and the speaker’s
behavior of each creature are connected by the middle layer.
Actually, Mirolli and Parisi (2008) found out that the
speaker produces signal patterns that can be exploited by the
hearers because the auditory output layer is connected to the
same middle layer neurons that are used for visual input
categorization.

To follow the evolution of the population during the
experiment, mean population fitness is measured at every
generation and also communication quality, as proposed by
Mirolli and Parisi (2008). Communication quality measures
how distinct signals produced for edible mushrooms are
from signals for poisonous ones and how similar signals for
the same type of mushroom are. Mirolli and Parisi (2008)
also proposed a measure of ‘representation quality’ taking a
similar approach but evaluating activation patterns in the
middle layer due to input from signals, i.e., if signals for
different mushrooms produce distinct activation patterns

s Log OOO%%é)o °© o §&0 © 900%0@
@, o ° © ° @ o
o o o =] @
o8F o o o, o
(o0}
D op ° o,
0.6 © o
©o
o " oo
° Ak w Or O
o.4ar et *, T * W
O *
0.2 * o
o * * * o
© _* * x 5
of *Ew * S *
o QWK * .
;’f © O* *é <
-0.2 * . & *o ©
(e}
¥
? * * x o
_0.4f E e o* Oo
*w X (oI ©
o
—0.6} o [
o o
%o o @
© %0 %o 4 °w ° o
-0.8 © oo ©
@ oo 9 © ©o %0 2
(o]
(o]
» L 60 0O 088 @0 © @000 ,0 . )
—1 —0.8 —06 —0.4 —0.2 o 0.2 0.4 0.6 0.8 1

Figure 2: Activation pattern for the neural network middle
layer. Circles are activation points due to visual input,
asterisk are points for communicative input. Blue and cyan
are activations that lead the creature to move, either for an
edible mushroom (blue) or, wrongly, a poisonous one
(cyan). Red and magenta are activations that lead it to stand
still, either for a poisonous mushroom (red) or, wrongly, an
edible one (magenta). The vellow line is the motor outnut
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and if signals for the same mushroom produce similar
activation pattern.

We will not use this originally proposed measure of
‘representation quality’. Instead, we propose to evaluate
representation processes as a sign interpretation process, as
something that stands for something else and produces an
outcome, following Peirce’s definition of sign. In this
experiment, the sign is the signal produced by a creature, the
utterer, and communicated to the other creature, the
interpreter. During sign interpretation, the interpreter
creature can relate the sign as referring to a type of
mushroom (the object) and, due to this relation, take an
action of moving or standing still (the interpretant). In this
experiment, since the communicated sign has no similarity
to the object, so it cannot be an icon; it can’t be related to
the object by physical connection because the object cannot
be perceived by the creature to establish a spatial-temporal
relation. The sign can only relate to its object by using an
acquired association between them, therefore the sign can
only be a symbol.

If the creature uses an association that symbolically
relates sign and object, how can we verify this in the neural
network? Since the communicative inputs and visual inputs
are connected to the same middle layer neurons, then if a
communicative input due to a sign produces an activation
pattern similar to the activation pattern from the visual input
due to the mushroom-object, consequently producing
similar motor outcomes, then sign interpretation occurs,
relating sign and object. To investigate these activation
patterns, we register the activation values from
communicative input for each sign produced during the 420
evaluation trials, and we also register the activation values
for visual inputs from each of the 420 possible mushrooms.

The middle layer has two neurons, so its activation
corresponds to a bi-dimensional vector with each dimension
having values in [-1; +1]. Activation patterns in the middle
layer can be plotted in a bi-dimensional graph as illustrated
in figure 2. The activation from middle layer is forwarded to
the motor output neuron that can be either +1 and the
creature walks forward, or -1 and the creature stands still.
There is a the decision boundary between this two actions
corresponding to a line that can be calculated and plotted
along with activation values, as shown in figure 2.

Results

The experiment was simulated 15 times and the results that
are representative of the overall behavior observed are as
following. The obtained results on population fitness and
communication quality along generations, as shown in
figure 3, are similar to the ones obtained by Mirolli and
Parisi (2008). A reliable communication system does not
stabilize, creatures alternate between reliable and deceiving
utterers because of competition for selection. Interpreter
creatures exploit utterers biases due to selective pressure to
categorize mushrooms, and then utterer change signals to
exploit interpreters biases in a deceiving way. Creatures are
competing for selection and all of them are evaluated as
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Figure 3: Population mean fitness and population
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Figure 4: Sign-object proximity and sign activation
convergence.

interpreters. But a creature can negatively influence other
creatures’ evaluation if it (utterer) deceives other creatures
(interpreters), thus lowering competitors evaluation score
(for further details, see Mirolli and Parisi, 2008).

In order to evaluate representation processes underlying
communication, we measure the distance between middle
layer activation for communicated sign inputs and for visual
inputs from mushrooms. As can been seen in figure 2, it is
possible to distinguish four point clouds: one for blue and
cyan circles corresponding to activations from visual inputs
that lead to forward movement (VM cloud); one for blue
and cyan asterisks for communicated sign input with the
same motor outcome (CM cloud); one for red and magenta
circles corresponding to activations for visual inputs leading
to standing still (VS cloud); and one for red and magenta
asterisks for communicated sign inputs with the same motor
outcome (CS cloud). A possible evaluation of sign-object
reference relation is to estimate sign-object proximity as the
complement of the normalized mean value of the distances
between the center of VM and the center of CM and
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between the center of VS and the center of CS. That gives a
rough valuation of referential association between sign and
object, as shown in figure 4, the higher the value is, the
closer is the sign from the object.

Notice that we separate activation points according to the
interpreter perspective, according to its action, and not
according to the actual mushroom type. By identifying the
sign interpretant, i.e. the effect the sign produces in the
interpreter, its motor action, we are able to properly group
activations according to interpretation. A misinterpretation
according to external observer is still an interpretation, so
even if, for example, the interpreter moves for a poisonous
mushroom, for the interpreter it is a mushroom to move
forward to. Moreover, there is always an interpretation for
every sign, being it an interpretation that contributes
positively or negatively to fitness.

Sign input activation clouds can have varying distribution
of activation value points. Due to alternating quality of the
communication system, utterers may change the sign
produced for a given mushroom and interpreters tend not to
stabilize sign-referent associations with sign input
activations scattering. To better trail these changes in the
interpreter, we also calculated the sign activation
convergence as the complement of the normalized distance
from points in a communicative sign cloud to cloud center,
as shown in figure 4, the higher the value is, the closer the
points inside the cloud are to each other.

From sign-object proximity and sign activation
convergence, we can evaluate the interpretation and
representation processes underlying the communication
evolution in the proposed scenario. It is possible for
example to assess if sign-object proximity is due to a great
dispersion of activation points (as in the start of the
experiments with random neural nets) or because
communicative and visual clouds are compact and close to
each other. Before we proceed, it is important to explain that
the distance measures were normalized by the largest
possible distance, but actual point distances tend to be much
smaller than this. Even at simulation start, distances can be
small compared to the largest distance, so it is important to
observe changes in proximity and convergence values, and
not their absolute values.

Examining sign-object proximity and sign activation
convergence in figure 4, it can be noticed that sign-object
proximity starts with a value near 1,0 but at the same time
sign activation convergence has its lowest values. This is
due to the random neural nets at the beginning of the
simulation, with almost uniform distribution and cloud
centers near the center of the graph. After a few generations,
sign activation convergence increases with sign-object
proximity as activation clouds get better defined but cloud
centers are not so close to each other.

As interpreter sign clouds do not stabilize due to changing
use of signs by utterers, they tend to stay close to the action
decision line and far from the visual activation clouds, even
if fitness is high (Figure 5). Besides, sign activation point
for deceiving interpretation points also tends to be closer to
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Figure 5: Activations for the best creature in generation
1030 with high population fitness in the original

experiment.
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Figure 6: Activations for the best creature in generation
1275 with high population fitness in the modified
experiment.
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Figure 7: Sign-object proximity and sign activation
convergence.

the motor decision line, evidencing that the interpreter is in
the process of adaptation to the communication system.
Activation points for visual inputs tend to have a completely
different distribution pattern, concentrating on extreme
values, since mushrooms do not change along generations
allowing for a better adaptation.

To compare these results were utterers and interpreters are
competing with each other, we modified the experiment for
creatures to communicatively cooperate. In this modified
experiment, to obtain cooperation, the interpreter will
always have a kin creature as utterer, i.e. a creature with the
same neural connection weights (see Floreano, 2007). In
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this experiment’s simulation, creatures’ fitness rapidly
increases and stays near maximum for the rest of the
simulation (figure 7) and referential relations are also quite
different. Figure 6 shows the activation points for a creature
in this second experiment. Notice that sign activation clouds
are much more compact and farther from the motor decision
line then in the original experiment. They are also closer to
the visual activation cloud, with signs closer to referents.
This convergence of sign activations and high proximity of
sign-object is observed after a few generations and stays
that way in the following generations as shown in figure 7,
where the values are consistently higher than in the original
experiment.

Final Remarks

In the experiments presented, an investigation on
representation and referential processes involved in sign-
object relation during the evolution of communication has
been started. This is only an initial study that evidences that
there is the possibility of analysis of such processes by
evaluating neural networks activation and bringing forth
preliminary conclusions.

The creatures had an artificial neural network as their
cognitive architecture. Since communicated signals are
connected to the same neurons as visual inputs from
mushrooms, such signals can produce an activation pattern
similar to the ones produced by visual inputs, and produce
an equivalent motor outcome. This elicits a referential
association between signals and mushrooms established
only by the interpreter, determining a sign-object symbolic
relation.

Establishing a strong sign-object relation with signs,
producing activations that are close to the activations from
the object, appears to be adaptively beneficial to creatures.
Interpreters search for this quality in referential relations
during evolution process, but since the communicated
signals used by utterers changed constantly in the first
experiment, it was not possible for interpreters to better
improve sign-object relations, but even in such a
competitive scenario a referential relation was created. In
the second experiment, however, cooperation aided this
adaptation process, and interpreters could establish better
quality referential associations for signs.

This article presents only initial findings on the
investigation of representational and referential processes in
neural networks. Initial results were presented but further
scrutiny and discussion of these simulation results will be
done in the future. Nevertheless, the proposed methodology
is promising and may open up a new perspective on the
studies on representations.

The fact that the neural network used had only feed
forward connections and no recurrent ones was important
for our investigation. It was easier to determine causal
relations between input neurons, intermediary neurons and
output neurons, and then to point out and compare
activation patterns. An open issue is how to conduct such

analysis on recurrent networks with

activations.

time-dependent

References

Beer, R. D. (2003). The dynamics of active categorical
perception in an evolved model agent. Adaptive Behavior,
11(4), 209-243.

Cangelosi, A. (2001). Evolution of communication and
language using signals, symbols, and words. IEEE
Transactions on Evolutionary Computation, 5(2), 93—101.

Christiansen, M.H., & Kirby, S. (2003). Language
evolution: consensus and controversies. Trends in
Cognitive Sciences, 7 (7), 300-307.

De Greeff, J. & Nolfi, S. (2010). Evolution of implicit and
explicit communication in mobile robots. In Evolution of
Communication and Language in Embodied Agents, 179—
214. Springer Verlag.

Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (2007).
Evolutionary conditions for the emergence of
communication in robots. Current Biology, 17, 514-519.

Loula, A., Gudwin, R. & Queiroz, J. (2013) Studying sign
processes in the emergence of communication. In
Proceedings of 35th Annual Meeting of the Cognitive
Science Society, CogSci 2013, 2013, Berlin.

Loula, A., Gudwin, R. & Queiroz, J. (2011) Cognitive
conditions to the emergence of sign interpretation in
artificial creatures. In Proceedings of the 11th European
Conference of Artificial Life, ECAL’11, 2011, France. (p.
497-504)

Loula, A., Gudwin, R., & Queiroz, J. (2010) On the
emergence of indexical and symbolic interpretation in
artificial creatures, or What is this I hear? In Fellermann,
H., et al., editors, Artificial Life XII, pages 862-868. MIT
Press.

Marocco, D. & Nolfi, S. (2007). Emergence of
communication in embodied agents evolved for the ability
to solve a collective navigation problem. Connection
Science, 19(1), 53-74.

Mirolli, M. (2012). Representations in Dynamical
Embodied Agents: Re-Analyzing a Minimally Cognitive
Model Agent. Cognitive Science, 36, 870-895.

Mirolli, M., Parisi, D. (2008): How producer biases can
favor the evolution of communication: An analysis of
evolutionary dynamics. Adaptive Behavior, 16(1): 27-52.

Mirolli, M., Parisi, D. (2005): How can we explain the
emergence of a language that benefits the hearer but not
the speaker? Connection Science, 17(3-4): 307-324.

Nolfi, S. & Mirolli, M., Eds. (2010). Evolution of
Communication and Language in Embodied Agents.
Springer.

Peirce, C. S. (1958). The Collected Papers of Charles
Sanders Peirce. Cambridge, Mass., USA: Harvard
University Press.

Wagner, K., Reggia, J., Uriagercka, J., & Wilkinson, G.
(2003) Progress in the simulation of emergent
communication and language. Adaptive Behavior, 11(1),
37-69.

2596



