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Abstract

Analogy is an important cognitive process that has been researched
extensively. Functional accounts of it typically involve at least four
stages of processing (access, mapping, transfer, and evaluation,
e.g., see Kokinov & French, 2002), however, they take the way in
which the base analog is understood, along with its relational
structure, for granted. The goal of this paper is to open a discussion
about how this process (which we will call “relational
recognition”) may occur. To this end, this paper describes two
experiments that vary the level of relational complexity across
exemplars. It was found that relational recognition tasks benefit
from increased complexity, while mapping tasks suffer from it.
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Imagine that you are a fighter pilot. As a pilot, you
are highly trained in flying your jet, and you know, in
detail, the mechanics of how your jet works. During a
covert mission, you are stranded on foreign soil and
need to find a way back home. You manage to locate a
foreign plane, but its control panels look significantly
different from your own, and none of the panels are
labeled in a language that you understand. At first you
panic, but then you remember that all planes follow the
same mechanics of flight, and have some control for
pitch, yaw, and roll. You reason that if you can
determine which button or lever controls each one of
those variables, that you will be able to fly the plane
well enough to escape. In other words, even though the
buttons or leavers may not look like those in your own
plane, they will do the same thing. After some trial and
error you manage to figure out which leavers and dials
control those three variables, and manage to get the
plane off the ground before flying to a safe location.

The human ability to make analogies is at the heart
of this story, since recognizing that a lever in the first
plane might be “like” a knob in the second requires one
to focus on the roles that they are playing, rather than
the features that each possesses. This role-sensitivity is
the hallmark of analogical cognition (Holyoak, Gentner,
& Kokinov, 2001; Hummel & Holyoak, 2003), and it
not only allows for the identification of similarities, but
also for powerful inferences to be drawn based on them.
So, if you know that frenetic movements of a pitch
controller may make a plane spiral out of control, then
you can generalize this knowledge to any pitch
controller (whether it be a knob, lever, or button).

Functional accounts of analogy-making specify the
need for at least one base analog (the representation
being mapped from) and at least one target analog (the

representation being mapped to). Once these are
specified, the analogy-making process breaks down into
four parts: retrieval, mapping, transfer, and evaluation
(Kokinov & French, 2002). Thus, when one is faced
with a base analog, one begins by retrieving potential
analogical matches (targets) from long-term memory.
Candidates compete, and the most likely target is
mapped to the base under the constraints of the
structural similarities shared between the analogs.
Information is ultimately transferred from the base to
the target, before the mapping is evaluated. If the
analogy is judged to be appropriate, the process ends.
This general process is reasonably uncontroversial,
however it does appear to take the process of
understanding the base analog (and its relational
structure) for granted. In other words, it assumes that
one already knows what the base analog is and how to
represent it when analogical processing begins.
Relational recognition (the term we will herein use
for the process of recognizing the relational structure at
play in a base analog) is not a trivial problem though.
To the point, one must recognize a relation before one
can map it to another relation, and so without
recognition, the rest of the analogy-making process
would not even get off the ground. However, as Gick
and Holyoak (1980, 1983) have pointed out, people
often fail to notice relations unless they are explicitly
directed to do so, suggesting that recognition may not
always take place, and that certain conditions can affect
the course of learning (also see Doumas et al., 2008, for
a discussion on the difficulty of learning previously
unknown relations). Thus, we are interested in opening
a discussion about how people may go about solving
the problem of relational recognition. This paper will
not be exhaustive, however, it will be a starting point
with the goal of investigating how recognition is like or
dislike other parts of the analogical reasoning process.
One factor that has been predominant throughout
the analogy literature is relational complexity—to the
point, experimental efforts have found that as relational
complexity increases, analogical competency decreases
(e.g., Halford et al., 1998). For example, Viskontas et
al. (2004) demonstrated this trend exists across a
longitudinal trajectory and Waltz et al. (1999) showed a
similar trend across patients with various types of brain
injuries. These studies employed relational tasks
ranging from pictorial similarity mappings, to transitive
inference problems, to Ravens Standard Progressive
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Matrices; the trend was maintained across each
paradigm.

Importantly, complexity has been defined in
different ways: First one may consider the arity of the
relations involved in the task (i.e., the number of slots
the relations hold) (see Halford et al., 2005) such that
processing higher arity relations are more complex than
lower arity relations. For example, bigger-than(John,
Mary) would be a lower arity, and therefore be less
complex than bigger-than(John, Mary, Sue). Secondly,
relational complexity has been defined in terms of the
number of relations that one must process
simultaneously in order to deal with a given problem
(Viskontas et al., 2004). For example, mapping bigger-
than(John, Mary) to bigger-than(Sue, Charlie) would
involve fewer relations, and therefore be less complex
than mapping bigger-than(John, Mary) to bigger-
than(Sue, Charlie) and also to bigger-than(Los Angeles,
Fresno). Interestingly though, both of these definitions
boil down to the issue of how many individual elements
must be bound to roles in order to process the given
relation (i.e., the number of role bindings, see Doumas
et al., 2008). Thus, in order to satisfy both existing
definitions, this paper will define complexity in terms
of the number role bindings in a given problem.

With this definition in mind, we can notice that
mapping more complex relations requires one to not
only keep more elements and their respective role-
bindings in mind, but to make structural alignments
based on those role-bindings. It has been argued that
this process understandably taxes working memory
(Viskontas et al., 2004; Cho, Holyoak & Cannon,
2007), so as complexity increases, performance
decreases.

Not all stages of analogical processing are so
structure-sensitive though, and so it may not be the case
that all stages of relational processing interact with
complexity in the same manner. For instance, models of
retrieval suggest that retrieval (or the process of access)
is more sensitive to object features than to relational
structure. To the point, computational models such as
MAC/FAC (Forbus, Gentner, and Law, 1994), and
ARCS (Thagard et al., 1990) describe how access
works by scanning long-term memory for objects that
share features with the base analog, and many
experiments (e.g., Gentner, Ratterman, and Forbus,
1993) have shown that people will remember (i.e.,
access) analogs that share surface similarities more than
they will analogs that share structural ones. These
results have lead to the widespread conclusion (e.g.,
Gentner, 1989, 2003) that the greater the featural
(“surface”) match between a base and a target, the
greater the likelihood of accessing that target.
Admittedly, Gentner does not explicitly use the word
“complexity” in her analysis, however, her claim does
suggest that the more features in common between

analogs, the greater the ease of access. Thus, while less
is more in the case of mapping, more information seems
capable of boosting access.

While it may seem curious that more information
can be useful in the case of access, but not in the case of
mapping, remember that greater complexity is likely
troublesome for mapping due to working memory: as
complexity increases, the number of elements that have
to be aligned and maintained in working memory
increases, and so working memory is taxed and
ultimately overloaded (e.g., Doumas et al., 2008;
Halford et al, 1998, 2010, 2012). However, access is
more focused on semantic similarities without the need
to create explicit alignments, and so it is possible that a
greater number of elements could carry a greater
amount of semantic information, and thus promote
access.

On the surface, relational recognition seems more
like access than mapping. While the mechanisms of
relational recognition are not yet specified, it
presumably involves querying long-term memory for
detected relational features, much like how access
involves querying memory for objects. As a result, it
seems reasonable to expect that recognition may be
equally sensitive to those features, and so equally
improved by greater amounts of information. The
following studies aim to investigate this hypothesis.

Experiment 1

As discussed, the similarity between access and
recognition suggests that increased complexity may
boost relational recognition, despite the fact that it may
hinder relational mapping. Essentially, the expectation
is that if relational recognition is sensitive to features,
then problems with greater complexity should simply
provide a greater number of relational elements and so
a higher concentration of relational features. A higher
concentration of relational features should result in a
greater probability of relational features being
highlighted (e.g., Doumas et al., 2008). However, this
reasoning also suggests that the specific presentation
style of a relation (and not just the amount of
complexity involved) should affect the way that
recognition interacts with complexity. For instance,
integrated relations have three or more relations
engaged in the given relation. This structure means that
one element is engaged in two instances of the same
relation, and so fewer extraneous, object-specific
features are present to distract from the relational one,
thus creating a higher ratio of relation-specific features
to element-specific features per relational exemplar.

Thus, based on our predictions that (i) relational
recognition is similar to access, and (ii) that relational
recognition will interact with the structure of a given
problem such that an integrated structure will provide a
better relational-feature-to-element-feature ratio, this
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experiment provided participants with a relational
recognition task that varied exemplars based on
complexity and integrated structure.

Specifically, participants were required to
recognize relations in pictorial scenes and pick the
relation out of a word list. Complexity and structure
were varied across exemplars that depicted binary
relations (two elements involved in a single relation),
"integrated relations (three elements engaged in the
same relation where one element was both an actor and
a patient), and multi-relational exemplars (four
elements in total, broken into two groups of two, where
each pair is separately engaged in the same relation).

Ultimately, if it is the case that higher relational
complexity is always associated with lower relational
performance (as is the case with mapping tasks), then
the binary relations should possess the fastest reaction
times on the recognition task. However, if a greater
number of elements speeds up relational recognition,
then the multi-relational exemplars should show
improved reaction times. Finally, if an integrated
structure is itself helpful during recognition, then the
integrated relational exemplars should show the fastest
reaction times, with the multi-relational exemplars
showing the second fastest results.

Participants: We recruited twenty-three undergraduate
participants through the psychology department at the
University of Hawaii at Manoa. The participants were
between 18 and 30 years of age and all had normal to
corrected-to-normal vision. They were compensated
with course credit for their participation.

Stimuli: Stimuli consisted of pictorial scenes adapted
from Richland, Morrison, & Holyoak (2006). Each
stimulus contained six objects dispersed around a black
and white, drawn image; all stimuli were 720 by 450
pixels in size and presented on a black background.
They all included living and non-living objects.

Each stimulus depicted one of the relational
structures of interest: (i) Binary relational images were
created by depicting a single actor, and a single patient
involved in some relationship with a collection of
distractor items (e.g., Figure 1). ii) Integrated relations
were created by depicting three items involved in a
nested relationship, such that one item was the patient,
one was the actor on that patient, and also a patient
itself for yet another actor (e.g., Figure 2). And (iii)
multi-relations were created by depicting two sets of
two objects involved in the same binary relation, such
that there were two independent actors and two
independent patients (e.g., Figure 3). Twenty exemplars
of each type were created, resulting in a total of sixty
stimuli.

The relational items (those that were the actors and
the patients) varied in all three conditions, and the order

in which each stimulus was presented was randomly
generated for each participant. All participants saw all
stimuli, thus making this experiment a repeated
measures design.

Figure 2: Integrated relation example; hangs-from(woman, tree)-and-
hangs-from(monkey, woman).

Figure 3: Multi-relation example; hunts(shark, human), hunts(fishl,
fish2).

Stimuli were presented in the top center of a 1440
by 900-pixel screen, and depicted one of the following
relations: hunting, hanging, pulling, reaching, chasing,
dropping, scolding, balancing, kissing, and talking. The
names of these possible relations were printed in text to
the bottom right of each image in 22 pixel-high, Times
font. The words were printed as a list, one per line, and
each time a new stimulus appeared the words were
randomly shuffled to new locations (in order to control
for order effects). A fixation cross was placed on the
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left side of the screen, across from the relational central
word (see Figure 4). The cross was used as the starting
point for the mouse for each trial (i.e., the mouse would
automatically reposition to the cross at the point of
presentation of each new stimulus).

Figure 4: An example of a trial in Experiment 1.

Procedure: All participants were instructed to look at
the images presented and determine which word in the
word list best described the relationship depicted in it.
They were also told that their chosen word should be
the most central relationship to the image. Upon
reading the instructions, participants were shown two
training trials using exemplars and words that would
not be part of the experiment itself, in order to get them
accustomed to the mouse movements. Participants were
then told to ready themselves for the actual experiment.

Once the experiment began, participants were self-
paced, moving forward by clicking the word that they
selected for each word. Clicking on a word would bring
up the next stimulus and a new order of words.

Results: There was a ceiling effect across conditions
on correctly identifying the relations (M=19, SD =1.17
for the integrated relations condition, M = 18.87, SD =
1.22 for the multiple relations condition, and M =
18.78, SD = 1.20 for the binary relation condition),
however this result was expected given the simplicity of
the task. However, a repeated measures ANOVA with a
Greenhouse-Geisser correction revealed that reaction
times across conditions differed significantly F(1.33,
29.318) = 13.902, p<.01. Post hoc testing with a Sidak
correction showed that participants were significantly
faster (p < .01) on the integrated exemplars (4.01 + 0.64
sec) than they were on the multi-relational exemplars
(4.26 £ 0.65 sec), and that they were also significantly
faster (p < .05) on the multi-relational exemplars than
they were on the binary exemplars (4.63 = 1.07) (see
Figure 5)".

! Note that reaction times greater than 3 standard deviations
from the mean were discarded for the purposes of this
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Figure 5: Results from Experiment 1, showing reaction times in
seconds by condition. Error bars represent two standard errors.

Discussion: These results are consistent with our initial
predictions: more complexity produced faster
performance, however the integrated relational structure
produced the fastest performance. This trend is what
should be seen if recognition is sensitive to a greater
amount of relational feature information present in a
stimulus, the ratio of featural information to element
information is also important.

That said it does seem necessary to compare these
results to performance on a mapping task involving the
same sort of stimuli. This comparison will be useful in
ensuring that our data is not anomalous and that the
previous trends in complexity (i.e., those reviewed in
the opening section of this paper) replicate given the
same type of stimuli. Thus, we should see a decrease in
performance as complexity increases, regardless of
integration.

Experiment 2

Participants: Participants in experiment two were
analogous to those in experiment one and included
twenty-four undergraduate participants, recruited
through the psychology department at the University of
Hawaii at Manoa. They ranged from 18 to 30 years of
age, had normal to corrected-to-normal vision, and
were compensated with course credit for their
participation.

Design: Like experiment one, experiment two used the
pictorial images adapted from Richland et al. (2006).

calculation and that a Greenhouse-Geisser test was used
because sphericity was violated
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Thus the images were black and white drawings that
were 720 by 450 pixels in size. Each image possessed
six elements spread over the image space and were
presented on a black background. Once again, stimuli
depicted relational situations involving the following
relations: kissing, hunting, hanging-from, towing,
reaching, pulling, chasing, dropping, scolding, and
balancing. Each relation was represented in each
condition; in other words, it was represented as a binary
relation involving two elements, an integrated ternary
relation, and a multi- relational exemplar where the
given relation was depicted twice in the same image.
Stimuli consisted of two images of the same relation in
the same condition, which were paired in order to make
a base analog (the image to be mapped from) and a
target analog (the image to be mapped to). There were
ten pairs in each condition, creating thirty pairs overall.

Each trial presented the base analog in the top half
of the screen, while the target was presented directly
underneath it. The base analog image had one item
circled in red, while the target analog image had four
objects with red numbers printed beside them (see
Figure 6).

Figure 6: An example of a trial in Experiment 2.

Each condition was controlled for problem difficulty,
and involved 9 cross-mapping problems. These
problems required participants to reason over features
more explicitly by including an item in both the base
image and the target image.

Importantly, every question only had one possible
answer and a number of distractor items. This fact was
true even for the multi-relational trials, where only one
item that was playing the correct role in the target
image would be offered as a possible answer option,
along with distractors. For example, imagine that
“chases” was the relation in a given multi relational
trial. The base image might depict chases(boy,girl) and
chases(dog,cat), with the boy circled, indicating that it
was the object to be mapped. The target image might
then depict chases(bear, man) and chases(bird, worm),
however, only the bear, the man, and the worm would
be offered as answers, along with a distractor item such
as an on-looking person.

Procedure: Participants were told that they were going
to see two images at the same time, and that they were
to match the circled item in the top image to one of the
numbered items in the bottom image. Specifically, they
were told to pick the item that they thought was “doing
the same thing” as the circled item. Thus, participants
needed to select the relational match between the base
and target images.

Participants began by completing a single training
example involving images that were not present in the
rest of the experiment. Once the experiment began,
participants were self-paced, moving forward by
selecting one of the numbered items by pressing the
keyboard key that matched the numbered item.

Results: Given the simplicity of the task involved,
participants that completed less than an average of 15
out of 20 (75%) correctly across conditions were
eliminated; five participants fell below this criterion
and were eliminated. Unsurprisingly, as a result of this
criterion, there was no significant difference between
conditions for the number of correct responses (F(2, 54)
=2.425, p = .118), with performance on the integrated
condition being almost equal (M = 17.03, SD = 2.01) to
the multi-relational condition (M = 17.21, SD = 1.90),
and only slightly higher in the binary relational
condition (M =18, SD = 1.53)

However, experiment two replicated the previous
work on relational complexity with regard to reaction
times. A repeated-measures Greenhouse-Geisser
ANOVA was used due to a violation of sphericity, and
it revealed a significant difference between conditions
(F(1.319, 23.742) = 22.970, p < .01). Post hoc testing
with a Sidak correction showed that participants were
significantly faster (p < .01) on the binary relations
(5.79+1.92 sec) than they were on the multi-relational
exemplars (8.47+£3.80 sec), however, the binary
exemplars did not evoke significantly faster reaction
times (p = 0.48) than the integrated exemplars
(6.10+£2.11 sec). There was a significant difference
(p<.01) between the integrated exemplars and the
multi-relational exemplars (see Figure 7).

Discussion: This experiment found meaningful
between-condition reaction time differences, which
were consistent with the findings found in the literature
discussed earlier in this paper. Thus, stimuli with
greater complexity, integrated or not, were mapped
more slowly than stimuli with lower levels of
complexity. These results suggest that the findings in
experiment one were not due to issues or idiosyncrasies
with the stimuli, but instead represent a meaningful
difference between how complexity interacts with
relational recognition and mapping.
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Figure 7: Results from Experiment 2. Error bars represent two
standard errors.

Overall Discussion

With these results in mind it seems probable that
relational recognition is more sensitive to features than
to structure. As a result, it is likely that recognition
shares some functional capacities with the access stage
of analogy-making, though of course, this is an initial
investigation and this relationship should be studied in
more detail. Interestingly though, relational recognition
seems particularly sensitive to the ratio of relational
features to element features, as indicated by
participants’ performance on the integrated exemplars.
Future research could also determine whether this is
idiosyncratic to recognition, or whether access shares
this sensitivity.

Furthermore, it now seems insufficient to say that
relational complexity decreases relational performance,
carte blanche. Contrary to the existing evidence on
mapping tasks, there recognition (which is a necessary
part of relational reasoning) seems to benefit from more
complex exemplars. Future research could also delve
into whether there are contexts or problem types for
which the boost to recognition is more beneficial than
the decrement to mapping.

Finally, this research suggests that current models
of analogy erroneously take relational recognition for
granted. These results suggest that the recognition
process functions under unique constraints, and needs
to be accounted for if the relational reasoning process is
to be described as a whole.

Ultimately this research opens the door to more
questions. We admit that we chose a somewhat
arbitrary starting point based on trends in the existing
literature and reason. Thus, our goal was not to provide
all the answers about relational recognition, but to point
out a deficit in the current literature and to start a
discussion which may lead to those answers.
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