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Abstract 
Analogy is an important cognitive process that has been researched 
extensively. Functional accounts of it typically involve at least four 
stages of processing (access, mapping, transfer, and evaluation, 
e.g., see Kokinov & French, 2002), however, they take the way in 
which the base analog is understood, along with its relational 
structure, for granted. The goal of this paper is to open a discussion 
about how this process (which we will call “relational 
recognition”) may occur. To this end, this paper describes two 
experiments that vary the level of relational complexity across 
exemplars. It was found that relational recognition tasks benefit 
from increased complexity, while mapping tasks suffer from it. 

Keywords: relational reasoning, analogy, recognition, relational 
complexity, mental representation 

Imagine that you are a fighter pilot. As a pilot, you 
are highly trained in flying your jet, and you know, in 
detail, the mechanics of how your jet works. During a 
covert mission, you are stranded on foreign soil and 
need to find a way back home. You manage to locate a 
foreign plane, but its control panels look significantly 
different from your own, and none of the panels are 
labeled in a language that you understand. At first you 
panic, but then you remember that all planes follow the 
same mechanics of flight, and have some control for 
pitch, yaw, and roll. You reason that if you can 
determine which button or lever controls each one of 
those variables, that you will be able to fly the plane 
well enough to escape. In other words, even though the 
buttons or leavers may not look like those in your own 
plane, they will do the same thing. After some trial and 
error you manage to figure out which leavers and dials 
control those three variables, and manage to get the 
plane off the ground before flying to a safe location.  

The human ability to make analogies is at the heart 
of this story, since recognizing that a lever in the first 
plane might be “like” a knob in the second requires one 
to focus on the roles that they are playing, rather than 
the features that each possesses. This role-sensitivity is 
the hallmark of analogical cognition (Holyoak, Gentner, 
& Kokinov, 2001; Hummel & Holyoak, 2003), and it 
not only allows for the identification of similarities, but 
also for powerful inferences to be drawn based on them. 
So, if you know that frenetic movements of a pitch 
controller may make a plane spiral out of control, then 
you can generalize this knowledge to any pitch 
controller (whether it be a knob, lever, or button). 

Functional accounts of analogy-making specify the 
need for at least one base analog (the representation 
being mapped from) and at least one target analog (the 

representation being mapped to). Once these are 
specified, the analogy-making process breaks down into 
four parts: retrieval, mapping, transfer, and evaluation 
(Kokinov & French, 2002). Thus, when one is faced 
with a base analog, one begins by retrieving potential 
analogical matches (targets) from long-term memory. 
Candidates compete, and the most likely target is 
mapped to the base under the constraints of the 
structural similarities shared between the analogs. 
Information is ultimately transferred from the base to 
the target, before the mapping is evaluated. If the 
analogy is judged to be appropriate, the process ends.  

This general process is reasonably uncontroversial, 
however it does appear to take the process of 
understanding the base analog (and its relational 
structure) for granted. In other words, it assumes that 
one already knows what the base analog is and how to 
represent it when analogical processing begins.  

Relational recognition (the term we will herein use 
for the process of recognizing the relational structure at 
play in a base analog) is not a trivial problem though. 
To the point, one must recognize a relation before one 
can map it to another relation, and so without 
recognition, the rest of the analogy-making process 
would not even get off the ground. However, as Gick 
and Holyoak (1980, 1983) have pointed out, people 
often fail to notice relations unless they are explicitly 
directed to do so, suggesting that recognition may not 
always take place, and that certain conditions can affect 
the course of learning (also see Doumas et al., 2008, for 
a discussion on the difficulty of learning previously 
unknown relations). Thus, we are interested in opening 
a discussion about how people may go about solving 
the problem of relational recognition. This paper will 
not be exhaustive, however, it will be a starting point 
with the goal of investigating how recognition is like or 
dislike other parts of the analogical reasoning process.  

One factor that has been predominant throughout 
the analogy literature is relational complexity—to the 
point, experimental efforts have found that as relational 
complexity increases, analogical competency decreases 
(e.g., Halford et al., 1998). For example, Viskontas et 
al. (2004) demonstrated this trend exists across a 
longitudinal trajectory and Waltz et al. (1999) showed a 
similar trend across patients with various types of brain 
injuries. These studies employed relational tasks 
ranging from pictorial similarity mappings, to transitive 
inference problems, to Ravens Standard Progressive 
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Matrices; the trend was maintained across each 
paradigm.  

Importantly, complexity has been defined in 
different ways: First one may consider the arity of the 
relations involved in the task (i.e., the number of slots 
the relations hold) (see Halford et al., 2005) such that 
processing higher arity relations are more complex than 
lower arity relations. For example, bigger-than(John, 
Mary) would be a lower arity, and therefore be less 
complex than bigger-than(John, Mary, Sue). Secondly, 
relational complexity has been defined in terms of the 
number of relations that one must process 
simultaneously in order to deal with a given problem 
(Viskontas et al., 2004). For example, mapping bigger-
than(John, Mary) to bigger-than(Sue, Charlie) would 
involve fewer relations, and therefore be less complex 
than mapping bigger-than(John, Mary) to bigger-
than(Sue, Charlie) and also to bigger-than(Los Angeles, 
Fresno). Interestingly though, both of these definitions 
boil down to the issue of how many individual elements 
must be bound to roles in order to process the given 
relation (i.e., the number of role bindings, see Doumas 
et al., 2008). Thus, in order to satisfy both existing 
definitions, this paper will define complexity in terms 
of the number role bindings in a given problem.  

With this definition in mind, we can notice that 
mapping more complex relations requires one to not 
only keep more elements and their respective role-
bindings in mind, but to make structural alignments 
based on those role-bindings. It has been argued that 
this process understandably taxes working memory 
(Viskontas et al., 2004; Cho, Holyoak & Cannon, 
2007), so as complexity increases, performance 
decreases. 

Not all stages of analogical processing are so 
structure-sensitive though, and so it may not be the case 
that all stages of relational processing interact with 
complexity in the same manner. For instance, models of 
retrieval suggest that retrieval (or the process of access) 
is more sensitive to object features than to relational 
structure.  To the point, computational models such as 
MAC/FAC (Forbus, Gentner, and Law, 1994), and 
ARCS (Thagard et al., 1990) describe how access 
works by scanning long-term memory for objects that 
share features with the base analog, and many 
experiments  (e.g., Gentner, Ratterman, and Forbus, 
1993) have shown that people will remember (i.e., 
access) analogs that share surface similarities more than 
they will analogs that share structural ones. These 
results have lead to the widespread conclusion (e.g., 
Gentner, 1989, 2003) that the greater the featural 
(“surface”) match between a base and a target, the 
greater the likelihood of accessing that target. 
Admittedly, Gentner does not explicitly use the word 
“complexity” in her analysis, however, her claim does 
suggest that the more features in common between 

analogs, the greater the ease of access. Thus, while less 
is more in the case of mapping, more information seems 
capable of boosting access. 

While it may seem curious that more information 
can be useful in the case of access, but not in the case of 
mapping, remember that greater complexity is likely 
troublesome for mapping due to working memory: as 
complexity increases, the number of elements that have 
to be aligned and maintained in working memory 
increases, and so working memory is taxed and 
ultimately overloaded (e.g., Doumas et al., 2008; 
Halford et al, 1998, 2010, 2012). However, access is 
more focused on semantic similarities without the need 
to create explicit alignments, and so it is possible that a 
greater number of elements could carry a greater 
amount of semantic information, and thus promote 
access.  

On the surface, relational recognition seems more 
like access than mapping. While the mechanisms of 
relational recognition are not yet specified, it 
presumably involves querying long-term memory for 
detected relational features, much like how access 
involves querying memory for objects. As a result, it 
seems reasonable to expect that recognition may be 
equally sensitive to those features, and so equally 
improved by greater amounts of information. The 
following studies aim to investigate this hypothesis.  

 
Experiment 1 

As discussed, the similarity between access and 
recognition suggests that increased complexity may 
boost relational recognition, despite the fact that it may 
hinder relational mapping. Essentially, the expectation 
is that if relational recognition is sensitive to features, 
then problems with greater complexity should simply 
provide a greater number of relational elements and so 
a higher concentration of relational features. A higher 
concentration of relational features should result in a 
greater probability of relational features being 
highlighted (e.g., Doumas et al., 2008). However, this 
reasoning also suggests that the specific presentation 
style of a relation (and not just the amount of 
complexity involved) should affect the way that 
recognition interacts with complexity. For instance, 
integrated relations have three or more relations 
engaged in the given relation. This structure means that 
one element is engaged in two instances of the same 
relation, and so fewer extraneous, object-specific 
features are present to distract from the relational one, 
thus creating a higher ratio of relation-specific features 
to element-specific features per relational exemplar. 

Thus, based on our predictions that (i) relational 
recognition is similar to access, and (ii) that relational 
recognition will interact with the structure of a given 
problem such that an integrated structure will provide a 
better relational-feature-to-element-feature ratio, this 
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experiment provided participants with a relational 
recognition task that varied exemplars based on 
complexity and integrated structure.  

Specifically, participants were required to 
recognize relations in pictorial scenes and pick the 
relation out of a word list. Complexity and structure 
were varied across exemplars that depicted binary 
relations (two elements involved in a single relation), 
"integrated relations (three elements engaged in the 
same relation where one element was both an actor and 
a patient), and multi-relational exemplars (four 
elements in total, broken into two groups of two, where 
each pair is separately engaged in the same relation).  

Ultimately, if it is the case that higher relational 
complexity is always associated with lower relational 
performance (as is the case with mapping tasks), then 
the binary relations should possess the fastest reaction 
times on the recognition task. However, if a greater 
number of elements speeds up relational recognition, 
then the multi-relational exemplars should show 
improved reaction times. Finally, if an integrated 
structure is itself helpful during recognition, then the 
integrated relational exemplars should show the fastest 
reaction times, with the multi-relational exemplars 
showing the second fastest results. 

 
Participants: We recruited twenty-three undergraduate 
participants through the psychology department at the 
University of Hawaii at Manoa. The participants were 
between 18 and 30 years of age and all had normal to 
corrected-to-normal vision. They were compensated 
with course credit for their participation.  
 
Stimuli: Stimuli consisted of pictorial scenes adapted 
from Richland, Morrison, & Holyoak (2006). Each 
stimulus contained six objects dispersed around a black 
and white, drawn image; all stimuli were 720 by 450 
pixels in size and presented on a black background. 
They all included living and non-living objects.  

Each stimulus depicted one of the relational 
structures of interest: (i) Binary relational images were 
created by depicting a single actor, and a single patient 
involved in some relationship with a collection of 
distractor items (e.g., Figure 1). ii) Integrated relations 
were created by depicting three items involved in a 
nested relationship, such that one item was the patient, 
one was the actor on that patient, and also a patient 
itself for yet another actor (e.g., Figure 2). And (iii) 
multi-relations were created by depicting two sets of 
two objects involved in the same binary relation, such 
that there were two independent actors and two 
independent patients (e.g., Figure 3). Twenty exemplars 
of each type were created, resulting in a total of sixty 
stimuli.  

The relational items (those that were the actors and 
the patients) varied in all three conditions, and the order 

in which each stimulus was presented was randomly 
generated for each participant. All participants saw all 
stimuli, thus making this experiment a repeated 
measures design. 
 

 
 

Figure 1: Binary relation example; chases(boy, cat). 
 

 
 
Figure 2: Integrated relation example; hangs-from(woman, tree)-and-

hangs-from(monkey, woman). 
 
 

 
 

Figure 3: Multi-relation example; hunts(shark, human), hunts(fish1, 
fish2). 

Stimuli were presented in the top center of a 1440 
by 900-pixel screen, and depicted one of the following 
relations: hunting, hanging, pulling, reaching, chasing, 
dropping, scolding, balancing, kissing, and talking. The 
names of these possible relations were printed in text to 
the bottom right of each image in 22 pixel-high, Times 
font. The words were printed as a list, one per line, and 
each time a new stimulus appeared the words were 
randomly shuffled to new locations (in order to control 
for order effects). A fixation cross was placed on the 
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left side of the screen, across from the relational central 
word (see Figure 4).  The cross was used as the starting 
point for the mouse for each trial (i.e., the mouse would 
automatically reposition to the cross at the point of 
presentation of each new stimulus). 
 

 
Figure 4: An example of a trial in Experiment 1. 

 
Procedure: All participants were instructed to look at 
the images presented and determine which word in the 
word list best described the relationship depicted in it. 
They were also told that their chosen word should be 
the most central relationship to the image. Upon 
reading the instructions, participants were shown two 
training trials using exemplars and words that would 
not be part of the experiment itself, in order to get them 
accustomed to the mouse movements. Participants were 
then told to ready themselves for the actual experiment.  

Once the experiment began, participants were self-
paced, moving forward by clicking the word that they 
selected for each word. Clicking on a word would bring 
up the next stimulus and a new order of words.  
 
Results:  There was a ceiling effect across conditions 
on correctly identifying the relations (M=19, SD =1.17 
for the integrated relations condition, M = 18.87, SD = 
1.22 for the multiple relations condition, and M = 
18.78, SD = 1.20 for the binary relation condition), 
however this result was expected given the simplicity of 
the task. However, a repeated measures ANOVA with a 
Greenhouse-Geisser correction revealed that reaction 
times across conditions differed significantly F(1.33, 
29.318) = 13.902,  p<.01. Post hoc testing with a Sidak 
correction showed that participants were significantly 
faster (p < .01) on the integrated exemplars (4.01 ± 0.64 
sec) than they were on the multi-relational exemplars 
(4.26 ± 0.65 sec), and that they were also significantly 
faster (p < .05) on the multi-relational exemplars than 
they were on the binary exemplars (4.63 ± 1.07) (see 
Figure 5)1. 

                                                
1 Note that reaction times greater than 3 standard deviations 
from the mean were discarded for the purposes of this 
 

 
 

Figure 5: Results from Experiment 1, showing reaction times in 
seconds by condition. Error bars represent two standard errors. 

 
Discussion: These results are consistent with our initial 
predictions: more complexity produced faster 
performance, however the integrated relational structure 
produced the fastest performance. This trend is what 
should be seen if recognition is sensitive to a greater 
amount of relational feature information present in a 
stimulus, the ratio of featural information to element 
information is also important.  

That said it does seem necessary to compare these 
results to performance on a mapping task involving the 
same sort of stimuli.  This comparison will be useful in 
ensuring that our data is not anomalous and that the 
previous trends in complexity (i.e., those reviewed in 
the opening section of this paper) replicate given the 
same type of stimuli. Thus, we should see a decrease in 
performance as complexity increases, regardless of 
integration.  
 

Experiment 2 
Participants: Participants in experiment two were 
analogous to those in experiment one and included 
twenty-four undergraduate participants, recruited 
through the psychology department at the University of 
Hawaii at Manoa. They ranged from 18 to 30 years of 
age, had normal to corrected-to-normal vision, and 
were compensated with course credit for their 
participation.  
 
Design: Like experiment one, experiment two used the 
pictorial images adapted from Richland et al. (2006). 

                                                                          
calculation and that a Greenhouse-Geisser test was used 
because sphericity was violated 
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Thus the images were black and white drawings that 
were 720 by 450 pixels in size. Each image possessed 
six elements spread over the image space and were 
presented on a black background. Once again, stimuli 
depicted relational situations involving the following 
relations: kissing, hunting, hanging-from, towing, 
reaching, pulling, chasing, dropping, scolding, and 
balancing. Each relation was represented in each 
condition; in other words, it was represented as a binary 
relation involving two elements, an integrated ternary 
relation, and a multi- relational exemplar where the 
given relation was depicted twice in the same image. 
Stimuli consisted of two images of the same relation in 
the same condition, which were paired in order to make 
a base analog (the image to be mapped from) and a 
target analog (the image to be mapped to). There were 
ten pairs in each condition, creating thirty pairs overall. 

Each trial presented the base analog in the top half 
of the screen, while the target was presented directly 
underneath it. The base analog image had one item 
circled in red, while the target analog image had four 
objects with red numbers printed beside them (see 
Figure 6). 
 

 
Figure 6: An example of a trial in Experiment 2. 

 
Each condition was controlled for problem difficulty, 
and involved 9 cross-mapping problems. These 
problems required participants to reason over features 
more explicitly by including an item in both the base 
image and the target image.  
      Importantly, every question only had one possible 
answer and a number of distractor items. This fact was 
true even for the multi-relational trials, where only one 
item that was playing the correct role in the target 
image would be offered as a possible answer option, 
along with distractors. For example, imagine that 
“chases” was the relation in a given multi relational 
trial. The base image might depict chases(boy,girl) and 
chases(dog,cat), with the boy circled, indicating that it 
was the object to be mapped. The target image might 
then depict chases(bear, man) and chases(bird, worm), 
however, only the bear, the man, and the worm would 
be offered as answers, along with a distractor item such 
as an on-looking person. 

Procedure:  Participants were told that they were going 
to see two images at the same time, and that they were 
to match the circled item in the top image to one of the 
numbered items in the bottom image. Specifically, they 
were told to pick the item that they thought was “doing 
the same thing” as the circled item. Thus, participants 
needed to select the relational match between the base 
and target images.  

Participants began by completing a single training 
example involving images that were not present in the 
rest of the experiment. Once the experiment began, 
participants were self-paced, moving forward by 
selecting one of the numbered items by pressing the 
keyboard key that matched the numbered item.  
 
Results: Given the simplicity of the task involved, 
participants that completed less than an average of 15 
out of 20 (75%) correctly across conditions were 
eliminated; five participants fell below this criterion 
and were eliminated. Unsurprisingly, as a result of this 
criterion, there was no significant difference between 
conditions for the number of correct responses (F(2, 54) 
= 2.425, p = .118), with performance on the integrated 
condition being almost equal (M = 17.03, SD = 2.01) to 
the multi-relational condition (M = 17.21, SD = 1.90), 
and only slightly higher in the binary relational 
condition (M = 18, SD = 1.53) 

However, experiment two replicated the previous 
work on relational complexity with regard to reaction 
times. A repeated-measures Greenhouse-Geisser 
ANOVA was used due to a violation of sphericity, and 
it revealed a significant difference between conditions 
(F(1.319, 23.742) = 22.970, p < .01). Post hoc testing 
with a Sidak correction showed that participants were 
significantly faster (p < .01) on the binary relations 
(5.79±1.92 sec) than they were on the multi-relational 
exemplars (8.47±3.80 sec), however, the binary 
exemplars did not evoke significantly faster reaction 
times (p = 0.48) than the integrated exemplars 
(6.10±2.11 sec). There was a significant difference 
(p<.01) between the integrated exemplars and the 
multi-relational exemplars (see Figure 7). 
 
Discussion: This experiment found meaningful 
between-condition reaction time differences, which 
were consistent with the findings found in the literature 
discussed earlier in this paper. Thus, stimuli with 
greater complexity, integrated or not, were mapped 
more slowly than stimuli with lower levels of 
complexity. These results suggest that the findings in 
experiment one were not due to issues or idiosyncrasies 
with the stimuli, but instead represent a meaningful 
difference between how complexity interacts with 
relational recognition and mapping. 
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Figure 7: Results from Experiment 2. Error bars represent two 
standard errors. 
 

Overall Discussion 
With these results in mind it seems probable that 

relational recognition is more sensitive to features than 
to structure. As a result, it is likely that recognition 
shares some functional capacities with the access stage 
of analogy-making, though of course, this is an initial 
investigation and this relationship should be studied in 
more detail. Interestingly though, relational recognition 
seems particularly sensitive to the ratio of relational 
features to element features, as indicated by 
participants’ performance on the integrated exemplars. 
Future research could also determine whether this is 
idiosyncratic to recognition, or whether access shares 
this sensitivity. 

Furthermore, it now seems insufficient to say that 
relational complexity decreases relational performance, 
carte blanche. Contrary to the existing evidence on 
mapping tasks, there recognition (which is a necessary 
part of relational reasoning) seems to benefit from more 
complex exemplars. Future research could also delve 
into whether there are contexts or problem types for 
which the boost to recognition is more beneficial than 
the decrement to mapping.  

Finally, this research suggests that current models 
of analogy erroneously take relational recognition for 
granted. These results suggest that the recognition 
process functions under unique constraints, and needs 
to be accounted for if the relational reasoning process is 
to be described as a whole.  

Ultimately this research opens the door to more 
questions. We admit that we chose a somewhat 
arbitrary starting point based on trends in the existing 
literature and reason. Thus, our goal was not to provide 
all the answers about relational recognition, but to point 
out a deficit in the current literature and to start a 
discussion which may lead to those answers.  
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