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Abstract

Bayesian models have been strikingly successful in a wide
range of domains. However, the stochastic search algorithms
generally used by these models have been criticized for not
capturing the error-driven nature of human learning. Here, we
incorporate error-driven proposals into a stochastic search al-
gorithm and evaluate its performance on concept and theory
learning problems. Compared to a model with random propos-
als, we find that error-driven search requires fewer proposals
and fewer evaluations against labelled data.

Keywords: Bayesian inference; algorithmic level; concepts
and categories

Introduction

From infancy, humans impose structure on the world with an
impressive array of abstractions, conceptual categorizations
and intuitive and formal theories. Characterizing these struc-
tures and explaining how they might be learned from data are
formidable challenges for both cognitive science and artifi-
cial intelligence. Over the past decade, a class of probabilis-
tic Bayesian models has emerged as a promising and unifying
account of how a learner could acquire concepts and theories
(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). These
models cast learning as statistical inference: the learner’s goal
is to approximate a posterior distribution over the class of
structures to be learned, weighing a candidate structure ac-
cording to its ability to account for the observed data and its
probability according to the learner’s prior beliefs. This prob-
abilistic framing allows these models to capture both rule-like
and graded aspects of human concepts and theories.
Bayesian models are able to discover good abstractions in
a number of domains, and in many of these cases they make
predictions that agree qualitatively or quantitatively with ex-
perimental data from human learners. For many Bayesian
models, though, such predictions are confined to the Marr
computational level of analysis: they predict which structures
a learner will discover or prefer, namely those with high pos-
terior probability, but they are largely agnostic about the al-
gorithmic details of how the learner makes these discoveries.
Internally, most Bayesian models in cognitive domains ap-
proximate the target posterior distribution using stochastic
search. The most widely used family of search algorithms,
which includes the Metropolis Hastings algorithm and simu-
lated annealing, has the following iterative propose and ac-
cept structure. Given a current candidate structure, the al-
gorithm perturbs it, generating a new candidate called a pro-
posal. The proposal is then evaluated, and if it is accepted
it displaces the previous candidate as the current hypothe-
sis. Usually, a proposal is accepted deterministically if it has
higher posterior probability than the current hypothesis, and
stochastically if it has lower posterior probability. Algorithms

of this kind are simple, robust, and effective, but it has been
unclear how they relate to the processes of human learning.

Recently, though, researchers have started to address this
issue (Griffiths, Vul, & Sanborn, 2012). For instance, Ull-
man et al. (2012) examine a collection of theory learning
tasks, showing that a stochastic search model can qualita-
tively reproduce the dynamics of human learning across sev-
eral domains. Bonawitz et al. (2011) connect approximate
Bayesian inference to earlier algorithmic-level models of hu-
man concept learning, and construct sequential approxima-
tion schemes that are able to capture aspects of human per-
formance on a trial-by-trial basis.

Despite these successes, criticisms of stochastic search as
a process model of human learning remain. One of the
most powerful of these criticisms, made by L. Schulz (2012),
hinges on the proposal mechanism by which new candidates
are produced. In most existing stochastic search models, in-
cluding the process models of Ullman et al. and Bonawitz et
al., proposals are made randomly; Schulz argues that human
learning is more structured. Specifically, human learning is
error-driven: learners make proposals that fix specific defi-
ciencies in their current hypothesis.

Efficient, error-driven search may hold the answer to an-
other criticism of stochastic search. Humans (Feldman,
2000), even young children (Bonawitz et al., 2012), are
able to learn remarkably quickly and efficiently, but exist-
ing search models are often slow. For instance, (Bonawitz
et al., 2012) shows that children are able to learn a theory of
magnetism in a matter of minutes, but computational models
take many hours to solve similar problems. Relatedly, human
learning performance scales remarkably well with problem
complexity (Feldman, 2000), while computational models
struggle as search spaces become larger. We present a con-
crete implementation of error-driven search and show that it
can help close this gap. By considering only those hypotheses
that fix specific problems, an error-driven learner can avoid
irrelevant parts of the search space and converge to a good
solution quickly.

A rich tradition of error-driven learning models exists in
the classical literature on symbolic learning in Al and cogni-
tive science. For instance, version space learning (Mitchell,
1978), FOIL (Quinlan, 1990) and explanation-based learning
(Mitchell, Keller, & Kedar-Cabelli, 1986) all explore the idea
of iteratively modifying hypotheses to account for specific
observations. However, despite enjoying some notable suc-
cesses, these models lack some of the capabilities of Bayesian
models, for instance the ability to account for gradedness in
human learning, and for humans’ ability to learn from noisy
data.
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The contribution of this paper is to synthesize ideas from
this earlier tradition of error-based learning with contempo-
rary Bayesian models. We present simple error-driven pro-
posal mechanisms for two concept and theory learning do-
mains in which Bayesian modeling has been successfully ap-
plied in the past. We show that these error-driven algorithms
are significantly more efficient than the purely random ones
that have appeared in the literature so far, making them both
more widely applicable and closer in capability and character
to human learning.

Modeling Framework

The family of stochastic search algorithms discussed in this
paper share the following abstract form:

h < random hypothesis
repeat

h ~Q(h | h)
P(D|h")P(H)
PP (h)

if > 1 then

h < K’ determinisitcally.
else ]
h « I’ with probability r7
end if
until convergence

Here, the hypothesis 4 represents the current estimate of the
target theory or concept, and D is a set of observed data. T
is a “temperature” parameter that controls the algorithms ten-
dency to accept proposals with smaller posterior than the cur-
rent hypothesis.

From the point of view of this paper, the key component of
this algorithm template is the proposal distribution Q(4’ | h).
As discussed in the introduction, standard choices of this dis-
tribution are purely random; the main algorithmic contribu-
tion of this paper is to supplement these random proposals
with error-driven ones that correct mistakes made by the cur-
rent hypothesis. In each of the two domains we study, we
present two proposal distributions, a random one Q,4,q4(h" | h),
and an error-driven one Q,,(h’ | h,e), which is conditional on
the example e whose prediction is to be corrected.

In order to get a fine-grained picture of the benefits of error-
driven proposals, we study a parametrized family of models
whose proposal distribution is a mixture of Q. and Q,4ng-
We introduce a parameter p,,,q as the mixture weight:

O = prand * Orana + (1 = Prana) Qerr

Thus, 1 — pyng can be interpreted as the average “error-
drivenness” of a model.

Apart from the proposal distribution, two other com-
ponents of this template are important problem-dependent
choices: the prior distribution P(h), the likelihood P(D | h).
In the remainder of this section, we describe algorithms for
two learning problems: rule-based concepts and a simplified
theory of magnetism. For each of these problems we define
prior distributions and likelihoods, and two different proposal
distributions, one random and one error-driven. The search

algorithms we create in this way are problem-specific and
distinct from one another, but error-driven proposals play the
same role in both.

Concept Learning

Our concepts are defined over objects represented as col-
lections of features. Each object has feature dimensions
fi: s fagims» €ach of which takes values in the set
V1,V2,...,Vn,,,- FOr concreteness, one may think of the fea-
ture dimensions as attributes like shape, color and size, and
values as instantiations of these attributes, such as triangle,
green, small.

We define a concept as a rule expressed in disjunctive nor-
mal form (DNF), specifying values for some or all of the fea-
tures. For example,

¢ = (color = green A shape = triangle) V (color = blue)

Such a concept induces a function from the set of objects to
the set {True, False}. For instance, if an object e; is a blue
circle, then c(ey) = True.

We construct a concept learning problem by first generat-
ing a target concept cr, and then generating a set of example
{ei};‘:"“l‘, together with their labels according to the target con-
cept, {cT(ei)};’i’i. With these labelled examples as inputs, the
concept learner’s task is to recover the original target concept,
or an approximation to it.

With the problem setup in place, we move to the definition
of the components of the search algorithm.

Prior: Goodman et al. (2008) present a Bayesian analysis of
concept learning centered on a stochastic DNF grammar over
concepts, similar to the one below:

S —- D

D —- CvD
False
PAC
True

P — fi=v;

The language defined by this grammar consists of all and
only the well-formed DNF formulae with primitive proposi-
tions of the form f; = v;. Given this generative model, the
prior definition is automatic: the prior probability of a con-
cept is its probably of being produced by the DNF grammar.
Because concepts with more conjuncts or disjuncts require
more grammar productions, they are penalized by the prior;
the prior implements a simplicity bias.

Likelihood: Given a set dataset D = {(e,c7(e))}, we can de-
fine the likelihood of a hypothesized concept 4 on any subset
S ¢ D. Following Goodman et al. (2008) , we define

I
CcC -
|

P(S | c) = "M w={s€S |cr(s) #c(s)},

Goodman et al. (2008) found b = 4 to give good agreement
with human data; this is the value we use for all experiments.
The definition of likelihood in terms of a possibly proper sub-
set of D differs from Goodman et al. (2008), and is deliber-
ate; we leave |S| := n¢,4 as a model parameter. This choice is
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partly motivated by cognitive plausibility, specifically the in-
tuition that people modify their hypotheses “on the fly,” rather
than holding them fixed during an exhaustive enumeration.
More concretely, as we will show later, using a smaller eval-
uation set can lead to efficiency gains. In particular, error-
driven proposals in the concept domain are generally of suf-
ficiently high quality that they do not need to vetted on the
entire dataset.
Random proposals: In Goodman et al. (2008), proposals
are generated by randomly selecting a non-terminal node in
the tree representation of a concept and regrowing the subtree
below it. The random proposals we use differ in two specifics.
First, the binary tree representation produced by the DNF
grammar introduces asymmetries within the sets of conjuncts
and disjuncts. In particular, nodes closer to the root of the tree
are less likely to be modified than nodes closer to the leaves,
since these lower nodes are contained in a greater number
of subtrees. This asymmetry is undesirable, since it makes
mistakes high in the tree difficult to correct. We correct this
issue by randomly permuting the tree before each proposal.
Second, Goodman et al. (2008) uses a proposal distribution
symmetrized with the Metropolis correction. With this mod-
ification, the algorithm obeys the detailed balance require-
ment, and therefore benefits from theoretical guarantees as-
sociated with Metropolis Hastings algorithms. In this paper
we are interested in optimization rather than sampling; we
are satisfied with a single high-probability candidate, and do
not require a full characterization of the posterior distribu-
tion. So we leave the proposals in both the random and error-
driven model asymmetric. While optimization of this kind
is adequate, and indeed perhaps preferable, for many appli-
cations, it will also be interesting to study symmetric error-
driven models in future work.
Error-driven proposals: An incorrect prediction A(e) is ei-
ther a false negative or a false positive. In the case of a false
negative, the proposed correction 4’ must be a generalization
of h. Generalization can be accomplished by either of the
following two operators.

e add-or adds a disjunct to &, choosing a random assertion
fi = vj from the feature representation of e, returning A’ =
hA ﬁ =Vj.

e del-and removes one more conjuncts from h. From the
set of all disjuncts containing at least one feature true of
e, del-and chooses one element at random, and removes
from it all conjuncts not true of e.

For the case of a false positive, we have two specialization
operators, dual to the generalization ones.

e del-or removes from # all disjuncts true of the negative
example e.

e add-and, works by finding all disjuncts that are true of e,
and adding to each a conjunct not true of e.

Operation Current Hypothesis ~ Example (pos/neg)  Proposed Hypothesis
c [ OR OR
o — —
= AND blue " awp AND
© Add-and . P T~
N green triangle green triangle  blue  circle
g R D
- /\
() AND blue A .
o green triangle
N bel-or  green triangle
5 R +
'a(_ev Add-or _AND__ blue AND  blue  circle
Ej green triangle green blue
W
QL.) OR OR
c Del-and — + o~
[0 AND blue triangle blue
O - green triangle

Figure 1: Example applications of specialization and gener-
alization.

An example application for each operator is shown in figure
1.

Given specialization and generalization operators, making
error-driven proposals is straightforward: find a misclassified
example e, and apply a randomly chosen specialization or
generalization operator, as appropriate.

Theory learning

In our theory learning problem, adapted from Ullman et al.
(2012), we imagine a learner confronted with a collection of
objects, some of which are plastic, some of which are mag-
nets, and others of which are metallic but not magnetic. These
objects interact in the expected way: magnets interact with
metals and other magnets, and no other pairs of objects in-
teract. The learner observes some collection of interactions
and non-interactions, and must infer a theory that compactly
describes and predicts these observations. Importantly, the
objects are indistinguishable by their surface characteristics,
so the learner is not aware a priori how, or that, the objects
should be grouped into types. Thus, the theory learner is
faced with a chicken and egg problem: she must infer causal
laws of interaction stated in terms of latent kinds at the same
time that she infers the definition and extension of the kind
terms.

Formally, a theory takes the form of a collection of Horn
clauses. For example, the correct theory for the magnetism
domain is:

interacts(X,Y) < magnet(X),magnet(Y)

interacts(X,Y) « metal(X),magnet(Y)
not_interacts(X,Y) « plastic(X), plastic(Y)
not_interacts(X,Y) « plastic(X),metal(Y)
not_interacts(X,Y) « plastic(X),magnet(Y)

We call these Horn clauses rules. We provide the learner
with the knowledge that interaction is symmetric, meaning
that permutations of these rule need not be learned.
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We call predicates like magnet and plastic kinds. A com-
plete theory requires, in addition to rules, assignments spec-
ifying the extensions of the kinds. These take the form
metal(a), magnet(b), etc., where the lowercase letters refer
to specific objects.

As we did for concept learning, we specify search algo-
rithms by defining a prior over the theories, a likelihood, and
random and error-driven proposal distributions. Also like
concept learning, the point of departure for our approach is
a grammar-based Monte Carlo model, of the kinds presented
in (Katz, Goodman, Kersting, Kemp, & Tenenbaum, 2008;
Ullman, Goodman, & Tenenbaum, 2012). For theory learn-
ing, though, we stray further from this existing model than
we did for concepts.

Prior: Like in concepts, priors on theories measure the prob-
ability that a theory was generated by a grammar, this time
one that generates conjunctions of Horn clauses.

S — RAS | Stop

R —- H&B

H — interacts(X,Y) | not_interacts(X,Y)
B — KiAK;

Ky — kindi(X) | ... | kind,(X) | kindye,,(X)
K, — kindi(Y) | ... | kind,(Y) | kindue,(Y)

Here, the kind; are the kinds already used in the derivation,
and kind,,, is a fresh kind symbol.
Likelihood: As with concepts, a theory makes predications
about the observed data which can be compared with ground
truth. In the theory of magnetism, predictions take the form
of assertions that pairs of objects do or do not interact. Note
that, unlike in the concept domain, a hypothesized theory can
fail to make a prediction about an observation; this occurs,
for instance, when objects have not yet been assigned kinds.
As in concepts, we define likelihood as

PSloy=e™  w=(seS|er(s) #c(s),
where w is now the set of incorrect and missing predications.
We used b = 5, and as before, |S| := neyar.
Random proposals: Given %, we produce a proposal 4’ by
both randomly regrowing one of /’s subtrees, and reassigning
the kinds of a geometric number of objects, using only those
kinds that appear in the modified tree.
Error-driven proposals: As in concept learning, an error-
driven proposal produces a hypothesis that fixes a specific in-
correct prediction, for example e = interacts(a,b). The pro-
posal is produced by the following two steps.

1. Choose a subset of size N of {a,b} and assign its mem-
bers to either existing or new kinds. N is geometrically
distributed.

2. Update the rules to reflect the new assignments. After this
process the hypothesis correctly predicts each interaction
involving either a or b.

MH-Gibbs: In existing literature on stochastic search for the-
ories, a third search strategy is most prevalent (Katz et al.,

Proposal Efficiency in Concept Learning Proposal Efficiency in Theory Learning
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Figure 2: Left. Performance of error-driven and random concept
learning on problems of different sizes. On the x-axis is a single
problem size parameter, § := ngjy,s = Hyqrs- On the y-axis is the log of
the number of proposals the model made before it converged. We ran
each model 30 times on each of 18 target concepts and selected for
each model the concept on which it achieved median performance;
the plotted values are the mean and standard error of the 30 runs of
the model on this concept.

Right. Performance of error-driven and random theory learning.
Here, problem size is number of objects, and we ran each model
30 times on the correct theory of magnetism. All runs had one mag-
netic, two metallic, one plastic and a randomized assortment of other
objects. For the MH-Gibbs model we counted the number of data
accesses used before the optimal assignment was reached. It was
computationally infeasible to compute p,4,q = 0.9 at 6 objects.

2008; Ullman et al., 2012). We present it briefly here for
purposes of comparison; for a more complete discussion, see
(Katz et al., 2008; Ullman et al., 2012). This strategy sep-
arates the learning of rules and assignments. The search for
rules takes the form of a Metropolis Hastings search in which
proposals are generated from a Horn clauses grammar, sim-
ilar to the DNF grammar for concepts presented above. As-
signments are found conditional on a set of rules: given a
proposal at the rule level, an “inner loop” estimates good as-
signments using Gibbs sampling. This Gibbs sampler ran-
domly reassigns one object at time, sampling the assignment
conditioned on all of the other existing assignments.

For all models, before evaluating a proposal, we remove
contradictory rules and rules that do not apply given the cur-
rent assignments.

Simulation results

In the preceding section, we introduced error-driven learning
algorithms for theory and concept learning. Here, we test the
claim that these algorithms represent an improvement over
their purely random counterparts. We present two experi-
ments, designed to test different notions of efficiency. The
first defines efficiency as the ability to find a good theory con-
cept using a small number of proposals, and the second as the
ability to find a good solution using a small number of queries
to the observed data.

Experiment One: Proposal Efficiency

If error-driven proposals are more effective than random ones,
error-driven search should have to consider a smaller number
of proposals before convergence, an advantage that should
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Data Accesses in Concept Learning

Data Accesses in Theory Learning

Figure 3: Number of data-accesses before convergence for concept
learning (left) and theory learning (right), as pyunqg and ne,q vary.
The results for concept learning were obtained with ng;,, = 1,4 =S5,
and 30 examples. The values shown are averages of 300 runs, three
for each of 100 concepts. For theories, the results used six objects,
and are averaged over 50 runs. We terminated all simulations after
100,000 proposals, a ceiling which p,4,q = 0.9 consistently hit.

grow with the size of the search space. This is the intuition
tested by this first experiment.

The tasks in this experiment are generated by creating a
target concept or theory and a set of observed data consistent
with it. We then measure the ability of our models to recover
the target structure from the data. Specifically, we say that a
search algorithm has converged when it discovers a theory or
concept at least as good as the one actually used to generate
the data, where goodness is measured by posterior probabil-
ity. The efficiency of a model is the number of proposals
it generates before convergence. Using this measure of ef-
ficiency, we evaluate error-driven and random models as the
size of search space grows. The details of the experimental
setup are as follows.

Concepts: Concept learning problems have three parame-
ters: ngims, the number of feature dimensions possessed by
each object, n,45, the number of values possible in each di-
mension, and 7., the number of examples in the dataset. In
this experiment, we make the constraint ng;,s = nyqs := S, and
fix ne, = 60, leaving s as the one free problem-size parameter.

Here we compare two models: an error-driven one with
Prana = 0.05, and a completely random one, with pg,q = 1.
For each of these models, we evaluate likelihoods on the full
evaluation set; 7,4 = Nex. TO set the temperature parameter,
we ran a cross-validation experiment with a different set of
data, and chose for each of the models the temperature that
maximized its efficiency. To compute the efficiency of each
of the two models on each problem size, we ran them 30 times
for each of 18 target concepts, and plotted the statistics for the
problem with median mean difficulty.

The results, showing efficiency for the random and error-
driven models on problems of different sizes, are given in fig-
ure 2. As expected, error-driven proposals are markedly more
efficient than random ones. In particular, we draw attention to
the scaling properties of the two algorithms. As the problem
size grows, the number of samples required for convergence
remains essentially constant for the error driven learner, but
grows dramatically for the random learner.

Theories: In the theory learning version of the experiment,

we fix the target theory to be the true theory of magnetism.
The problem difficulty parameter is now the number of ob-
jects that the learner observes. We assume that the learner has
access to a the complete set of pairwise interactions, making
a total of (g) observations for n objects, accounting for sym-
metry.

In addition to the completely random and completely error-
driven models, we look at a variant of the MH-Gibbs model
from (Katz et al., 2008; Ullman et al., 2012). The results
are in figure 2. As with concepts, error-driven theory learning
delivers marked efficiency gains, requiring several orders of
magnitude fewer samples before convergence for all problem
sizes.

Experiment Two: Data Efficiency

The previous experiment showed that using error-driven
search can reduce the number of proposals needed to reach
convergence, but it ignored the cost associated with making
and evaluating each proposal. This is a significant omission:
in many problem settings, acquiring and accessing data entail
significant costs, meaning that models that access data less
frequently are at a significant advantage. In this experiment,
we evaluate data-accesses directly, defining (in)efficiency as
the number of times a model has to “look at” a datapoint.
For both random and error-driven models, data accesses
occur during proposal evaluation, when the likelihood of a
proposal is calculated. The number of accesses required to
evaluate the likelihood of a proposal is controlled by the pa-
rameter n,,, introduced in the previous section. Specifically,
if a model generates p proposals before converging to a solu-
tion, its total number of data accesses due to evaluation is

d = p*neyal.

The parameter n,,, represents a tradeoff between sam-
ple efficiency and data efficiency. At one extreme, setting
Neval = Nex Will (on average) minimize the number of pro-
posals needed, because a complete likelihood evaluation is
the most reliable basis on which to decide whether a sample
should be accepted. On the other extreme, setting 71¢yq = 1
gives a model that is maximally efficient per proposal, but
one that will tend to accept bad proposals, resulting in an in-
creased requirement of proposals before convergence. By the
nature of error-driven models, we expect them to make pro-
posals that are, on average, higher quality than random ones.
It should therefore be possible to get away with evaluating
these proposals on a smaller set than required for a random
model. This is the hypothesis tested in this experiment. In this
experiment, we do not vary the problem complexity. Instead,
we fix a problem instance, and examine model performance
for a range values of p,qnqg and ngyq;.

In concept learning, likelihood evaluation is the only
source of data accesses, and the number of data accesses per
proposal is the same for error-driven and random models. For
theory learning, though, an error-driven proposal triggered by
an error e requires access to each interaction including the ob-
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jects involved in e. Thus, in general, error-driven proposals
require more accesses than random ones.

Results for the two learning domains are shown in figure
3. For concepts, we see that, by and large, smaller evalua-
tion sets do lead to improved performance. In particular, for
each value of p,quq, the fewest data accesses was achieved
with n.,, = 1. For theories, though, smaller evaluation sets
only represent an improvement for the larger values of p, 44,
reflecting the greater cost of error-driven proposals.

In both theory and concept learning, smaller values of p,4,q
generally lead to better performance, but it is interesting to
note that for theory learning the smallest value p,q,q = 0.05
actually fails to be optimal. This is likely due to the fact that
purely error-driven models can get caught on theories with
high likelihood but low prior. In such states, there are few
remaining errors to trigger new error-driven proposals, so a
random proposal is required to move to a new hypothesis.

Discussion and Conclusion

We argued that Bayesian models of concept theory learning,
already successful by many metrics, can be made more ef-
ficient and cognitively plausible by the use of error-driven
proposals. We showed that in both concept learning and the-
ory learning, error-driven algorithms are more efficient than
purely random ones, both in terms of the number of propos-
als they consider before converging to a solution, and in terms
of their use of observed data. These promising results raise
some further questions.

A first major question concerns comparison with human
data. As we argued in the introduction, the increased effi-
ciency of error-driven models already represents an important
improvement in cognitive fidelity: human learning is fast and
scalable, so correct models of it should be as well. But while
a plausible level of efficiency is a necessary condition for a
cognitive model to be completely correct, it is not a sufficient
one, and further experiments are indicated. One such exper-
iment could replicate the test shown in figure 2 with human
learners, examining how learning time scales with problem
complexity. In addition, error-driven learning predicts a re-
cency bias: the learner will tend to be preferentially correct
on the last example it examined. Online learning paradigms
could be used to test for such biases in humans, though it is
important to note that memory limitations may lead to similar
effects.

Second, algorithmic questions also remain. While the re-
quirements of data and time made by an error-driven learner
are more modest than those made by random search, they still
seem excessive by the standards of human learning. What ac-
counts for this discrepancy? A first important note is that
the error-driven proposal mechanisms presented in this pa-
per are far from the only ones possible. Indeed, the specific
proposals we used were chosen as much for simplicity as for
absolute performance: it seems likely that more thoroughly
optimized choices will result in much more efficient models.
Relatedly, since our main interest was in the relative perfor-

mance of error-driven and random models, we applied few
optimizations to either. For instance, other studies (Ullman
et al., 2012) have found benefits from techniques like simu-
lated annealing. Future work could determine if these meth-

ods help in the error-driven case as well.
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