
The Memory Tesseract:
Distributed MINERVA and the Unification of Memory

Matthew A. Kelly (matthew_kelly2@carleton.ca) 1
Douglas J. K. Mewhort (mewhortd@queensu.ca) 2

Robert L. West (robert_west@carleton.ca) 1

1 Institute of Cognitive Science, Carleton University
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

2 Department of Psychology, Queen’s University
62 Arch Street, Kingston, Ontario, K7L 3N6 Canada

Abstract
We prove that MINERVA 2, a widely-used model of biologi-
cal long-term memory, is mathematically equivalent to an
auto-associative memory implemented as a fourth order ten-
sor. We further propose an alternative implementation of
MINERVA 2 as a holographic lateral inhibition network. Our
work clarifies the relationship between MINERVA 2 and other
memory models, and shows that MINERVA 2 and derivative
models can be neurally implemented and scaled-up to long-
term learning tasks.

Keywords: memory; cognitive modelling; MINERVA 2;
vectors; tensors; holographic reduced representations; HRRs.

Introduction
Most memory phenomena can be explained by unified,
computational memory models (e.g., Franklin & Mewhort,
2013; Hintzman, 1984; Humphreys, Bain, & Pike, 1989;
Jamieson & Mewhort, 2011). Simulation has led to parsi-
monious theories of memory, but at a cost of a profusion of
competing models. As different models focus on different
phenomena, there is no best model.

Simulation models share many characteristics indicating
wide agreement about the mathematics of how memory
works. Here, we argue that memory models, including the
MINERVA 2 (Hintzman, 1984) model and variants (e.g.,
Jamieson, Crump, & Hannah, 2012; Jamieson & Mewhort,
2011; Kwantes, 2005; Thomas et al., 2008), as well as holo-
graphic models of short/long term memory (e.g., Eich,
1982; Franklin & Mewhort, 2013; Murdock, 1993), and the
DSHM model of declarative memory (Rutledge-Taylor &
West, 2008) which uses the BEAGLE learning algorithm
(Jones & Mewhort, 2007), can be understood in terms of a
single neurally plausible memory framework.

This effort at unification is based on the MINERVA 2
model (Hintzman, 1984), a computational model of biologi-
cal memory, intended by Hintzman to describe long-term
memory (both episodic and semantic). It has been applied
to several experimental paradigms, including judgement of
frequency tasks (Hintzman 1984), recognition tasks (Hintz-
man, 1984), “schema-abstraction” or category learning
(Hintzman, 1984; 1986), implicit learning tasks such as arti-
ficial grammar learning (Jamieson & Mewhort, 2011), as
well as speech perception (Goldinger, 1998), and naming
words from print (Kwantes & Mewhort, 1999).

Variations on the MINERVA 2 model address an even
broader range of phenomena. MINERVA-AL makes and
corrects predictions to capture numerous associative learn-
ing phenomena from both the animal and human learning
literature (Jamieson, Crump, & Hannah, 2012). Kwantes
(2005) used MINERVA to study how semantic similarity
can be learned from word co-occurrence in the language.
Thomas et al. (2008) used MINERVA to study hypothesis
generation and probability judgement in humans.

In this paper, we use the term MINERVA 2 to refer spe-
cifically to Hintzman’s model, and MINERVA to refer col-
lectively to MINERVA 2 and any model based on it.

Our central contribution is to prove that MINERVA is
mathematically equivalent to an auto-associative fourth or-
der tensor memory, or memory tesseract. We further demon-
strate that MINERVA is approximately equivalent to a holo-
graphic lateral inhibition network (Levy & Gayler, 2009).
These demonstrations have three implications for memory
modelling: (1) the relationship between MINERVA and
other memory models is clarified, suggesting that MIN-
ERVA may be suitable as a basis for all memory modelling,
(2) MINERVA is scalable to arbitrarily long-term learning,
and (3) MINERVA is neurally plausible.

How does MINERVA work?
Hintzman (1986) describes MINERVA’s key assumptions:
(1) only episode traces are stored in memory,
(2) repetition produces multiple traces of an item,
(3) a retrieval cue contacts all traces simultaneously,
(4) each trace is activated according to similarity to the cue,
(5) all traces respond in parallel, the retrieved information

reflecting their summed output.
Each individual experience, or episode, is represented by a
high dimensional vector. Memory is a table, where each row
is a vector representing an ‘episode trace’ corresponding to a
stored experience. Each new experience is stored as a new
row in the memory table. New experiences do not need to
be novel. A repeated experience is also stored as a new row,
separate from previous instances of that experience.

In MINERVA, memory retrieval is not a look-up process,
it is a reconstruction process. In the words of Tulving and
Watkins (1973), “a probe combines or interacts with the
stored information to create the memory of a previously
experienced event”. When a retrieval cue is presented, each

2483

mailto:matthew_kelly2@carleton.ca
mailto:matthew_kelly2@carleton.ca
mailto:mewhortd@queensu.ca
mailto:mewhortd@queensu.ca
mailto:robert_west@carleton.ca
mailto:robert_west@carleton.ca

vector in the table “resonates” with the cue in proportion to
its similarity to the cue. Similarity is computed as a cosine
(i.e., normalized dot-product) of the cue with the stored vec-
tor. Each vector is activated by its cubed similarity to the
cue. Information is retrieved from memory in the form of a
new vector, called an echo. The echo is a weighted sum of
the vectors in the table, each vector weighted by its activa-
tion. By computing activation as the cube of similarity, the
contribution of the most similar vectors (or experiences) is
emphasized and that of the least similar (and least relevant)
is minimized. The echo is used by the model to respond to
the cue as appropriate for the given task.

Abstract, conceptual, and categorical information reflect
aggregate retrieval over many episode traces. The blending
of experiences in the echo is one source of our ability to use
abstractions (e.g., Goldinger, 1998).

According to Hintzman (1990), MINERVA 2 can be un-
derstood as an artificial neural network. A layer of input
nodes represent the cue. A layer of output nodes represent
the echo. Between the two is a hidden layer of nodes. In the
hidden layer, each node corresponds to an episode trace. It
follows that MINERVA’s hidden layer is a localist network:
specific nodes represent specific pieces of information.

Modellers using MINERVA are generally agnostic as to
how the model is related to the brain. No one claims that for
each new experience one grows a new neuron that is forever
singly dedicated to that particular experience. But no other
interpretation of how MINERVA is related to the brain has
been previously proposed, leaving open the question of
MINERVA’s neural and, hence, theoretical plausibility.

A comparison of memory models
The memory models discussed here use vector and tensor
representations to simulate the processes of storage and re-
trieval. Tensors are a generalization of matrices. A vector is
a first order tensor. A matrix is second order tensor. A third
order tensor is a “3D matrix” or a stack of matrices.

Memory models can use either localist or distributed rep-
resentations and have either localist or distributed memory
stores. Vector-based memory models use distributed repre-
sentations, that is to say, an item to be remembered is repre-
sented as a high dimensional vector, which can be thought
of as a pattern of activation across nodes in a network. Con-
versely, in a network that uses localist representation, an
item is represented by the activation of a single node, as
opposed to a pattern of activation across a group of nodes.

In vector-based memory models, the memory store can be
either localist or distributed. By a localist store, we mean
that a model stores different data in different places. By a
distributed store, we mean a model that stores all data in a
single place or all data in all places. For our purposes,
vector-based memory models can be divided into four cate-
gories: vector memory, where all memories are stored in a
single vector, matrix memory, where all memories are stored
in a single matrix, tensor memory, where all memories are
stored in a single, higher-order tensor (e.g., a “3D” or “4D”
matrix), and multi-vector memory, where multiple vectors
are used to store memories. Multi-vector memory models,
such as MINERVA, and DSHM (Rutledge-Taylor & West,
2008) use localist stores because different vectors are used

to store different memories, whereas vector (e.g., Eich,
1982; Franklin & Mewhort, 2013; Murdock, 1993), matrix
(e.g., Humphreys, Pike, Bain, & Tehan, 1989; Howard &
Kahana, 2002), and tensor memory models (e.g., Hum-
phreys, Bain, & Pike, 1989; Smolensky, 1990) use distrib-
uted stores. Across these four categories, there are strong
similarities between models, as we will now discuss.

Matrix and tensor models
Humphreys et al. (1989) note that their matrix memory,
MINERVA 2, and TODAM (Murdock, 1993) retrieve in-
formation as a sum of all traces in memory, each trace
weighted by its similarity to the cue. As we will show, these
models are not different in kind, and so we elect to use the
term echo, normally reserved for MINERVA, to refer to the
retrieved vector in all of these memory models.

A key point of comparison is how vector-based models
represent associations between items. Smolensky (1990)
notes that the tensor product, a generalization of the matrix
product, can be used to form associations between an arbi-
trary number of items, though at the cost of producing pro-
gressively larger and more unwieldy tensors.

The order of the tensor used to store memories indicates
the number of vectors the memory model associates to-
gether. An association between a pair of items is represented
as the tensor product of the items’ vectors, which is a second
order tensor, or matrix. A matrix memory is the sum of those
associations. Howard and Kahana’s (2002) matrix memory
is context x item, that is, it associates a vector representing
an item with a vector representing a context. Humphreys et
al. (1989) matrix memory is item a x item b, that is, it asso-
ciates two different items together.

If three items are being associated, the result is a “3D
matrix”, or third order tensor. Humphreys, Bain, and Pike’s
(1989) third order tensor memory is context x item a x item
b, that is, it associates two different items together with a
representation of context.

There is a problem here. Across these models, the archi-
tecture of memory is being modified to suit the particulars
of the tasks being modelled. If we just need one cue (be it an
item or context), we use a matrix memory. If we use two
cues (be it an item and context, or two items) we use a third
order tensor. But what if we need to use three cues? Do we
then need to use a fourth order tensor? What about four
cues? Using this approach, not only does the architecture of
memory need to be changed depending on the particulars of
the task, but the architecture becomes increasingly unwieldy
as the task becomes more complex.

Vector models
Holographic vectors can represent arbitrarily complex asso-
ciations of items and context, making it unnecessary to use
matrices or higher order tensors to represent association,
allowing modellers to adopt a memory architecture that is
invariant with respect to the complexity of the associations.

In a vector memory, an association between a set of items
is the convolution of the vectors representing those items.
Convolution is a noisy compression of the tensor-product
(Plate, 1995; for discussion see Kelly, Blostein, & Mewhort,
2013), thus vector models differ from matrix and tensor

2484

models only in that the highly lossy nature of holographic
vector storage adds noise to the echo, and that individual
items and associations between sets of any size can all be
stored together as a sum in a single vector memory.

Holographic vectors do have one weakness: they are
highly lossy. This is the only reason one might prefer the
aforementioned matrix or tensor memories over a holo-
graphic one. However, combining holographic vectors with
MINERVA creates a system that can store arbitrarily com-
plex associations between items and contexts, and retrieve
them with fidelity (Jamieson & Mewhort, 2011).

MINERVA
MINERVA 2 differs from vector or matrix models in that:
(1) MINERVA 2 associates items by either adding together

or concatenating the vectors representing those items,
rather than using the tensor-product or convolution.

(2) All traces in the echo of MINERVA 2 are weighted by
the cubed similarity to the cue. In a vector or matrix
model, the similarity is not raised to an exponent.

The first difference is not essential. The Holographic Exem-
plar Model (Jamieson & Mewhort, 2011) is a MINERVA
that uses convolution rather than concatenation, gaining the
ability to represent arbitrarily complex associations.

The second difference is critical. Raising similarity to an
exponent of 3 sets the MINERVA models apart from the
vector and matrix models. The purpose of this exponent is to
make MINERVA nonlinear, as Hintzman explains (1990):

This model escapes being just a less efficient version of
the vector model by using nonlinearity. In particular, the
activation of each hidden unit is a positively accelerated
function of its match to the input vector, limiting the
number of units that will respond significantly to any in-
put, and thereby reducing noise.

By weighting each episode trace by the cube of its similar-
ity, the traces that are most similar to the cue contribute
much more to the echo than traces that have only partial
similarity to the cue, or traces that have tiny, incidental simi-
larity to the cue. Cubing similarity weights retrieval in fa-
vour of an exact match to a single item in memory over par-
tial matches to several items in memory or slight matches
with a very large number of items in memory.

This characteristic allows MINERVA to “clean-up” the
echo using iterative retrieval. MINERVA can “clean up” an
echo by using the echo as a cue to produce a new echo. With
each pass through the memory system, the contribution of
the most similar episode traces grows. This process can be
repeated until the echo reaches a steady-state where it no
longer changes, at which point the echo will closely resem-
ble the trace in memory most similar to the cue.

The clean-up process also serves as a possible explanation
for why we are faster to remember some things than others:
echoes formed from frequently occurring and distinctive
episode traces reach a steady-state more quickly.

Linear systems cannot perform a clean-up process and so
require an external clean-up memory. The echo produced by
a holographic vector memory (e.g., TODAM; Murdock,
1993) or matrix memory (e.g., Humphreys et al., 1989) is

noisy and requires a secondary (or long-term) memory in
order to identify which memory the echo most resembles
(Murdock, 1993). This is acceptable for TODAM, as it is
intended as a model of primary (or working) memory.
MINERVA, however, is a model of long-term memory and
thus it would “violate the spirit of MINERVA 2” (Hintzman,
1986) to rely on an external memory to clean-up the echo.

A disadvantage of MINERVA is that it is a localist mem-
ory store, which raises the question of neural plausibility, as
well as scalability. How is MINERVA neurally imple-
mented, if not by growing new neurons for each new expe-
rience? Is MINERVA practical for very long-term learning
given that each experience adds another row to the memory
table? While MINERVA has been applied to large problems
(Kwantes, 2005; Kwantes & Mewhort, 1999), doing so re-
quires abandoning key assumptions of the model for the
sake of computational feasibility.

Given the usefulness of using the cube of the similarity in
MINERVA 2, we want to keep this feature in a variant of the
model that uses a distributed memory store.

MINERVA as a fourth order tensor
In what follows, we prove equivalence between the MIN-
ERVA 2 model and an auto-associative fourth order tensor
memory. To do so, we first prove that a variant of MIN-
ERVA that raises similarity to an exponent of 1 is equivalent
to an auto-associative second order tensor (i.e., a matrix)
memory. Then we prove that a MINERVA that uses an ex-
ponent of 2 is equivalent to a third order tensor. Finally, we
prove that the MINERVA 2 model, which uses an exponent
of 3, is equivalent to a fourth order tensor.

Consider a variant on the MINERVA model that uses dot
product (denoted by •) to measure similarity and weights
each trace by its similarity raised to the exponent of 1. Each
episode trace in memory is represented by a vector vi where
i = 1 ... m and m is the number of traces in memory. When
the model is presented with a cue x, the echo y is:

y = (x•v1)v1 + ... + (x•vm)vm
This is equivalent to an auto-associative matrix memory.

In an auto-associative matrix memory, each episode trace
is represented by a vector vi. To store a trace in memory, the
trace is associated with itself (hence auto-associative) by
taking the outer-product of the vector with itself, vi viT, then
taking the sum of all the outer-product matrices to create the
memory matrix, M:

M = v1 v1T + ... + vm vmT

The echo, y, is the inner-product of the cue and the matrix:
y = Mx
y = (v1 v1T + ... + vm vmT) x
y = v1 v1T x + ... + vm vmT x

Because viT x is the dot-product of vi and x:
y = (x•v1)v1 + ... + (x•vm)vm

which is identical to MINERVA with an exponent of 1 or to
a matrix memory (e.g., Humphreys et al., 1989). Consider a
MINERVA that raises similarity to the exponent of 2:

y = (x•v1)2 v1 + ... + (x•vm)2 vm
This variant of MINERVA, as we shall demonstrate, is
mathematically equivalent to an auto-associative third order
tensor memory. Using the tensor product, denoted by ⊗, we

2485

can store each trace as vi ⊗ vi ⊗ vi , which is a third order
tensor. The memory tensor M is the sum of the third order
tensor outer-products of each episode trace:

M = v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm
The echo, y, can be computed from the cue, x, by taking the
inner product twice:

y = (M x) x
If each vi is a vector of n dimensions, then M is an n x n x n
tensor. M can be thought of as n matrices of n x n dimen-
sions. When we compute the inner-product of M with the
cue x, we compute the inner product of x with each of those
n matrices. This results in n vectors that can be rearranged
into a new n x n matrix. The second inner product with x
then produces a vector, the echo y.

To illustrate, let us break M into its components:
y = (M x) x
y = ((v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm) x) x
y = (v1 ⊗ v1 ⊗ v1 x + ... + vm ⊗ vm ⊗ vm x) x

The tensor product vi ⊗ vi ⊗ vi can be understood as n ma-
trices, where each matrix is the outer-product vi viT weighted
by a different element j of vi , for all j = 1 ... n.

 vi ⊗ vi ⊗ vi = {vi 1 vi viT , ... , vi n vi viT}
Taking the inner-product of the cue x with vi ⊗ vi ⊗ vi, we
get n vectors, each weighted by the dot-product of x with vi:

 vi ⊗ vi ⊗ vi x = {vi 1 vi viT x, ... , vi n vi viT x}
 vi ⊗ vi ⊗ vi x = {vi 1 (x • vi) vi, ... , vi n (x • vi) vi}

If we factor out the dot-product of x and vi , the result is n
vectors, or rather, the outer-product matrix of vi viT:

 vi ⊗ vi ⊗ vi x = (x • vi) {vi 1 vi, ... , vi n vi}
 vi ⊗ vi ⊗ vi x = (x • vi) vi viT

Thus, when we take the outer-product of x with M, the re-
sult is a sum of m matrices vi viT, each matrix weighted by
the dot-product of x with vi.

y = (v1 ⊗ v1 ⊗ v1 x + ... + vm ⊗ vm ⊗ vm x) x
y = ((x • v1) v1 v1T + ... + (x • vm) vm vmT) x

By then taking the second inner-product with x, we reduce
each matrix to a vector weighted by the squared similarity to
x, producing an echo like MINERVA with an exponent of 2:

y = (x • v1) v1 v1T x + ... + (x • vm) vm vmT x
y = (x • v1) (x • v1) v1 + ... + (x • vm) (x • vm) vm
y = (x • v1)2 v1 + ... + (x • vm)2 vm

The dot product of two vectors, where each vector has a
magnitude of one, produces a value in the range of one, if
the vectors are identical, to zero, if the vectors are orthogo-
nal, to negative one, if one vector is the negation of the
other. Thus it is important to preserve the sign of the dot
product. By taking the square of the dot product, the sign is
lost. For this reason, MINERVA 2 uses an exponent of 3.

MINERVA 2 is equivalent to an auto-associative memory
implemented as a fourth order tensor. Memory is con-
structed as a sum of fourth order tensors:

M = v1 ⊗ v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm ⊗ vm

Given a cue x, an echo y is computed by taking the inner
product three times:

y = ((M x) x) x
y = (((v1 ⊗ v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm ⊗ vm) x)x)x
y = (((x • v1) v1 ⊗ v1 ⊗ v1 + ... + (x • v1) vm ⊗ vm ⊗vm)x)x
y = (((x • v1)2 v1 v1T + ... + (x • vm)2 vm vmT) x
y = (x • v1)3 v1 + ... + (x • vm)3 vm

Is the memory tesseract practical?
MINERVA is equivalent to a distributed memory system
implemented as an auto-associative fourth order tensor, or
memory tesseract. Unfortunately, fourth order tensors are
very large. For most applications of MINERVA, the dimen-
sionality n of a vector will be larger than the number of
memories m stored in the model. MINERVA, as standardly
implemented, is an m x n table, whereas a memory tesseract
is an n4 data structure. A typical MINERVA 2 has 10 ≤ n ≤
200. In general, the number of memories stored is smaller
than n and much smaller than n3. For applications where m <
n3, the implementation of MINERVA as a table is more effi-
cient. However, for large scale applications where m ≥ n3,
the fourth order tensor is more efficient.

Alternatively, a holographic approximation to the memory
tesseract can be implemented as an n x p data structure for
the p of your choice, as is discussed in the next section.

Using holographic vectors rather than tensors
In a holographic vector system, trying to clean-up the echo
by iteratively using the echo as a cue to retrieve a new echo
is like trying to clean a pair of glasses with an oily cloth: the
more you try to clean it, the worse it becomes. Yet Levy and
Gayler (2009) have demonstrated that this is possible using
a lateral inhibition network implemented as a fully distrib-
uted vector architecture. To store a trace vi in Levy and Gay-
ler’s model, the trace is associated with itself twice, then
each trace is added to the memory vector m:

m = v1 * v1 * v1 + ... + vm * vm * vm
where * is a binding operation. In holographic reduced rep-
resentations (Plate, 1995), binding uses circular convolution
and unbinding uses circular correlation. Given a cue, x, we
can unbind, denoted by #, to recover an echo:

y = x # (x # m)
y = x # (x # (v1 * v1 * v1 + ... + vm * vm * vm))

Unbinding is such that given a bound pair, vi * vj,
x # vi * vj = (x•vi) vj + noise

Thus:
y = x # (x # (v1 * v1 * v1 + ... + vm * vm * vm))
y = x # ((x•v1)v1*v1 + ... + (x•vm)vm*vm + noise)
y = (x•v1)2 v1 + ... + (x•vm)2 vm + noise

However, if we wish to imitate MINERVA 2 as closely as
possible (and preserve the sign of the similarity) we need to
add another association to Levy and Gayler’s model. We
compute the memory vector, m, and unbind the echo, y, as:

m = v1 * v1 * v1 * v1 + ... + vm * vm * vm * vm
y = x # (x # (x # m))
y = x # (x # (x # (v1*v1*v1*v1 + ... + vm*vm*vm*vm)))
y = (x•v1)3 v1 + ... + (x•vm)3 vm + noise

While this allows the most similar traces to the cue to domi-
nate the echo, the noise term threatens to overwhelm the
signal. Because holographic vectors use lossy compression,
by iterating, the noise will only grow.

Levy and Gayler solve this problem by using random
permutations. Given three random permutation matrices P1,
P2, P3, we can permute the vectors as follows:

m = (P1 v1) * (P2 v1) * (P3 v1) * v1 + ... + (P1 vm) * (P2 vm) *
(P3 vm) * vm

To recover an echo, we can use inverse permutations:

2486

 y = ((P1T x) * (P2T x) * (P3T x)) # m
To eliminate the noise, Levy and Gayler use hundreds of
such vector memories in parallel, each of which uses its own
pair, or in our variant, triple, of permutations. Let p be the
number of vector memories being used, then the echo y is
the sum of echoes for each p:

y = y1 + ... + yp
where for each yj, j = 1 ... p,

yj = ((Pj,1T x) * (Pj,2T x) * (Pj,3T x)) # mj
such that:

y = ((P1,1T x) * (P1,2T x) * (P1,3T x)) # m1 + ... + ((Pp,1T x) *
(Pp,2T x) * (Pp,3T x)) # mp

Because each echo yj is produced using a different triple of
permutations, each echo’s noise term will be different. Be-
cause the noise in each echo is different, a different part of
the signal is preserved in each echo. By taking the sum of all
these echoes, we average across them to get a close ap-
proximation to the true signal. With large enough p, we
minimize the noise sufficiently that we can clean-up the
echo by iterating. We can divide the sum of all the echoes,
y, by its magnitude to normalize, then use it as the new cue.
By varying the dimensionality of the vectors n and the num-
ber of memory vectors operating in parallel p, we can ma-
nipulate how fast the echo is cleaned up by iterating.

The number of iterations to clean-up the echo is a meas-
ure of the time the model takes to perform a memory re-
trieval. For this reason, the number of iterations is an ideal
candidate as a predictor for human reaction time. Being able
to map a measure of the model’s processing time onto hu-
man reaction time would help to provide evidence for strong
equivalence (Pylyshyn, 1989) between what the model is
doing and what the brain is doing.

The number of iterations to clean-up the echo in MIN-
ERVA 2 is typically too few to provide sufficient granularity
to map well onto human reaction times. If we instead use
Levy and Gayler’s model, by varying p we can control the
average number of iterations that the system takes to clean-
up the echo. Using smaller p, the network takes, on average,
longer to converge to a steady-state than an iterated MIN-
ERVA 2 model, such that the iterations map onto smaller
units of human reaction time. Thus, the lateral inhibition
network, when coupled with a suitable decision mechanism
to end retrieval, can provide more fine-grained reaction time
predictions than an iterated MINERVA 2.

The lateral inhibition network is also more tractable than
a fourth order tensor for large n (i.e., more space efficient
for p < n3 and more time efficient for p log n < n3).

The semantic tesseract: Scaling MINERVA up
Applying MINERVA to large semantic memory tasks, such
as learning the meaning of words (Kwantes, 2005) or learn-
ing how to sound-out written words (Kwantes & Mewhort,
1999), requires abandoning a key assumption of MINERVA
for purely pragmatic reasons, namely, that repetition of an
item produces multiple traces of that item. But if these mod-
els were re-implemented using the memory tesseract (or its
holographic approximation), we would not have to abandon
that key assumption because the tesseract does not grow
with the addition of new memories.

BEAGLE (Jones & Mewhort, 2007) is a learning algo-
rithm that models how people abstract the meaning of words
from their lifetime language experience. DHSM (Rutledge-
Taylor & West, 2008) uses a similar approach to BEAGLE
but re-purposes the algorithm as a general memory model.
DSHM is a multi-vector memory system, like the standard
implementation of MINERVA, but unlike MINERVA, each
vector stands for a concept rather than an individual experi-
ence. In DSHM, each experience updates the vector for each
concept that comprises the experience. An experience is
stored in the associations between concept vectors.

In MINERVA, concepts are echoes, artifacts of aggregate
retrieval across experiences. We speculate that the vectors in
BEAGLE and DSHM are akin to echoes. The memory tes-
seract now provides a means of re-implementing BEAGLE
or DSHM as MINERVA models.

In BEAGLE, an experience is a sentence. To re-
implement BEAGLE in the memory tesseract, each time a
word is encountered in a sentence, memory is updated with
a new episode trace by summing a new fourth order tensor
with the memory tensor:

Mt = Mt-1 + vi ⊗ vi ⊗ vi ⊗ vi

Each episode trace is the sum of a word’s orthographic in-
formation as calculated in Cox et al. (2011) with the word’s
semantic information gleaned from that particular sentence,
as calculated in Jones and Mewhort (2007):

vi = vi orthographic + vi semantic
However, holographic vectors typically have n ≥ 512. 512 4
is about 1678 times larger than the BEAGLE model. If we
assume that BEAGLE and MINERVA use vectors of the
same size, given a literate adult with a vocabulary of 80 000
words, the memory tesseract will be larger than BEAGLE
for vectors with more than 43 dimensions.

If we were to run a memory tesseract model that learns
word meaning from context by processing a large corpus, as
BEAGLE does, we would need to keep n as small as possi-
ble without sacrificing too much fidelity. We could also use
the holographic approximation to the memory tesseract,
which is, again, scalable depending on the desired fidelity.

The proposed model escapes being just a less efficient
version of BEAGLE because it raises similarity to the expo-
nent of 3. BEAGLE stores all experiences of a particular
word in a single vector. This storage is highly lossy and the
individual experiences are difficult to recover. MINERVA
retains more of each experience, information that can be
recovered by iterating to “clean up” the echo.

A memory tesseract implementation of BEAGLE would
have another benefit. Individual vectors in BEAGLE are
sensitive to first-order (word co-occurrence) and second
order (synonymy) associations. Kwantes (2005) found that
aggregating across vectors with first-order associations pro-
duces an echo with second order associations. Likewise, we
suspect that aggregating across BEAGLE’s vectors would
produce an echo with third order associations. Third-order
associations (and higher) may be useful for identifying part
of speech. This change to BEAGLE is a benefit of adopting
the MINERVA memory retrieval mechanism.

The preceding discussion is intended only as an extended
example of how MINERVA, when implemented as a tensor,
can be applied to larger scale problems.

2487

Conclusion
We demonstrate that the influential MINERVA 2 (Hintzman,
1984) model is mathematically equivalent to an auto-
associative fourth order tensor memory system, or memory
tesseract. We further show that this is approximately
equivalent to a variant of the holographic lateral inhibition
network proposed by Levy and Gayler (2009). These dem-
onstrations have three theoretical implications:
(1) Viewing MINERVA 2 and its variants (collectively,

MINERVA models) as a fourth order tensor clarifies the
relationship between MINERVA and third order, second
order (i.e., matrix), and compressed tensor (i.e., holo-
graphic vector) memory models, allowing us to move
toward a unified understanding of memory.

(2) MINERVA can be scaled up to model long term learn-
ing, broadening the scope of tasks to which MINERVA
can be applied and allowing for unification with models
of semantic learning, such as BEAGLE.

(3) A naïve neural interpretation of MINERVA might sug-
gest that a new neuron is grown for each new experi-
ence, corresponding to the addition of another row to
MINERVA’s memory table. Understood as a memory
tesseract, MINERVA is fully distributed across neural
connectivity, and memories can be added by changing
the connectivity without requiring additional neural re-
sources. Eliasmith’s (2013) neural engineering frame-
work provides a system for translating linear algebra
computations (e.g., convolution, permutation) into spik-
ing neuron models. The memory tesseract, or its holo-
graphic approximation, could be easily implemented as a
realistic neural model using Eliasmith’s framework.

References
Cox, G. E., Kachergis, G., Recchia, G., & Jones, M. N.

(2011). Towards a Scalable Holographic Representation
of Word Form. Behavior Research Methods, 43, 602-615.

Eich, J. M. (1982). A composite holographic associative
recall model. Psychological Review, 89, 627–661.

Eliasmith, C. (2013). How to build a brain: A neural archi-
tecture for biological cognition. Oxford University Press.

Franklin, D. R. J., & Mewhort, D. J. K. (2013). Control
Processes in Free Recall. In R. West & T. Stewart (eds.),
12th International Conference on Cognitive Modeling
(pp. 47-52), Ottawa, CA.

Goldinger, S. D. (1998). Echoes of echoes? An episodic
theory of lexical access. Psychological Review, 105, 251-
279.

Hintzman, D. L. (1984). MINERVA 2: A simulation model
of human memory. Behavior Research Methods, Instru-
ments, and Computers, 16, 96-101.

Hintzman, D. L. (1986). “Schema abstraction” in multiple-
trace memory models. Psychological Review, 93, 441-
428.

Hintzman, D. L. (1990). Human learning and memory:
Connections and dissociations. Annual Review of Psy-
chology, 41, 109-139.

Howard, M. W., & Kahana, M. J. (2002). A distributed rep-
resentation of temporal context. Journal of Mathematical
Psychology, 46, 269-299.

Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different
ways to cue a coherent memory system: A theory for epi-
sodic, semantic, and procedural tasks. Psychological Re-
view, 96, 208-233.

Humphreys, M. S., Pike, R., Bain, J. D., & Tehan, G.
(1989). Global matching: A comparison of the SAM,
Minerva II, Matrix, and TODAM models. Journal of
Mathematical Psychology, 33, 36-67.

Jamieson, R. K., Crump, M. J. C., & Hannah, S. D. (2012).
An instance theory of associative learning. Learning &
Behavior, 40, 61-82.

Jamieson, R. K., & Mewhort, D. J. K. (2011). Grammatical-
ity is inferred from global similarity: A reply to Kinder
(2010). The Quarterly Journal of Experimental Psychol-
ogy, 64, 209-216.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing
word meaning and order information in a composite holo-
graphic lexicon. Psychological Review, 114, 1-37.

Kelly, M. A., Blostein, D., & Mewhort, D. J. K. (2013). En-
coding structure in holographic reduced representations.
Canadian Journal of Experimental Psychology, 67, 79-93.

Kwantes, P. J. (2005). Using context to build semantics.
Psychonomic Bulletin & Review, 12, 703-710.

Kwantes, P. J., & Mewhort, D. J. K. (1999). Modeling lexi-
cal decision and word naming as a retrieval process. Ca-
nadian Journal of Experimental Psychology, 53, 306-315.

Levy, S. D., & Gayler, R. W. (2009). “Lateral inhibition” in
a fully distributed connectionist architecture. In Howes,
A., Peebles, D. & Cooper, R. (Eds.), 9th International
Conference on Cognitive Modeling (pp.318-323). Man-
chester, UK.

Murdock, B. B. (1993). TODAM2: a model for the storage
and retrieval of item, associative and serial-order informa-
tion. Psychological Review, 100, 183–203.

Rutledge-Taylor, M. F., & West R. L. (2008). Modeling the
fan-effect using dynamically structured holographic
memory. In B. C. Love, K. McRae, & V. M. Sloutsky
(Eds.), 30th Annual Conference of the Cognitive Science
Society (pp. 385-390). Washington, DC.

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural Networks, 6, 623–641.

Pylyshyn, Z. (1989). Computing in Cognitive Science. In
Posner, M. (Ed.) Foundations of Cognitive Science. Cam-
bridge: MIT Press.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46, 159-216.

Thomas, R. P., Dougherty, M. R., Sprenger, A. M., & Harbi-
son, J. I. (2008). Diagnostic hypothesis generation and
human judgment. Psychological Review, 115, 155-185.

Tulving, E., & Watkins, M.J. (1973). Continuity between
recall and recognition. American Journal of Psychology,
86, 739-748.

2488

