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Abstract
We prove that MINERVA 2, a widely-used model  of biologi-
cal long-term memory, is mathematically equivalent  to an 
auto-associative memory implemented as a fourth order ten-
sor. We further propose an  alternative implementation of 
MINERVA 2 as a holographic lateral inhibition network. Our 
work clarifies the relationship between MINERVA 2 and other 
memory models, and shows that MINERVA 2 and derivative 
models can be neurally implemented and scaled-up to long-
term learning tasks.
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Introduction
Most memory phenomena can be explained by unified, 
computational memory models (e.g., Franklin & Mewhort, 
2013; Hintzman, 1984; Humphreys, Bain, & Pike, 1989; 
Jamieson & Mewhort, 2011). Simulation has led to parsi-
monious theories of memory, but at a cost of a profusion of 
competing models. As different models focus on different 
phenomena, there is no best model.

Simulation models share many characteristics indicating 
wide agreement about the mathematics of how memory 
works. Here, we argue that memory models, including the 
MINERVA 2 (Hintzman,  1984) model and variants (e.g., 
Jamieson, Crump, & Hannah, 2012; Jamieson & Mewhort, 
2011; Kwantes, 2005; Thomas et al.,  2008), as well as holo-
graphic models of short/long term memory (e.g.,  Eich, 
1982; Franklin & Mewhort, 2013; Murdock, 1993),  and the 
DSHM model of declarative memory (Rutledge-Taylor & 
West, 2008) which uses the BEAGLE learning algorithm 
(Jones & Mewhort, 2007), can be understood in terms of a 
single neurally plausible memory framework.

This effort at unification is based on the MINERVA 2 
model (Hintzman, 1984), a computational model of biologi-
cal memory, intended by Hintzman to describe long-term 
memory (both episodic and semantic).  It has been applied 
to several experimental paradigms, including judgement of 
frequency tasks (Hintzman 1984), recognition tasks (Hintz-
man, 1984), “schema-abstraction” or category learning 
(Hintzman, 1984; 1986), implicit learning tasks such as arti-
ficial grammar learning (Jamieson & Mewhort, 2011),  as 
well as speech perception (Goldinger,  1998), and naming 
words from print (Kwantes & Mewhort, 1999).

Variations on the MINERVA 2 model address an even 
broader range of phenomena. MINERVA-AL makes and 
corrects predictions to capture numerous associative learn-
ing phenomena from both the animal and human learning 
literature (Jamieson, Crump, & Hannah, 2012). Kwantes 
(2005) used MINERVA to study how semantic similarity 
can be learned from word co-occurrence in the language. 
Thomas et al. (2008) used MINERVA to study hypothesis 
generation and probability judgement in humans.

In this paper, we use the term MINERVA 2 to refer spe-
cifically to Hintzman’s model, and MINERVA to refer col-
lectively to MINERVA 2 and any model based on it.

Our central contribution is to prove that MINERVA is 
mathematically equivalent to an auto-associative fourth or-
der tensor memory, or memory tesseract. We further demon-
strate that MINERVA is approximately equivalent to a holo-
graphic lateral inhibition network (Levy & Gayler, 2009). 
These demonstrations have three implications for memory 
modelling: (1) the relationship between MINERVA and 
other memory models is clarified, suggesting that MIN-
ERVA may be suitable as a basis for all memory modelling, 
(2) MINERVA is scalable to arbitrarily long-term learning, 
and (3) MINERVA is neurally plausible.

How does MINERVA work?
Hintzman (1986) describes MINERVA’s key assumptions:
(1) only episode traces are stored in memory,
(2) repetition produces multiple traces of an item,
(3) a retrieval cue contacts all traces simultaneously,
(4) each trace is activated according to similarity to the cue,
(5) all traces respond in parallel, the retrieved information 

reflecting their summed output.
Each individual experience, or episode, is represented by a 
high dimensional vector. Memory is a table, where each row 
is a vector representing an ‘episode trace’ corresponding to a 
stored experience. Each new experience is stored as a new 
row in the memory table. New experiences do not need to 
be novel.  A repeated experience is also stored as a new row, 
separate from previous instances of that experience.

In MINERVA, memory retrieval is not a look-up process, 
it is a reconstruction process. In the words of Tulving and 
Watkins (1973), “a probe combines or interacts with the 
stored information to create the memory of a previously 
experienced event”.  When a retrieval cue is presented, each 
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vector in the table “resonates” with the cue in proportion to 
its similarity to the cue.  Similarity is computed as a cosine 
(i.e.,  normalized dot-product) of the cue with the stored vec-
tor.  Each vector is activated by its cubed similarity to the 
cue. Information is retrieved from memory in the form of a 
new vector, called an echo. The echo is a weighted sum of 
the vectors in the table, each vector weighted by its activa-
tion.  By computing activation as the cube of similarity, the 
contribution of the most similar vectors (or experiences) is 
emphasized and that of the least similar (and least relevant) 
is minimized. The echo is used by the model to respond to 
the cue as appropriate for the given task.

Abstract, conceptual, and categorical information reflect 
aggregate retrieval over many episode traces. The blending 
of experiences in the echo is one source of our ability to use 
abstractions (e.g., Goldinger, 1998).

According to Hintzman (1990), MINERVA 2 can be un-
derstood as an artificial neural network. A layer of input 
nodes represent the cue.  A layer of output nodes represent 
the echo. Between the two is a hidden layer of nodes. In the 
hidden layer, each node corresponds to an episode trace. It 
follows that MINERVA’s hidden layer is a localist network: 
specific nodes represent specific pieces of information.

Modellers using MINERVA are generally agnostic as to 
how the model is related to the brain. No one claims that for 
each new experience one grows a new neuron that is forever 
singly dedicated to that particular experience. But no other 
interpretation of how MINERVA is related to the brain has 
been previously proposed, leaving open the question of 
MINERVA’s neural and, hence, theoretical plausibility.

A comparison of memory models
The memory models discussed here use vector and tensor 
representations to simulate the processes of storage and re-
trieval.  Tensors are a generalization of matrices. A vector is 
a first order tensor. A matrix is second order tensor. A third 
order tensor is a “3D matrix” or a stack of matrices.

Memory models can use either localist or distributed rep-
resentations and have either localist or distributed memory 
stores. Vector-based memory models use distributed repre-
sentations,  that is to say, an item to be remembered is repre-
sented as a high dimensional vector, which can be thought 
of as a pattern of activation across nodes in a network. Con-
versely, in a network that uses localist representation,  an 
item is represented by the activation of a single node, as 
opposed to a pattern of activation across a group of nodes. 

In vector-based memory models,  the memory store can be 
either localist or distributed.  By a localist store, we mean 
that a model stores different data in different places. By a 
distributed store, we mean a model that stores all data in a 
single place or all data in all places. For our purposes, 
vector-based memory models can be divided into four cate-
gories: vector memory, where all memories are stored in a 
single vector, matrix memory, where all memories are stored 
in a single matrix, tensor memory, where all memories are 
stored in a single, higher-order tensor (e.g., a “3D” or “4D” 
matrix), and multi-vector memory,  where multiple vectors 
are used to store memories.  Multi-vector memory models, 
such as MINERVA, and DSHM (Rutledge-Taylor & West, 
2008) use localist stores because different vectors are used 

to store different memories, whereas vector (e.g., Eich, 
1982; Franklin & Mewhort, 2013; Murdock, 1993), matrix 
(e.g., Humphreys, Pike, Bain, & Tehan, 1989; Howard & 
Kahana,  2002), and tensor memory models (e.g.,  Hum-
phreys, Bain, & Pike, 1989; Smolensky, 1990) use distrib-
uted stores. Across these four categories, there are strong 
similarities between models, as we will now discuss.

Matrix and tensor models
Humphreys et al. (1989) note that their matrix memory, 
MINERVA 2, and TODAM (Murdock, 1993) retrieve in-
formation as a sum of all traces in memory, each trace 
weighted by its similarity to the cue. As we will show, these 
models are not different in kind, and so we elect to use the 
term echo, normally reserved for MINERVA, to refer to the 
retrieved vector in all of these memory models.

A key point of comparison is how vector-based models 
represent associations between items. Smolensky (1990) 
notes that the tensor product, a generalization of the matrix 
product,  can be used to form associations between an arbi-
trary number of items, though at the cost of producing pro-
gressively larger and more unwieldy tensors.

The order of the tensor used to store memories indicates 
the number of vectors the memory model associates to-
gether. An association between a pair of items is represented 
as the tensor product of the items’ vectors, which is a second 
order tensor, or matrix. A matrix memory is the sum of those 
associations. Howard and Kahana’s (2002) matrix memory 
is context x item,  that is, it associates a vector representing 
an item with a vector representing a context. Humphreys et 
al. (1989) matrix memory is item a x item b,  that is, it asso-
ciates two different items together.

If three items are being associated, the result is a “3D 
matrix”,  or third order tensor. Humphreys,  Bain, and Pike’s 
(1989) third order tensor memory is context x item a x item 
b,  that is,  it associates two different items together with a 
representation of context.

There is a problem here. Across these models, the archi-
tecture of memory is being modified to suit the particulars 
of the tasks being modelled. If we just need one cue (be it an 
item or context), we use a matrix memory. If we use two 
cues (be it an item and context, or two items) we use a third 
order tensor. But what if we need to use three cues? Do we 
then need to use a fourth order tensor? What about four 
cues? Using this approach, not only does the architecture of 
memory need to be changed depending on the particulars of 
the task, but the architecture becomes increasingly unwieldy 
as the task becomes more complex.

Vector models
Holographic vectors can represent arbitrarily complex asso-
ciations of items and context, making it unnecessary to use 
matrices or higher order tensors to represent association, 
allowing modellers to adopt a memory architecture that is 
invariant with respect to the complexity of the associations.

In a vector memory, an association between a set of items 
is the convolution of the vectors representing those items. 
Convolution is a noisy compression of the tensor-product 
(Plate, 1995; for discussion see Kelly, Blostein, & Mewhort, 
2013), thus vector models differ from matrix and tensor 
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models only in that the highly lossy nature of holographic 
vector storage adds noise to the echo, and that individual 
items and associations between sets of any size can all be 
stored together as a sum in a single vector memory.

Holographic vectors do have one weakness: they are 
highly lossy.  This is the only reason one might prefer the 
aforementioned matrix or tensor memories over a holo-
graphic one. However, combining holographic vectors with 
MINERVA creates a system that can store arbitrarily com-
plex associations between items and contexts, and retrieve 
them with fidelity (Jamieson & Mewhort, 2011).

MINERVA
MINERVA 2 differs from vector or matrix models in that:
(1) MINERVA 2 associates items by either adding together 

or concatenating the vectors representing those items, 
rather than using the tensor-product or convolution.

(2) All traces in the echo of MINERVA 2 are weighted by 
the cubed similarity to the cue. In a vector or matrix 
model, the similarity is not raised to an exponent.

The first difference is not essential. The Holographic Exem-
plar Model (Jamieson & Mewhort, 2011) is a MINERVA 
that uses convolution rather than concatenation, gaining the 
ability to represent arbitrarily complex associations.

The second difference is critical. Raising similarity to an 
exponent of 3 sets the MINERVA models apart from the 
vector and matrix models. The purpose of this exponent is to 
make MINERVA nonlinear, as Hintzman explains (1990):

This model escapes being just a less efficient version of 
the vector model by using nonlinearity.  In particular,  the 
activation of each hidden unit is a positively accelerated 
function of its match to the input vector, limiting the 
number of units that will respond significantly to any in-
put, and thereby reducing noise.

By weighting each episode trace by the cube of its similar-
ity, the traces that are most similar to the cue contribute 
much more to the echo than traces that have only partial 
similarity to the cue, or traces that have tiny, incidental simi-
larity to the cue. Cubing similarity weights retrieval in fa-
vour of an exact match to a single item in memory over par-
tial matches to several items in memory or slight matches 
with a very large number of items in memory. 

This characteristic allows MINERVA to “clean-up” the 
echo using iterative retrieval.  MINERVA can “clean up” an 
echo by using the echo as a cue to produce a new echo.  With 
each pass through the memory system, the contribution of 
the most similar episode traces grows. This process can be 
repeated until the echo reaches a steady-state where it no 
longer changes, at which point the echo will closely resem-
ble the trace in memory most similar to the cue.

The clean-up process also serves as a possible explanation 
for why we are faster to remember some things than others: 
echoes formed from frequently occurring and distinctive 
episode traces reach a steady-state more quickly.

Linear systems cannot perform a clean-up process and so 
require an external clean-up memory. The echo produced by 
a holographic vector memory (e.g., TODAM; Murdock, 
1993) or matrix memory (e.g.,  Humphreys et al.,  1989) is 

noisy and requires a secondary (or long-term) memory in 
order to identify which memory the echo most resembles 
(Murdock, 1993).  This is acceptable for TODAM, as it is 
intended as a model of primary (or working) memory. 
MINERVA, however,  is a model of long-term memory and 
thus it would “violate the spirit of MINERVA 2” (Hintzman, 
1986) to rely on an external memory to clean-up the echo.

A disadvantage of MINERVA is that it is a localist mem-
ory store, which raises the question of neural plausibility, as 
well as scalability. How is MINERVA neurally imple-
mented, if not by growing new neurons for each new expe-
rience? Is MINERVA practical for very long-term learning 
given that each experience adds another row to the memory 
table? While MINERVA has been applied to large problems 
(Kwantes, 2005; Kwantes & Mewhort, 1999), doing so re-
quires abandoning key assumptions of the model for the 
sake of computational feasibility.

Given the usefulness of using the cube of the similarity in 
MINERVA 2, we want to keep this feature in a variant of the 
model that uses a distributed memory store.

MINERVA as a fourth order tensor
In what follows, we prove equivalence between the MIN-
ERVA 2 model and an auto-associative fourth order tensor 
memory. To do so, we first prove that a variant of MIN-
ERVA that raises similarity to an exponent of 1 is equivalent 
to an auto-associative second order tensor (i.e.,  a matrix) 
memory. Then we prove that a MINERVA that uses an ex-
ponent of 2 is equivalent to a third order tensor.  Finally, we 
prove that the MINERVA 2 model, which uses an exponent 
of 3, is equivalent to a fourth order tensor.

Consider a variant on the MINERVA model that uses dot 
product (denoted by •) to measure similarity and weights 
each trace by its similarity raised to the exponent of 1. Each 
episode trace in memory is represented by a vector vi where 
i = 1 ... m and m is the number of traces in memory.  When 
the model is presented with a cue x, the echo y is:

y = (x•v1)v1 + ... + (x•vm)vm
This is equivalent to an auto-associative matrix memory.

In an auto-associative matrix memory, each episode trace 
is represented by a vector vi.  To store a trace in memory,  the 
trace is associated with itself (hence auto-associative) by 
taking the outer-product of the vector with itself, vi viT, then 
taking the sum of all the outer-product matrices to create the 
memory matrix, M:

M = v1 v1T + ... + vm vmT

The echo, y, is the inner-product of the cue and the matrix:
y = Mx
y = (v1 v1T + ... + vm vmT ) x
y = v1 v1T x + ... + vm vmT x

Because viT x is the dot-product of vi and x:
y = (x•v1)v1 + ... + (x•vm)vm

which is identical to MINERVA with an exponent of 1 or to 
a matrix memory (e.g., Humphreys et al., 1989). Consider a 
MINERVA that raises similarity to the exponent of 2: 

y = (x•v1)2 v1 + ... + (x•vm)2 vm
This variant of MINERVA, as we shall demonstrate, is 
mathematically equivalent to an auto-associative third order 
tensor memory. Using the tensor product, denoted by ⊗, we 
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can store each trace as vi ⊗ vi ⊗ vi , which is a third order 
tensor. The memory tensor M is the sum of the third order 
tensor outer-products of each episode trace:

M = v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm
The echo, y, can be computed from the cue, x, by taking the 
inner product twice:

y = (M x) x
If each vi is a vector of n dimensions, then M is an n x n x n 
tensor. M can be thought of as n matrices of n x n dimen-
sions.  When we compute the inner-product of M with the 
cue x,  we compute the inner product of x with each of those 
n matrices. This results in n vectors that can be rearranged 
into a new n x n matrix. The second inner product with x 
then produces a vector, the echo y.

To illustrate, let us break M into its components:
y = (M x) x
y = ((v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm) x) x
y = (v1 ⊗ v1 ⊗ v1 x + ... + vm ⊗ vm ⊗ vm x ) x

The tensor product vi ⊗ vi ⊗ vi can be understood as n ma-
trices, where each matrix is the outer-product vi viT weighted 
by a different element j of vi , for all j = 1 ... n.

 vi ⊗ vi ⊗ vi = {vi 1 vi viT , ... , vi n vi viT}
Taking the inner-product of the cue x  with vi ⊗ vi ⊗ vi,  we 
get n vectors, each weighted by the dot-product of x with vi:

 vi ⊗ vi ⊗ vi x = {vi 1 vi viT x, ... , vi n vi viT x}
 vi ⊗ vi ⊗ vi x = {vi 1 (x • vi) vi, ... , vi n (x • vi) vi}

If we factor out the dot-product of x and vi , the result is n 
vectors, or rather, the outer-product matrix of vi viT:

 vi ⊗ vi ⊗ vi x = (x • vi) {vi 1 vi, ... , vi n vi}
 vi ⊗ vi ⊗ vi x = (x • vi) vi viT

Thus, when we take the outer-product of x with M, the re-
sult is a sum of m matrices vi viT,  each matrix weighted by 
the dot-product of x with vi.

y = (v1 ⊗ v1 ⊗ v1 x + ... + vm ⊗ vm ⊗ vm x ) x
y = ((x • v1) v1 v1T + ... + (x • vm) vm vmT ) x

By then taking the second inner-product with x, we reduce 
each matrix to a vector weighted by the squared similarity to 
x, producing an echo like MINERVA with an exponent of 2:

y = (x • v1) v1 v1T x + ... + (x • vm) vm vmT x
y = (x • v1) (x • v1) v1 + ... + (x • vm) (x • vm) vm
y = (x • v1)2 v1 + ... + (x • vm)2 vm

The dot product of two vectors, where each vector has a 
magnitude of one, produces a value in the range of one, if 
the vectors are identical, to zero, if the vectors are orthogo-
nal, to negative one,  if one vector is the negation of the 
other. Thus it is important to preserve the sign of the dot 
product.  By taking the square of the dot product, the sign is 
lost. For this reason, MINERVA 2 uses an exponent of 3.

MINERVA 2 is equivalent to an auto-associative memory 
implemented as a fourth order tensor. Memory is con-
structed as a sum of fourth order tensors:

M = v1 ⊗ v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm ⊗ vm

Given a cue x, an echo y is computed by taking the inner 
product three times:

y = ((M x) x) x
y = (((v1 ⊗ v1 ⊗ v1 ⊗ v1 + ... + vm ⊗ vm ⊗ vm ⊗ vm) x)x)x
y = (((x • v1) v1 ⊗ v1 ⊗ v1 + ... + (x • v1) vm ⊗ vm ⊗vm)x)x
y = (((x • v1)2 v1 v1T + ... + (x • vm)2 vm vmT ) x
y = (x • v1)3 v1 + ... + (x • vm)3 vm

Is the memory tesseract practical?
MINERVA is equivalent to a distributed memory system 
implemented as an auto-associative fourth order tensor, or 
memory tesseract.  Unfortunately, fourth order tensors are 
very large. For most applications of MINERVA, the dimen-
sionality n of a vector will be larger than the number of 
memories m stored in the model. MINERVA, as standardly 
implemented, is an m x n table, whereas a memory tesseract 
is an n4 data structure. A typical MINERVA 2 has 10 ≤ n ≤ 
200. In general, the number of memories stored is smaller 
than n and much smaller than n3. For applications where m < 
n3, the implementation of MINERVA as a table is more effi-
cient. However, for large scale applications where m ≥ n3, 
the fourth order tensor is more efficient.

Alternatively, a holographic approximation to the memory 
tesseract can be implemented as an n x p data structure for 
the p of your choice, as is discussed in the next section.

Using holographic vectors rather than tensors
In a holographic vector system, trying to clean-up the echo 
by iteratively using the echo as a cue to retrieve a new echo 
is like trying to clean a pair of glasses with an oily cloth: the 
more you try to clean it,  the worse it becomes. Yet Levy and 
Gayler (2009) have demonstrated that this is possible using 
a lateral inhibition network implemented as a fully distrib-
uted vector architecture. To store a trace vi in Levy and Gay-
ler’s model, the trace is associated with itself twice, then 
each trace is added to the memory vector m:

m = v1 * v1 * v1  + ... + vm * vm * vm
where * is a binding operation. In holographic reduced rep-
resentations (Plate, 1995), binding uses circular convolution 
and unbinding uses circular correlation. Given a cue, x,  we 
can unbind, denoted by #, to recover an echo:

y = x # (x # m)
y = x # (x # (v1 * v1 * v1  + ... + vm * vm * vm ))

Unbinding is such that given a bound pair, vi * vj, 
x # vi * vj = (x•vi) vj + noise

Thus:
y = x # (x # (v1 * v1 * v1  + ... + vm * vm * vm ))
y = x # ((x•v1)v1*v1 + ... + (x•vm)vm*vm + noise)
y = (x•v1)2 v1  + ... + (x•vm)2 vm + noise

However, if we wish to imitate MINERVA 2 as closely as 
possible (and preserve the sign of the similarity) we need to 
add another association to Levy and Gayler’s model. We 
compute the memory vector, m, and unbind the echo, y, as:

m = v1 * v1 * v1 * v1  + ... + vm * vm * vm * vm
y = x # (x # (x # m))
y = x # (x # (x # (v1*v1*v1*v1  + ... + vm*vm*vm*vm )))
y = (x•v1)3 v1  + ... + (x•vm)3 vm + noise

While this allows the most similar traces to the cue to domi-
nate the echo, the noise term threatens to overwhelm the 
signal. Because holographic vectors use lossy compression, 
by iterating, the noise will only grow.

Levy and Gayler solve this problem by using random 
permutations. Given three random permutation matrices P1, 
P2, P3, we can permute the vectors as follows:

m = (P1 v1) * (P2 v1) * (P3 v1) * v1  + ... + (P1 vm) * (P2 vm) * 
(P3 vm) * vm

To recover an echo, we can use inverse permutations:
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 y = ((P1T x) * (P2T x) * (P3T x)) # m
To eliminate the noise, Levy and Gayler use hundreds of 
such vector memories in parallel,  each of which uses its own 
pair, or in our variant, triple, of permutations. Let p be the 
number of vector memories being used, then the echo y is 
the sum of echoes for each p:

y = y1 + ... + yp
where for each yj, j = 1 ... p,

yj = ((Pj,1T x) * (Pj,2T x) * (Pj,3T x)) # mj 
such that:

y = ((P1,1T x) * (P1,2T x) * (P1,3T x)) # m1 + ...  + ((Pp,1T x) * 
(Pp,2T x) * (Pp,3T x)) # mp

Because each echo yj is produced using a different triple of 
permutations, each echo’s noise term will be different. Be-
cause the noise in each echo is different,  a different part of 
the signal is preserved in each echo. By taking the sum of all 
these echoes, we average across them to get a close ap-
proximation to the true signal. With large enough p, we 
minimize the noise sufficiently that we can clean-up the 
echo by iterating. We can divide the sum of all the echoes, 
y, by its magnitude to normalize, then use it as the new cue. 
By varying the dimensionality of the vectors n and the num-
ber of memory vectors operating in parallel p,  we can ma-
nipulate how fast the echo is cleaned up by iterating.

The number of iterations to clean-up the echo is a meas-
ure of the time the model takes to perform a memory re-
trieval.  For this reason, the number of iterations is an ideal 
candidate as a predictor for human reaction time. Being able 
to map a measure of the model’s processing time onto hu-
man reaction time would help to provide evidence for strong 
equivalence (Pylyshyn, 1989) between what the model is 
doing and what the brain is doing. 

The number of iterations to clean-up the echo in MIN-
ERVA 2 is typically too few to provide sufficient granularity 
to map well onto human reaction times. If we instead use 
Levy and Gayler’s model,  by varying p we can control the 
average number of iterations that the system takes to clean-
up the echo. Using smaller p, the network takes,  on average, 
longer to converge to a steady-state than an iterated MIN-
ERVA 2 model, such that the iterations map onto smaller 
units of human reaction time.  Thus, the lateral inhibition 
network, when coupled with a suitable decision mechanism 
to end retrieval, can provide more fine-grained reaction time 
predictions than an iterated MINERVA 2.

The lateral inhibition network is also more tractable than 
a fourth order tensor for large n (i.e., more space efficient 
for p < n3 and more time efficient for p log n < n3).

The semantic tesseract: Scaling MINERVA up
Applying MINERVA to large semantic memory tasks, such 
as learning the meaning of words (Kwantes,  2005) or learn-
ing how to sound-out written words (Kwantes & Mewhort, 
1999), requires abandoning a key assumption of MINERVA 
for purely pragmatic reasons, namely, that repetition of an 
item produces multiple traces of that item. But if these mod-
els were re-implemented using the memory tesseract (or its 
holographic approximation), we would not have to abandon 
that key assumption because the tesseract does not grow 
with the addition of new memories.

BEAGLE (Jones & Mewhort, 2007) is a learning algo-
rithm that models how people abstract the meaning of words 
from their lifetime language experience. DHSM (Rutledge-
Taylor & West, 2008) uses a similar approach to BEAGLE 
but re-purposes the algorithm as a general memory model. 
DSHM is a multi-vector memory system, like the standard 
implementation of MINERVA, but unlike MINERVA, each 
vector stands for a concept rather than an individual experi-
ence. In DSHM, each experience updates the vector for each 
concept that comprises the experience. An experience is 
stored in the associations between concept vectors.

In MINERVA, concepts are echoes,  artifacts of aggregate 
retrieval across experiences. We speculate that the vectors in 
BEAGLE and DSHM are akin to echoes. The memory tes-
seract now provides a means of re-implementing BEAGLE 
or DSHM as MINERVA models.

In BEAGLE, an experience is a sentence. To re-
implement BEAGLE in the memory tesseract, each time a 
word is encountered in a sentence, memory is updated with 
a new episode trace by summing a new fourth order tensor 
with the memory tensor:

Mt = Mt-1 + vi ⊗ vi ⊗ vi ⊗ vi

Each episode trace is the sum of a word’s orthographic in-
formation as calculated in Cox et al. (2011) with the word’s 
semantic information gleaned from that particular sentence, 
as calculated in Jones and Mewhort (2007): 

vi = vi orthographic + vi semantic
However, holographic vectors typically have n ≥ 512. 512 4 
is about 1678 times larger than the BEAGLE model. If we 
assume that BEAGLE and MINERVA use vectors of the 
same size, given a literate adult with a vocabulary of 80 000 
words, the memory tesseract will be larger than BEAGLE 
for vectors with more than 43 dimensions.

If we were to run a memory tesseract model that learns 
word meaning from context by processing a large corpus, as 
BEAGLE does, we would need to keep n as small as possi-
ble without sacrificing too much fidelity.  We could also use 
the holographic approximation to the memory tesseract, 
which is, again, scalable depending on the desired fidelity.

The proposed model escapes being just a less efficient 
version of BEAGLE because it raises similarity to the expo-
nent of 3. BEAGLE stores all experiences of a particular 
word in a single vector. This storage is highly lossy and the 
individual experiences are difficult to recover. MINERVA 
retains more of each experience, information that can be 
recovered by iterating to “clean up” the echo.

A memory tesseract implementation of BEAGLE would 
have another benefit. Individual vectors in BEAGLE are 
sensitive to first-order (word co-occurrence) and second 
order (synonymy) associations. Kwantes (2005) found that 
aggregating across vectors with first-order associations pro-
duces an echo with second order associations. Likewise, we 
suspect that aggregating across BEAGLE’s vectors would 
produce an echo with third order associations. Third-order 
associations (and higher) may be useful for identifying part 
of speech.  This change to BEAGLE is a benefit of adopting 
the MINERVA memory retrieval mechanism.

The preceding discussion is intended only as an extended 
example of how MINERVA, when implemented as a tensor, 
can be applied to larger scale problems.

2487



Conclusion
We demonstrate that the influential MINERVA 2 (Hintzman, 
1984) model is mathematically equivalent to an auto-
associative fourth order tensor memory system, or memory 
tesseract.  We further show that this is approximately 
equivalent to a variant of the holographic lateral inhibition 
network proposed by Levy and Gayler (2009). These dem-
onstrations have three theoretical implications:
(1) Viewing MINERVA 2 and its variants (collectively, 

MINERVA models) as a fourth order tensor clarifies the 
relationship between MINERVA and third order, second 
order (i.e., matrix), and compressed tensor (i.e.,  holo-
graphic vector) memory models, allowing us to move 
toward a unified understanding of memory. 

(2) MINERVA can be scaled up to model long term learn-
ing, broadening the scope of tasks to which MINERVA 
can be applied and allowing for unification with models 
of semantic learning, such as BEAGLE.

(3) A naïve neural interpretation of MINERVA might sug-
gest that a new neuron is grown for each new experi-
ence, corresponding to the addition of another row to 
MINERVA’s memory table. Understood as a memory 
tesseract, MINERVA is fully distributed across neural 
connectivity, and memories can be added by changing 
the connectivity without requiring additional neural re-
sources. Eliasmith’s (2013) neural engineering frame-
work provides a system for translating linear algebra 
computations (e.g., convolution, permutation) into spik-
ing neuron models.  The memory tesseract, or its holo-
graphic approximation, could be easily implemented as a 
realistic neural model using Eliasmith’s framework.
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