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Abstract

In sequential diagnostic reasoning the goal is to determine the
most likely cause for a number of sequentially observed
effects. Potential hypotheses are narrowed down by
integrating the cumulating observed evidence leading to the
selection of one among several hypotheses. In the reported
diagnostic reasoning experiment, thirty-eight participants
were tested with quasi-medical problems consisting of four
sequentially presented symptoms with four candidate
diagnostic hypotheses. We used ambiguous sequences that
could be equally caused by two chemicals to investigate
possible order effects and explicitly highlighted alternative
hypotheses by using a stepwise rating procedure that also
enabled us to compare participants’ ratings with belief
updating in a Bayes net. Even though alternatives were
explicitly highlighted, participants were biased towards the
initial hypothesis in a pair of equally supported hypotheses.
We conclude that ambiguous symptom sets and non-
diagnostic symptoms invite biased symptom processing and
can produce primacy effects even in a step-by-step procedure.
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Introduction

Diagnostic reasoning is a case of information integration.
The task is to infer the most likely cause of observed
symptoms. Often in medical diagnosis, the symptoms are
probabilistic cues to their possible causes and do not suggest
just a single diagnosis. Instead, symptoms usually have
several possible causes and trigger the generation of
multiple diagnostic hypotheses that are tested and updated
during  subsequent symptom processing (Thomas,
Dougherty, Sprenger, & Harbison, 2008; Weber,
Bockenholt, Hilton, & Wallace, 1993). The final diagnosis
is the result of integrating symptom information. In the
reported experiment, we studied the parallel updating of
multiple diagnostic hypotheses during the processing of
symptoms that each supported more than one diagnostic
hypothesis. Symptom sequences that finally support two
diagnoses equally should result in equal proportions of final
diagnoses according to the normative standard of Bayesian
belief updating. By collecting continuous belief ratings, we
traced deviations from Bayesian updating and found
evidence for symptom processing biased towards the

leading hypothesis even in task conditions that are
considered to induce no bias or an opposite bias (Hogarth &
Einhorn, 1992).

The initial hypothesis or the set of initial hypotheses
triggered by early symptoms can bias the processing of
subsequent symptoms (Hagmayer & Kostopoulou, 2013;
Jahn & Braatz, 2014; Kostopoulou, Russo, Keenan,
Delaney, & Douiri, 2012; Rebitschek, Scholz, Bocklisch,
Krems, & Jahn, 2012). The support that later encountered
symptoms provide for the focal hypothesis is emphasized
and their support for alternative hypotheses is considered
less than would be appropriate. Such biased symptom
processing favors the hypothesis that is strongly supported
by early symptoms and consequently strengthens the weight
of early symptoms. A strong weight of early symptoms
constitutes a primacy effect.

Primacy effects have been observed in diagnostic
reasoning with ambiguous symptom sequences. However, in
a procedure that requires step-by-step belief ratings, there
are reasons to expect unbiased integration or a recency
effect rather than a primacy effect (Catena, Maldonado,
Megias, & Freese, 2002; Hogarth & Einhorn, 1992;
Rebitschek et al., 2012). The procedure of step-by-step
belief ratings prompts ratings of the current status of
diagnoses after each symptom presentation. Thus,
participants are reminded of alternative diagnoses after each
symptom. Second, the ratings prolong the retention interval
for earlier symptoms and may interfere with the rehearsal of
earlier symptoms. Consequently, the memory representation
of later symptoms could be stronger and the relative weight
of later symptoms could increase. Finally, with step-by-step
belief ratings symptom integration cannot be delayed. An
intermediate integration takes place after each symptom and
the current status of diagnostic hypotheses could function as
an anchor (Catena et al., 2002). The influence of a late
symptom in adjusting an anchor could be stronger than the
symptom’s contribution when it is part of a larger set of
symptoms that are integrated.

To summarize, these reasons to expect unbiased
integration or recency effects — the saliency of alternatives,
memory dynamics favoring late evidence, and contrast
effects in anchoring and adjustment — postulate processes
counteracting a known tendency to bias symptom
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processing towards the initially leading hypothesis. We used
a quasi-medical diagnostic reasoning task (Meder &
Mayrhofer, 2013; Mehlhorn, Taatgen, Lebiere, & Krems,
2011), with which a bias favoring the leading hypothesis
had been demonstrated several times before (Jahn & Braatz,
2014; Rebitschek et al., 2012), and tested whether step-by-
step belief ratings could overcome this bias.

Experiment

Participants were put in the role of a physician diagnosing
which chemical had affected patients presenting with certain
symptoms. First, they learned about four chemicals and the
symptom categories that each could cause (Table 1 and
Table 2). Then, they worked through a series of diagnostic
reasoning items consisting of four symptoms each. There
were non-diagnostic symptoms (x-symptoms) and
symptoms that could be caused by two chemicals but with
different causal strengths. Symptoms strongly suggesting
one and weakly suggesting another chemical are denoted Ab
(strongly suggesting A and weakly suggesting B) and Ba
(strongly suggesting B and weakly suggesting A).
Sequences with equal support for two chemicals are listed
as item type AB in Table 3.

After each symptom, participants rated the current
probability of each chemical as the cause of the symptoms
seen so far. These step-by-step belief ratings are compared
with posterior probabilities computed in a Bayes net and can
indicate biased symptom processing. Proportions of final
diagnoses indicate biased symptom processing if they
deviate from .5 for sequences with equal support.

Method

Participants. Thirty-eight students of the University of
Greifswald (21 female, 17 male) with a mean age of 23.2
years (SD = 3.2) took part in the experiment and were
included in the analysis. Of eight additional participants, six
did not complete the experiment and two produced
disproportionately many errors (36% and 53% diagnoses
that were not supported by any diagnostic symptom).
Materials. In preparation for the diagnostic reasoning task,
participants learned about four chemicals and the symptoms
that each chemical could cause. There were six symptom
classes each containing two symptoms that are listed in
Table 1. We used symptom classes encompassing symptoms
to limit the complexity of the causal structure to be learned
while still ensuring a sufficient variety of symptom
sequences to be constructed from symptoms.

The strength with which a chemical caused symptoms
from a certain class was either strong or weak. These levels
of causal strength were communicated to participants as
relative frequencies in verbal and pictorial form. For
example, weak symptoms were presented as caused in “3
out of 10 patients”. This relative frequency was additionally
visualized by a row of stick-figures illustrating how many of
10 patients being affected by the respective chemical show
symptoms from the respective class: 3 red and 7 black.

Table 1: Symptom classes and symptoms

Symptom Class  Symptoms

Eyes Eyelid swelling  Lacrimation
Respiration Cough Difficult breathing
Skin Acid burn Rash
Neurological Paralysis Speech disorder
Circulatory Pr. Sweating Swoon

Pain Twinge Sting

Note. Original materials were in German.

Each chemical had one strong and three weak symptom
classes (see Table 2). These were presented in separate rows
on a screen during the learning phase. For example, such a
screen for the R chemical read: The chemical R is gasiform.
It causes eyes-symptoms in 9 out of ten patients. <9 red
stick figures, 1 black stick figure>. It causes respiration-
symptoms in 3 out of 10 patients. <3 red, 7 black>. It causes
circulatory problems in 3 out of 10 patients. <3 red, 7
black> It causes pain-symptoms in 3 out of 10 patients. <3
red, 7 black>

As apparent in Table 2, circulatory problems and pain
were non-diagnostic symptom classes. Symptoms from
these classes are denoted “x” in the following. The
remaining four symptom classes were each caused strongly
by one and weakly by a second chemical (columns 3 and 4
in Table 2). For example, skin-symptoms were strongly
caused by the W-chemical, but only weakly by the K-
chemical. Such symptoms are denoted “Ab” (strong for A,
weak for B) or “Ba” (strong for B, weak for A) in the
following.

A single diagnostic reasoning item consisted of a
sequence of four symptoms, for example: acid burn,
paralysis, swoon, and speech disorder (Ab_Ba x_Ba). This
sequence belongs to the ABB item type because it contains
one Ab-symptom and two Ba-symptoms. Table 3 shows the
three item types (AAB, AB, and ABB) that each comprised
three symptom sequences.

Table 2: The chemicals and the symptom classes that each could cause

Chemical  Group In 9 out of In 3 out of In 3 out of In 3 out of
10 patients 10 patients 10 patients 10 patients

R Gas Eyes Respiration  Circulatory Pr.  Pain

B Gas Respiration Eyes Circulatory Pr.  Pain

W Fluid Skin Neurological Circulatory Pr.  Pain

K Fluid Neurological Skin Circulatory Pr.  Pain

Note. Original materials were in German.
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The symptom sequences in Table 3 were used with each
of the chemicals in the A-role and the remaining chemical
from the same group in the B-role. All possible assignments
of symptoms to item types were constructed with the
restriction that no single symptom was repeated in a
symptom sequence.

Table 3: Item types and symptom sequences

Item type
AAB

Symptom sequence

Ab x Ab Ba
Ab Ab x Ba
Ab Ab Ba x
AB Ab Ba x x
Ab x Ba x
Ab x x Ba
Ab x Ba Ba
Ab Ba x Ba
Ab Ba Ba x

ABB

Bayesian posterior probabilities. For comparing the
sequential belief ratings with normative reference values,
the causal structure of the scenario was implemented in a
Bayes net. The causal model (Figure 1) reflects the structure
presented in Table 2. The chemicals as candidates for the
unknown root cause were defined as mutually exclusive.
The four potential states of the unknown root cause spread
to the diagnostic and non-diagnostic symptom classes. The
symptom classes as the effects were mutually independent
but not mutually exclusive.

The node of the root cause was modeled with four states
corresponding to the four chemicals R, B, W, K. The prior
probabilities of the chemicals (states of the root cause) were
set as equal and the probabilities of the symptoms’
presences given the different chemicals were fixed as
depicted in the boxes in Figure 1. Under the specific
parameterization, the posterior probabilities take on values
of 0, .25, .5, and .75 (Figure 3).

Prior ¢
25 R
.25 B R___ B
.25 w present .90 .30
25 K absent .10 70
Eye symptoms R B
S present .30 90
Respiration s. absent .70 10

R=B=W=K
present .30
absent .70

Circulatory p.

Skin symptoms

K w K
present .90 30
Neurological s absent .10 .70
w K
present .30 90
absent .70 10

Figure 1. Bayesian causal model including the states of the
root cause, the diagnostic and non-diagnostic effects
(symptom classes), and respective parameter settings.

Procedure. At the beginning of the learning phase,
participants were instructed that their task would be to
determine the cause of a patient’s symptoms. They were
told that the patients are workers in a chemical plant that
processes four chemicals. Each patient was affected by
exactly one of those chemicals. Participants should
determine which chemical most likely had caused a
patient’s symptoms.

First, they studied a screen explaining which symptoms
belong to which symptom class (Table 1) and worked
through test trials until the set of twelve symptoms was once
assigned to symptom classes without errors. Then,
participants were told that each chemical caused one of the
six symptom classes almost always and a second symptom
class occasionally. They were further told that two symptom
classes are caused occasionally by all of the chemicals.

Next, the chemicals R and B were studied on separate
screens listing the symptom classes and their respective
frequencies verbally and pictorially. Participants proceeded
to testing when they felt ready.

In each test trial of the learning procedure, a symptom
class was presented together with a frequency (e.g. “Pain in
3 out of 10 patients”) and participants responded with the
letter of the chemical that causes this symptom with this
frequency or with the letter “a” for all chemicals. All
pairings of symptom classes and frequencies were tested in
random order and the whole set was tested until it was once
answered without errors. Then, the screens for the chemicals
W and K were studied and tested and finally, all four
chemicals were restudied and all symptom classes with
frequency pairings were tested in random order until the test
was completed without errors. Learning was completed
within 16.4 min on average (SD = 4.5).

Diagnostic reasoning. In each diagnostic reasoning trial, a
sequence of four symptoms was presented. Each symptom
presentation consisted of a fixation cross shown for 1s
followed by a symptom that remained visible for 2s. Then,
probability ratings were collected for all four chemicals on
separate screens in random order. Each screen asked to enter
a number between 0 and 100 to indicate in how many of 100
patients presenting the symptoms seen so far the respective
chemical would be the correct diagnosis. Participants
entered a number and hit return to proceed to the next
screen. Editing with backspace was possible and only
numbers between 0 and 100 were accepted. When the
probability rating for the fourth chemical had been
completed, the presentation of the next symptom started
with a fixation cross. After the ratings for the fourth
symptom, participants indicated their final diagnosis with
the respective letter and rated their confidence for the
diagnosis with number keys from 1 (very unsure) to 7 (very
sure).

The first four trials were training trials and the very first
trial was performed under supervision of the experimenter
who ensured and explained that the ratings after each
symptom should sum to 100 and that all symptoms seen so
far should be considered.

2407



After the training trials, each participant worked through
the 36 possible combinations of chemicals with symptom
sequences. The order of the 36 trials was pseudo-random
and balanced across participants. For each trial, the actual
sequence of symptoms was drawn randomly from the
possible symptom assignments for this combination of
symptom sequence and chemical in the A-role.

After half of the trials, participants were encouraged to
pause for a couple of minutes. The whole experiment took
60 to 90 min in total.

Results

Trials that were responded to with a chemical that was not
supported by any of the diagnostic symptoms (C- or D-
diagnoses) were not included in the following analyses
(1.7% of all trials). Furthermore, trials were dropped, in
which the likelihood ratings after one of the four symptoms
did sum to less than 85% or to more than 115% (5.1% of all
trials with A- or B-diagnoses).

Diagnoses. The mean proportion of A-diagnoses for each
symptom sequence is shown in Figure 2. Sequences of the
AAB item type were mostly responded to with the A-
chemical and sequences of the ABB item type were mostly
responded to with the B-chemical in line with the relative
support for A and B. Sequences of the AB item type
revealed a primacy effect in diagnoses: A-proportions were
higher than .5 for AB-items, #(37) = 3.89, p <.001, d = 0.63,
and higher if non-diagnostic symptoms delayed the Ba-
symptom in Ab_x Ba x and Ab_x x Ba sequences with ds
of 0.52 and 0.59, respectively, than if the Ba-symptom
immediately followed the Ab-symptom in the Ab Ba x x
sequence (d = 0.26).
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Figure 2. Mean proportions of A-diagnoses; error bars
indicate standard errors.

Sequential likelihood ratings. Figure 3 shows means of the
likelihood ratings for A- and B-chemicals, and for C- and
D-chemicals after each symptom for symptom sequences of
the AB item type (Ab Ba x x, Ab x Ba x, and
Ab_x x Ba) plotted separately for trials answered with A

(A Diagnosis) and B (B Diagnosis). Bayesian posterior
probabilities are shown for comparison.

As visible in Figure 3, mean ratings after the first
symptom match well with the Bayesian posterior
probabilities in both trials with final A- and trials with final
B-diagnoses. Right before the final diagnosis after the
fourth symptom, the rating for the chemical that was
subsequently chosen as the final diagnosis was generally
higher than the rating for the competing alternative. Thus,
final diagnoses were consistent with the last ratings.

The mean A-ratings after x-symptoms for trials answered
with B (right column in Figure 3) are lower than for trials
answered with A (left column) and lower than the respective
Bayesian probabilities. The decrease of A-ratings after x-
symptoms that occurred before a Ba-symptom in trials
answered with B shows that participants did not process x-
symptoms as non-diagnostic. Instead and particularly in
trials with final B-diagnoses, x-symptoms increased the
ratings for alternatives to A (for B, but also ratings for C
and D). This shift to alternatives after x-symptoms that was
more pronounced in trials with a final B-diagnosis is clearly
apparent in the mean sums of C- and D-ratings listed in
Table 4.
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Figure 3. Mean likelihood ratings of A-, B-, C-, and D-
diagnoses for the three sequences of the AB-item type with
standard errors along with the posterior probabilities
computed with the Bayesian causal model separately for
trials finally answered with A (column A Diagnosis) and
trials finally answered with B (column B Diagnosis).
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Table 4: Mean sums of C- and D-ratings after each
symptom for the three sequences of the AB-item type
separately for trials finally answered with A (A-Diagnosis)
and trials finally answered with B (B-Diagnosis)

A-Diagnosis B-Diagnosis

Order/ C+D-Rating N C+D-Rating N
Symptom M (SE) M (SE)
Ab 0.88 (0.65) 80 3.50 (1.48) 60
Ba 1.13 (0.64) 2.00 (0.91)
X 1.98 (0.74) 6.13 (1.93)
X 2.55 (0.94) 6.53 (1.88)
Ab 1.10 (0.69) 91 2.86 (1.30) 49
X 2.81 (0.92) 8.82 (2.80)
Ba 1.80 (0.73) 4.43 (1.69)
X 2.97 (1.05) 6.69 (1.95)
Ab 0.60 (0.33) 92 3.72 (1.75) 43
X 3.28 (0.95) 10.19 (3.43)
X 4.64 (1.14) 10.51 (3.25)
Ba 2.09 (0.67) 4.40 (1.52)

The decrease of A-ratings after x-symptoms in trials with
B-diagnoses further suggests that a tendency towards the
final response developed rather early in a trial. To quantify
the dependence of final diagnoses on early x-symptom
processing, we computed the difference between A- and B-
ratings after each symptom and tested with logistic
regressions how well the AB-differences predicted the final
response. The results of the logistic regressions are shown in
Table 5. Note that the unit for the AB-difference was set to
10 rating points and that the clustering of trials at the level
of participants was not modeled in the reported regressions.

The regression weights for the AB-difference increase
across the four symptoms for all three AB-sequences. For
the Ab Ba x x and the Ab x Ba x sequences, the
prediction weights increase earlier than for the Ab x x Ba
sequence confirming that how Ba was processed was
important for the final diagnosis. The changes in regression
weights additionally confirm that the processing of non-
diagnostic symptoms influenced the final diagnosis.

Discussion

Symptom sequences that contained somewhat diagnostic
symptoms and non-diagnostic symptoms and that equally
supported two competing diagnostic hypotheses induced
symptom processing that more often favored the initially
leading hypothesis. This bias towards the leading hypothesis
occurred although step-by-step belief ratings highlighted
alternatives and could have strengthened the weight of a
later symptom supporting the competing alternative (Catena
et al., 2002; Hogarth & Einhorn, 1992).

The ambiguous symptom sequences are particularly
sensitive to biased symptom processing because each
symptom is consistent with the favored diagnosis and can be
interpreted as supporting it. The belief ratings suggest that
participants indeed interpreted somewhat diagnostic
symptoms that were consistent with two diagnostic
hypotheses in support of the currently favored hypothesis.

Non-diagnostic ~ symptoms  increased ratings of
unsupported alternatives (C and D), but less so in the more
frequent trials, in which participants stayed with the initially
leading hypothesis (see Figure 3 and Table 4) suggesting
that non-diagnostic symptoms were rather interpreted as
supporting the leading hypothesis than alternatives.
Normatively, any change in ratings after non-diagnostic x-
symptoms is unjustified. Yet, the attenuating -effect
(dilution) of non-diagnostic evidence is common (Nisbett,
Zukier, & Lemley, 1981). In the present experiment,
favoring the leading hypothesis resulted in a smaller dilution
effect by non-diagnostic symptoms.

Missed non-diagnosticity (pseudodiagnosticity) is a
known phenomenon in human diagnostic reasoning and is
usually explained with missed alternative possible causes
(Fischhoff & Beyth-Marom, 1983; Tversky & Koehler,
1994). In the present study, however, the repeated prompts
to rate all candidate causes prevented that possible causes
could be missed.

Table 5: AB-difference in ratings after each symptom as predictor of the final response (A vs. B) in sequences of the AB
item type. Results of logistic regressions with the unit of the AB-difference set to 10 rating points (10%)

Order/ Intercept exp(B) [95%CI] Chi¥(1)* p R® N
Symptom

Ab 33 0.99 [0.86; 1.14] 001 91 <.001 140
Ba 36 1.36 [1.02;1.82] 522 .02 .05

X 27 1.81 [1.03;3.19] 1024 .001 .10

X 30 1.85 [1.17;2.91] 2131 <.001 .19

Ab 46 1.03 [0.90; 1.18] 0.19 .66 002 140
X -.03 1.16 [1.02;1.32] 557 .02 .05

Ba 59 1.52 [1.21;1.91] 21.82 <.001 .20

X .63 1.83 [1.30;2.58] 26.81 <.001 .24

Ab 66 1.02 [0.86;1.20] 0.05 .83 001 135
X 36 1.10 [1.00;1.23] 245 12 .03

X -.02 1.22 [1.07;1.39] 9.57  .002 .10

Ba .86 1.72 [1.33;2.22] 32.06  <.001 .30

Note. * Likelihood ratio test. * Nagelkerke’s R’
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The non-diagnostic symptoms were linked to supported
and to unsupported alternatives. Thus, they could be
interpreted as caused by the leading hypothesis and could be
taken as confirming the leading hypothesis. Presumably,
such a confirmation of the leading hypothesis by non-
diagnostic symptoms resulted in a stronger primacy order
effect (higher A-proportion in Figure 2) in the AB-
sequences, in which the Ba-symptom was preceded by x-
symptoms. For non-ambiguous ABB-sequences, such an
effect of a preceding x-symptom presumably was
annihilated by a recency effect of the second Ba-symptom in
the final position.

The observed biased symptom processing of somewhat
diagnostic and non-diagnostic evidence is consistent with
theories  postulating biased information sampling
(Busemeyer & Townsend, 1993) and with theories of biased
information interpretation in the construction of a coherent
representation (Hagmayer & Kostopoulou, 2013; Thagard,
1989). Reviewing the symptoms for evaluating the status of
alternatives can be seen as information sampling in working
memory and for such sampling a bias towards earlier
presented information as well as a bias towards information
supporting the leading alternative is deemed possible
(Busemeyer & Townsend, 1993).

In biased information interpretation, the information value
of a piece of evidence is not fixed but can be modified by
stressing certain aspects to attain a better fit with an overall
interpretation (Kostopoulou et al., 2012; Thagard, 1989).
Such biased interpretation is particularly easy with
ambiguous evidence and thus, a general tendency towards
coherent representations could well be the reason for the
observed bias towards the initially leading hypothesis.

Our results are consistent with recently reported biased
symptom processing in very similar tasks without step-by-
step belief ratings (Jahn & Braatz, 2014; Rebitschek et al.,
2012). Sequential belief ratings are a quite obtrusive method
for process tracing. It is remarkable that symptom
processing biased towards the leading diagnostic hypothesis
was nonetheless confirmed. In more realistic diagnostic
tasks, perfectly ambiguous symptom patterns are unlikely
and if information search is possible, uncertainty will
motivate for continued search. If, however, ambiguity is
strong and cannot be overcome, biased symptom processing
seems likely.
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