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Abstract

Poor performance in goal-oriented sensory motor tasks is a
common symptom among depressed individuals. However,
it is unclear what the underlying causes of these deficits are.
Elucidating the underlying mechanisms is an important first
step to develop more targeted behavioral interventions. Here,
using simple motor-control tasks, we propose an inverse op-
timal control approach to analyze and factorize performance
deficits into two components of subjects’ behaviors: 1) sen-
sory motor speed, 2) reward-processing. In Task 1, subjects
with Beck Depression Inventory score ranging from 0 to 36
were instructed to push a joystick as quickly as possible once
they observe motion onset of a virtual car. In Task 2, they were
instructed to drive a virtual car as quickly as possible and stop
it as close as possible to a stop sign. Based on the continuous
joystick actions for each individual subject, we estimated per-
ceptual motor efficiency parameters and recovered the under-
lying reward function that best explained the subject’s behav-
ior. Initial results suggest, that relative to healthy controls, de-
pressed individuals: 1) have deficits in sensory-motor process-
ing speed, 2) have different goals but not significantly different
accuracy/effort ratio. The results suggest that inverse optimal
control may be a viable computational approach to quantify
and factorize the underlying causes of sensory motor deficits
in individuals with depression.

Keywords: depression; motor-control; computational model;
inverse optimal control; inverse reinforcement learning;
reward-processing.

Introduction

Depression can affect many facets of daily life. It accounts
for 8.2% of global years lived with a disability (YLDs) in
2010, and has became a worldwide health priority (World
Healthy Organization, 2012). In particular, growing evi-
dences show depression increases the odds ratio for a car ac-
cident (Chapman & Perry, 2008), and reduces driving per-
formance in a driving simulator (Wingen et al. 2006). For
instance, Selzer etl al. (1968) reported for fatal driving ac-
cidents, 21% of drivers were clinically depressed, compared
with 7% in healthy controls. Hilton et al. (2009) reported
severe and very severe depression was associated with an in-
creased odds ratio for being involved in an accident or near
miss in the past 28 days. In a driving simulator, Bulmash et

al. (2006) found depressed individuals exhibited slower reac-
tion times and increased number of crashes when compared
to controls. Despite compelling evidence of the severe con-
sequences from poor motor-control in depressed individuals,
the influence of depressive mood on driving actions remains
largely unknown. However, so far, there are few studies (clin-
ical or basic) have emphasized this issue.

Driving task is a closed-loop feedback control process
(Lenard Evans, 2004). Drivers assess current driving
environment from sensory feedback, and make control
commands based on the goal. The decisions a driver makes
given a task are in a hierarchical system (Janssen 1979) that
comprises 1) a strategic level that is associated with one’s
goal in driving (motivation) and 2) a control level that is
associated with one’s sensorimotor skills (perceiving sensory
feedback and executing motor commands). Thus depressive
symptoms that influence those two levels can lead to different
driving behavior.

Motivation deficits in depression It has been shown that
depressed individuals have greater sensitivity to risk and pun-
ishment (Trew 2011), while risk is the most common of all the
motivations considered by driving researchers. Risk homeo-
statis theory (Taylor, 1964) postulated that drivers adjust their
speed in accordance with the perceived risk. However, risk
perception differs greatly among individuals. It is affected
not only by the objective danger in the situation (weather,
road condition), but also by the driver’s own assessment of
his or her actions (e.g., driving faster than legal speed limit).
Thus for a driving task that is considered almost as risk-less
to an experienced F1 driver, it may be perceived as highly
risky to depressed individuals.

Recently, Wilde (2002) proposed that we drive not to min-
imize risk (or maximize safety), but to reduce or increase it
to a desired risk level with which we feel comfortable. The
target level of risk varies among drivers. For young drivers
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who are more risk seeking than others, they may set a higher
level of risk to fulfill the thrill of driving. However, for de-
pressed individuals who are oversensitive to punishment, they
probably have a different driving style that targets a lower
risk level. In other words, they may have differences in
reward-processing that favors goals with lower risk. In this
study, we will investigate what are the differences in their
reward-processing, how that influences their driving actions,
and what it implies about their risk sensitivity.

Psychomotor disturbance On the other hand, depressed
individuals suffer from psychomotor disturbance (Buyukdura
et al. 2011). Behavioral experiments have suggested impair-
ments in sensorimotor system among depressed individuals.
Caligiuri & Ellwanger (2000) showed that depressed indi-
viduals have difficulties performing normal physical actions,
such as simple motor learning tasks. Sabbe et al. (1999)
used simple drawing tasks and showed that MDD (Major De-
pressive Disorder) patients exhibited marked motor deficits of
the visuomotor control process (longer movement duration,
longer pauses, and lower velocities). Those sensorimotor im-
pairments will adversely affect how one responses to sensory
feedback and executes motor commands in driving tasks.

Thus, poor motor-performance may be a consequence of
mixed depressive symptoms. It could be due to 1) differ-
ent targeted risk level (goals), and/or 2) impaired sensorimo-
tor system. Our study aims to provide a computational ap-
proach (inverse reinforcement learning) to disentangle these
processes.

Inverse Optimal Control

In optimal control theory (inverse reinforcement learning at
continuous time), actions are chosen to optimize a perfor-
mance criterion (Todorov & Jordan 2002). The performance
criterion is defined as a reward-function that includes task-
related performance measure and action cost. For example,
in a task that instructs subjects to drive to a location A as
quickly as possible, the performance measure can be the stop-
ping distance to A, and the action cost can be the accumulated
effort of accelerating and decelerating controls. Different in-
dividuals may have different target stopping distance to A,
and different weights to assess the ratio of the closeness to
the target location over the action cost (i.e. accuracy/effort
ratio), thereby forming different reward-functions.

With different reward-functions in mind, there will be
different action-planning strategies, which are defined as
control-policies. A control-policy comprises a series of dy-
namic decisions modulating actions at given states in contin-
uous time (Shadmehr 2008). In a forward model, with ex-
perimentally defined reward function (for example, points),
we can derive the optimal control-policy to optimize the re-
ward function. In an inverse model (Ng & Russell, 2000),
with observed continuous actions, we can infer the control-
policy, and recover the reward-function used in developing
this control-policy. Thus the objective of inverse optimal con-
trol is to infer individuals’ reward-function based on observed

behaviors. This approach will provide a quantitive compar-
ison of how different reward-processing between depressed
and healthy controls lead to observed behavioral differences.

In summary, we will apply inverse reinforcement learning
approach to investigate how reward-processing and sensori-
motor impairments in depressed individuals influence their
motor control in a simulated driving task.

Method
Participants

58 college students (15 male and 43 female subjects) in
UCSD participated this study in fall quarter 2013. They
signed up through UCSD SONA system, and then completed
phone-screening and on-line BDI (Beck Depression Inven-
tory, BDI-II, Beck et al. 1996) measure. Qualified subjects
completed the experiment (with a second BDI measure prior
to the task) in the lab, and were compensated by 2 course
credits. Their onsite BDI range from 0 to 36 with mean
BDI=10.25 (std=8.38), median BDI=8.

Experiment

Subjects were instructed to complete two tasks in this ex-
periment. Both tasks were computer experiments (on a 15
inch MacBook Pro) programmed in Matlab. We recorded
their continuous actions using a gaming joystick (Thrust-
master HOTAS Warthog Flight Stick). The goal of Task 1
(Move-and-Go) is to measure individual’s perceptual and mo-
tor speed (without risk influence), and the goal of Task 2
(Speed-and-Stop) is to apply inverse optimal control model
to recover reward-function (with risk influence).

Task 1: Move-and-Go Subjects were required to perform
Task 1 twice (120 trials, before and after Task 2). In each trial
(Figure 1), a car would appear on the bottom of the screen,
and subjects were instructed to push the joystick from resting
position forward to the maximum position as quickly as pos-
sible once they observe the car move. Each trial started with a
3-second countdown and a random waiting interval (1-3 sec-
onds), then the car would start to move at a randomly selected
speed (.01-.3 cm/second). Trials ended once subjects pushed
the joystick at its maximum forward position. The goal in
this task is risk-free, thus parameters estimated here can be
considered to represent basic sensorimotor skills.

Task 2: Speed-and-Stop There were 3 blocks, with 20 tri-
als/block in Task 2. In each trial (Figure 2), subjects were
instructed to drive a virtual car as quickly as possible to a
stop sign (distance: 10.62 cm) without crossing the stop-line,
and stop there within a 10-second time window. Each trial
started with a 3-second countdown and ended when time ran
out, with no performance feedback (e.g., points) in the end.
The car has a linear dynamic system (see Model), in which
the car position is controlled by continuous joystick position.
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Figure 1: Task 1 (Move-and-Go)
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Figure 2: Task 2 (Speed-and-Stop)

Model

Driving task is a dynamic process of sensorimotor integration
(Flanders, 2011), in which the brain (optimal controller) takes
sensory information and uses it to make continuous motor ac-
tions. In this process (Figure 3), the optimal controller esti-
mates the current state at time ¢, produces a motor command
based on the goal and keeps an efference copy (the expected
outcome of the motor command) at the state estimator, and
sends the motor command to muscles to generate the move-
ment. Then the state estimator will update the efference copy
with the delayed sensory observation to predict state at next
time point # 4+ 1 and the optimal controller will generate new
motor commands until the goal is reached.

We propose to use inverse optimal control model to ex-
plain observed behavior in this feedback control process. To
achieve that, we first assessed individual’s sensorimotor sys-
tem by estimating their perceptual speed (delay in perceiving
sensory observation at time #) and motor speed (delay in ex-
ecuting motor command at time ¢) in a risk-free task (Task
1: move-and-go). Then we estimated their target state (target
stopping distance) and target accuracy/effort ratio (the will-
ingness to reach the target state) in the reward function in
Task 2 (speed-and-stop) with the perceptual and motor delay
parameters from Task 1.

Inverse Optimal Control

Goal
(maximize reward/
minimize cost) Optimal Control l
1
| Motor Delay
A 4
Optimal Motor Dynamical
> Movement
controller command systems
'y Efference
copy
v
State Sensory
estimator T observation
Perceptual
Delay Todorov & Jordan, 2002

Stephen H. Scott 2002

Figure 3: Model Framework

Perceptual speed Y and motor speed 3

Task 1 (move-and-go) was designed to estimate perceptual
speed v and motor speed B. We model subjects’ perceived car
position ¥; as a delayed true car position X; due to the limit
of sensory processing speed Y (Eq.1). The higher the v, the
closer the perceived car position ¥; to the true car position X;.
We assume subjects will decide the car starts moving once the
perceived car position ¥; reaches a position threshold X;p;.
Thus the minimal time for the perceived car position ¥; to
reach the threshold X}, is reaction time ¢tz (Equation 2):

Perceived car position ¥; : dY; = y(X; — Y;)dt (1)
Reaction Time : gy = argmin{Y; > Xyq}  (2)
t

We model joystick position C; as a delayed execution from
target joystick position Usrger, due to the limit of motor ex-
ecution speed P (Equation 3). The higher the B, the closer
joystick action to the desired target position. Thus the mini-
mal time for C; to reach Uyypger is movement time (Equation
4).

Joystick position C; : dC; = B(Usarger — Gy )dt 3)
Movement Time : tyr = argmin{C; > Usarger }  (4)
t

In above equations, X; (true car position), gy (reaction time
to car motion-onset), C; (recorded joystick position), Urgrger
(target position) and #y7 (movement time) are known. We
use fgr and X; to recover X;;4, Y and Y;, and use C; and tyr
to recover P3, by optimizing over 7Y, X;nq, and P to give the
minimal errors between predicted 7gr, 3 and observed data.

Inverse optimal control of the driving task

Task 2 (speed-and-stop) was designed to estimate individual’s
reward-function, which is a function of target stopping dis-
tance and accuracy/effort ratio. Target stopping distance mea-
sures individual’s risk sensitivity. The further away one aims
to stop from the stop sign, the less risk there is to cross the
stop-line. Target accuracy/effort ratio measures individual’s
willingness to reach the target stopping distance. The higher
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the ratio, the more motivated one is to stop as close as pos-
sible to the target stopping location. In a quadratic reward
function, target distance represents the optimal point of the
reward function, and target accuracy/effort ratio represents
the hessian of the reward function.

Linear Quadratic Gaussian Model (LQG) We formulate
the driving task as a LQG problem with a linear dynamic sys-
tem and a quadratic reward function. In forward LQG prob-
lems, the optimal controller generates an optimal control pol-
icy that maximizes a given reward function. Figure 4 shows
in a forward model of this driving task, how different model
parameters (motor speed P, target accuracy/effort ratio P, and
target stopping distance X;qr¢e;) can affect optimal car posi-
tion and joystick control. In inverse LQG problems, we use
observed movements to infer the underlying reward function
that best explains the observed behavior.

Effect of motivation level P
Car Position

Effect of motor speed B
Car Position

orarg
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Figure 4: Influences of model parameters. B: higher motor
speed lead to faster arrival time to target; P: higher motiva-
tional level lead to faster arrival time and closer distance to
target; Xyqrger: different target distances lead to different stop-
ping position; Joint influence of B and P: similar behavior
may have very different underlying causes. Someone with
higher motor speed ( = 2) and lower accuracy/effort ratio
(P = 6) may have similar behavior as someone with lower
motor speed (B = 1) but higher accuracy/effort ratio (P = 10).

Linear dynamic system Assuming the driving task as a lin-
ear dynamic system (Equation 5) with a partial hidden state
X; and observable feedback Z;, in which X; is a 3x1 vector
including the (hidden) true car distance to target stopping po-
sition at time ¢, joystick action at time ¢, and perceived car
distance to target stopping position at time z.

Partial observable linear system: dX; = AX,dt + BU,dt (5)
Observation: Z; = CX; +V; (6)

With:

(a b 0

A=|0 —B O (7
Yy 0 —v
[0

B=|p (®)
10

C=10,0,1] 9)

In which, a,b are car dynamics parameters (assuming
known), V; is Gaussian noise, [ and 7y are motor and per-
ceptual speed that are estimated from Task 1. Note that in
the state X;, the hidden true car position and perceived car
position are measured as a distance to target stopping posi-
tion (parametrized as the target state in the reward function),
which we will estimate through optimization from this model.

Quadratic reward function We assume the reward func-
tion r(X;,U;) is a function that evaluates the state X; (through
2(X;)) and the action U, (through U?q).

reward function: r(X;,U;) = g(X,) — U’q (10)

Without loss of generality, let ¢ = 1 (i.e. optimal action will
not change if scaling the reward function), thus g(X;) is a
function of target state and target accuracy/effort ratio. We
assume subjects were using a stationary (infinite horizon) pol-
icy and the reward function has a diagonal form (i.e. no joint
influence between state elements in the reward function).

In LQG setting, subjects first estimate true state from ob-
servation using a Kalman filter to convert the problem to a
fully observable system, and then solve it as a LQR (Linear-
Quadratic-Regulator) problem:

dX, = AX,dt + BU,dt + L,(Z, — CX, )dt (11)
Ut = _KXI‘ (12)

In which L, is Kalman gain. U, is a linear combination of
the states and K can be estimated from U; and recorded behav-
ior data through linear regression. This suggests a quadratic
value function:

1
V(%) = —ix;wﬁt (13)

Then the HIB equation (Bellman, 1957) for this linear sys-
tem will give us g(%) as a quadratic form of £:

1
g(®) = —Eﬁ’(—ZA’w+k'k))2 (14)
In which we define P as the target accuracy/effort ratio:
. |V
8(f) =~ %P3 (15)
P=2Aw+Kk (16)

In which A and k are known from equation (7) and (12),
and w can be solved by using optimal LQR solution.

2390



Results
Task 1: Move-and-Go

The purpose of this task was to estimate perceptual and motor
speed for individual subject, and use those estimation in the
inverse optimal control model.

Perceptual-motor speed Figure SA (scatterplot) shows as
BDI increases, reaction time and movement time increases,
which suggests slower perceptual and motor speed in de-
pressed individuals. Our model results are consistent with
observed behavior (Figure 5B).

Model vs. Behavior
A Reaction Time ~ Movement Time (Reaction Time)

perceptual speed (y)

Second

Figure 5: A: Reaction time to car motion onset and movement
time to push joystick to maximum forward position; B: Left-
model vs.data, points represent individual subjects. Right:
group comparison of perceptual and motor speed. (non-dep:
BDI<=5, mid-dep: 6<=BDI<20, dep: BDI>=20)

Task2: Speed-and-Stop

The purpose of this task was to estimate the reward function
that best explained each subject’s behavior, taking account of
individual’s perceptual-motor speed estimated from Task 1.
The reward function consists of two components: 1) target
stopping distance from stop sign and 2) target accuracy/effort
ratio.

Target stopping distance By categorizing subjects into 3
groups based on their BDI (non-dep: BDI<=5, mid-dep:
6<=BDI<20, dep: BDI>=20), Figure 6 (left) shows the
differences in their stopping distance over time: 1) non-dep
group has the closest target distance while dep group has the
furthest target distance to stop sign; 2) Non-dep and mid-dep
group have relatively stable target distances throughout the
experiment, but dep group has a continuously increasing stop-
ping distances with increasing variability over time. Target
stopping distance estimated from the inverse model (Figure 6
Right) are consistent with above behavioral result. Examples
of stopping position overtime from non-dep and dep group
are shown in Figure 7.

Target accuracy/effort ratio Taking account of different
target stopping distances (Figure 6) in reward-processing,
model results (Figure 8 A) shows the mean of accuracy/effort
ratio in depressed group is not significant different from
healthy controls. Examples of model prediction in continu-
ous time are shown in Figure 8B.

Distance to Stop-sign (behavior) Distance to Stop-sign (model)

cm
cm

non-dep| -05 non-dep|
-0.6 —— mid-dep -0.6| |—— mid-dep
— dep —dep
10 20 30 40 50 60 bk bk2 bk3
trials blocks

Figure 6: Left: Observed stopping distance over time (60 tri-
als). Right: Model prediction of targeted stopping distance
over blocks (3 block, 20 trial/block).
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Figure 7: Examples of individual stopping distance over time.
Top row: examples from 8 heathy controls. Bottom row: ex-
amples from 8 depressed individuals. X-axis: trials; Y-axis:
stopping distance to target (cm); green dash line: stop sign.
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Figure 8: A: Model prediction of accuracy/effort ratio. B:
Examples of model prediction. Those two subjects (healthy
control BDI = 0 vs. depressed subject BDI = 24) have the
same accuracy/effort ratio (p =0.57), but the healthy subject
has faster motor speed B and closer target distance Xiarger-

Discussion

In this paper, we proposed to use a simulated driving task and
the inverse optimal control approach to examine the influence
of depressed mood in motor-control in continuous time. We
found depressed group has 1) slower perceptual and motor
reaction time, 2) different behavioral goals but no significant
difference in accuracy/effort ratio.

Our approach provided a computational framework to dis-
entangle the factors between perceptual-motor speed and re-
ward function in goal-directed motor-control tasks. The
findings of slower perceptual-motor processing are consis-

2391



tent with symptoms of psychomotor disturbance in depressed
individuals (Treadway et al. 2009). Taking account of
perceptual-motor speed in the feedback control loop, the find-
ings of different reward-processing using inverse LQG model
provided quantitative explanations of how different target
states and target accuracy/effort ratio will influence motor-
control in continuous time. However, these findings need to
be interpreted with caution and require further investigation.

Target stopping distance If interpreting the intention of
stopping further away from stop sign as to avoid crossing the
stop-line, then our finding supports previous research show-
ing depressed individuals have greater sensitivity to risk and
punishment. However, it is important to consider other possi-
ble interpretations (Eshel & Roiser, 2010). In particular, one
can argue that depressed individuals may have decreasing in-
terest to perform the task due to anhedonia (Der-Avakian et al.
2012). Further research will be done to investigate this issue
(risk-averse vs. disengagement from task due to anhedonia).

Target accuracy/effort ratio Our group-level comparison
result suggests depression influences what goals individuals
want to achieve, but not accuracy/effort ratio. This finding
could imply depressed individuals may not necessarily have
less willingness than non-depressed individuals to achieve
their goals. Rather, the differences are in the choice of goals
in a task. However, within depressed group, we also observed
higher variability in both the goals and accuracy/effort ratio,
which indicates high individual differences. Considering the
many subtypes of depression, future research will be focus-
ing on examining those individual differences, by considering
other psychological factors (anxiety, personality traits, etc.)
and use the model to further examine the relationship between
perceptual-motor speed, goals and accuracy/effort ratio.

In conclusion, the combined behavioral and modeling ap-
proaches provide a tool to examine if and how the severity of
psychomotor disturbance interacts with motivation deficits in
depressed individuals.
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