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Abstract 
Classical syllogistic reasoning, also known as Aristotelian 
reasoning, is of particular interest in cognition. Such 
reasoning, which can seem simple at first, is known to be 
associated with high error rates. Although some research has 
been done on this topic, the underlying mechanisms used by 
human beings remain largely unknown. To understand the 
underlying cognitive properties associated with solving 
syllogistic problems, this study uses a connectionist approach 
composed of three steps inspired from Laird and Bara 
(1984): spatial representation, associative memory, and 
alternative searching conclusion. Results show that the 
network produces similar performances as humans. 

Keywords: Syllogistic reasoning; artificial neural network; 
neurodynamic modeling. 

Introduction 
Classical syllogistic reasoning has been studied since 

Aristotle’s era. One of his works on deductive reasoning, 
Prior Analytics, discusses the syllogistic method. 
Aristotelian reasoning is defined by the act of problem 
solving solely based on propositions. A syllogism is a type 
of deductive logic that asks for a verification of the 
truthfulness of a conclusion based on the presupposed 
validity of two premises. An example of a syllogism might 
be: If all human are mammals and all mammals have four 
legs, then all humans have four legs. In this case, the 
syllogism is valid because the structure of the conclusion 
given is true. (If all As are Bs and all Bs are Cs, then all As 
are Cs). Logic reasoning and its cognitive foundations are 
of particular interest in psychology and neuroscience. 
Nowadays, the idea of mental models (Johnson-Laird & 
Bara, 1984) dominates the literature explaining human 
syllogistic reasoning. Although syllogisms are made of two 
affirmations, their conclusion is far from being simple. In 
fact, humans frequently make mistakes as a problem 
increases in complexity (Dickstein, 1976; Dickstein, 1978; 
Erickson, 1974). For example, given the problem No Bs are 
As and all Bs are Cs, what is the relationship between As 
and Cs? In this problem, the possible conclusions are that 
some As are Cs, all As are Cs, no As are Cs, some As are 
not Cs, some Cs are As, all Cs are As, no Cs are As, or 
some Cs are not As. However, the only valid final 

conclusion is that some Cs are not As, which is not 
intuitive.  

As shown in the previous examples, a syllogism is 
comprised of two premises. One premise is deemed major 
and the other minor, with each premise leading to a 
conclusion. The major premise is made up of two terms: the 
conclusion’s predicate and the middle term. The minor 
premise is also made up of two components: the 
conclusion’s subject and the middle term. Notice that the 
middle term is a component in both premises and links the 
conclusion’s subject and predicate together. In addition, 
every premise can be formed from one of the following 
four qualifications: the universal affirmative, the particular 
affirmative, the universal negative, and the particular 
negative. Every premise comprises of two terms, the 
antecedent and the consequent. There are 64 syllogistic 
problems, 27 of which are valid, meaning they have a valid 
conclusion. 

In the field of cognition, there are three principal currents 
of thought explaining syllogistic reasoning. The first 
current, formal logic, is based on language rules (Rips, 
1994). The second current postulates that the probabilistic 
heuristics of an event’s occurrence are involved in 
explaining logical reasoning mistakes (Chater & Oaksford, 
1999). The last current is based on mental schemes. While 
performing syllogistic problems, humans use mental 
representations of the information given (Johnson-Laird & 
Bara, 1984). In this case, it is more probable that the 
information is represented by, for example, geometric 
forms or images instead of mathematical symbols. This 
study will focus on the last current of thought. 

The use of computational systems can be a great tool for 
a better understanding of syllogistic reasoning. Recent 
research in syllogisms has focused on modeling properties 
of syllogisms, in particular on the influence of term order 
and on the number of representations needed to solve these 
reasoning tasks. For example, in a study conducted by 
Bara, Bucciarelli, and Lombardo in 2001, it was 
hypothesized that the order of terms influences 
performance. In other words, they support that the 
information is reorganized in order to simplify the problem 
by putting the middle term adjacent to each other. The 
performances of the system on easy to difficult problems 
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were compared to human performances and were shown to 
correlate. In fact, on three different problems with a range 
of difficulty levels, the easiest one was the most successful, 
followed by the intermediate one, and finally by the 
hardest. Humans seem to organize information in a 
transitive manner so that the terms within the premises fit 
within each other. This kind of strategy leads to systematic 
mistakes in the conclusions provided because the premises 
are reorganized according to the transitive order of the 
terms. For example, if the syllogism is in the form B-A-C-
B, by inverting the first premise with the second, the result 
becomes C-B-B-A, which facilitates organizing the 
information into memory. This study shows that the 
number of mental representations needed is not the only 
variable that explains the difficulty in syllogisms; the figure 
(term order) is another important aspect of the difficulty.  

 In fact, the difficulty of a syllogism is a function of 
several factors: the order of the terms in the premises, the 
number of possible conclusions, the presence of negation, 
the presence of a quantity proposition, the likelihood that a 
syllogism will lead to a generalization mistake, and the way 
the problem can be represented schematically.  

The current study aims to determine if a computational 
system composed of spatial representation of premises 
combined with a recurrent associative memory neural 
networks can replicate human performance on syllogistic 
problems. The simulations will be performed according to 
the three steps proposed by Johnson-Laird and Bara (1984): 
1) the integration and interpretation of the premises, 2) the 
formulation of a first conclusion based on the 
representation of the premises, and 3) the search for 
alternative conclusions. Finally, if the syllogism is judged 
valid, a general conclusion is generated.  An inference will 
be valid if it is true for every possible interpretation of its 
premises (Laird & Bara, 1984). 

The neural network must be able to generalize to new 
premise representations of other syllogistic problems. In 
addition, the information handled by the BHM model needs 
to be preprocessed in accordance with mental models 
(Johnson-Laird & Bara, 1984). This preprocessing must be 
done using a system of spatial representation of the stimuli. 
The stimuli must not be unique. Thus, several images can 
be used to represent one problem because syllogistic 
problem solving is based on the search for alternative 
conclusions through different possible representations of 
the premises. In addition, the spatial representation must 
also take into account the presence of negation, the relative 
size of the terms, and the term order in the generation of 
representations. As for the neural network model, it must be 
able to associate the right conclusions to the premises of a 
given syllogistic problem.  

The objective of the present study is to use topographic 
maps as a fundamental basis in syllogistic problem solving. 
These maps will be used as inputs to an associative 
memory. Results from the simulation will be compared 
with the results from human participants.  

The next section will introduce the idea behind the 
representation that will be used to encode a syllogistic 
problem. The bidirectional heteroassociative memory 

(BHM) neural networks (Chartier & Boukadoum, 2006, 
2011) are then presented, followed by the simulation, 
results, and discussion sections. 

Spatial representation of the stimuli 
Following the idea that a spatial representation of the 

information is formed while performing a syllogisms task, 
the stimuli should be represented as a topographic map. 
Therefore, they exist multiple ways of spatial 
representation arrangements. An important element of 
syllogistic reasoning is the positive or negative character of 
the quantifier. A premise can be iconically represented. 
Such iconic representation can be schematized as a diagram 
(Erikson, 1974). A diagram can visually account for the 
negative and positive characters of the quantifier. In such a 
diagram, negative information is visualized outside of 
another entity, while positive information is visualized as 
included inside another entity. Based on that type of 
representation, we hypothesize that negative information is 
visualized as more peripheral than positive information. In 
other words, the mental image of negative information 
would be more fuzzy and far from the person’s attentional 
field, while the mental image of positive information would 
be situated at (or at least closer to) the center of the 
person’s attentional field. According to this hypothesis, we 
deduce that it would be easier to remember positive 
information than negative information, as it would be more 
central in the person’s cognitive representation. Moreover, 
this may lead to a bigger probability of forgetting about 
alternative representations of the information. Figure 1  
illustrates this idea.                  illustrates this idea 

 

 
Figure 1: Illustration of the central panel  

The left box illustrates the idea that the attention could be 
focused on the center field or on the peripheral region of a 
mental scheme. The center box shows that a positive 
quantifier would be more central than a negative quantifier. 
The right box illustrates an example where it is easy to 
forget about an alternative representation if the negative 
information remains far from the center of the cognitive 
attentional field. In this example, it would be less probable 
to think about a blue circle that touches the green circle. 
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Model: The bidirectional Heteroassociative 
Memory (BHM)  

   A premise in a syllogism can be represented in several 
ways and the model must be robust to this constraint. This 
constraint should be taken into account by a Bidirectional 
Heteroassociative Memory (BHM) (Chartier & 
Boukadoum, 2006, 2011).  Using a BHM provides the 
system with a more realistic process, since memory is an 
important part of syllogistic reasoning (Gilhooly, Logie, & 
Wynn, 1999). For example, interference in short-term 
memory may lead to increase the resolution difficulty due 
to an overload of information in the brain. The lack of fluid 
memory may lead to particular errors, particularly when the 
premises are formulated in a way where humans need to 
inverse spatial information throughout the whole reasoning 
process. Moreover, the BHM has the particularity to deal 
with noise, allowing the use of multiple ways to present the 
same premise to the system. In order to solve syllogisms, 
generally more than one spatial representation of the same 
linguistic information is needed. The BHM is a neural 
network that is most likely able to deal with this constraint. 
Following these arguments, the BHM is a great way to 
provide a more realistic overall system to study syllogistic 
reasoning. 

Architecture of the BHM  
The architecture is made of two Hopfield-like (Hopfield, 

1982) neural networks interconnected in a head-to-toe 
fashion, which allows the association of a pair of stimuli. 
The architecture is presented in Figure 2, where x(0) and 
y(0) represent the initial state of the input vectors to be 
associated, t represents the number of iterations cycle 
performed, and W and V are the weight connections.  

 
Figure 2: Architecture of the BAM 

 

Transmission function  
The transmission is defined by the following equations:  
 
 ∀𝑖,… ,𝑁, y!(!!!)= 𝑓 a!(!)

=
1,
−1,
𝛿 + 1 𝑎!(!) − 𝛿𝑎!(!)

! ,
      
if  a!(!) > 1
if  a!(!) < −1
else

 (1a) 

 
and 
 

 ∀𝑖,… ,𝑀, x!(!!!)= 𝑓 b!(!)

=
1,
−1,
𝛿 + 1 b!(!) − 𝛿b!(!)

! ,
        
if  b!(!) > 1
if  b!(!) < −1
else

 (1b) 

 
where N and M are the number of units in each layer, i is 
the unit index, y(t+1) and x(t+1) are the output given at 
time t+1, δ is a general transmission parameter, and a and b 
are the activation. These activations are obtained the usual 
way: a(t)=Wx(t) and b(t)=Vy(t).  

Learning rule  
The weight connections are modified following 

Hebbian/Anti-Hebbian principles (Storkey & Valabregue, 
1999; Bégin & Proulx, 1996):  
 
𝐖 !!! = 𝐖 ! + 𝜂 𝐲 ! − 𝐲 ! 𝐱 ! + 𝐱 !

!

𝐕 !!! = 𝐕 ! + 𝜂 𝐱 ! − 𝐱 ! 𝐲 ! + 𝐲 !
!  (2) 

 
where k is the trial number, V and W are the weight 
connections, and h is a small positive learning parameter. 
The weight connections are adjusted in function of the 
difference between the initial activation state (y(0) and 
x(0)) and the output at time t (y(t) and x(t)). The network 
converges to a solution when x(0) = x(t) or when y(0) = 
y(t). In other words, the weights converge when the 
difference between the desired value and the actual time 
value is null.  

Simulation 

Three-step process 
The proposed system consists of a succession of the 

three-step process proposed by the upholders of mental 
models. The first step is the integration and the 
interpretation of the premises. This was based on the 
postulate that human beings integrate and interpret 
syllogistic premises as mental schemes. At this step in the 
system, the information on each problem is preprocessed in 
function of predefined rules before being transformed into 
input vectors for the BHM. The premises are expressed 
graphically and are juxtaposed to form one input pattern. 
The BHM then gives the associated conclusion (output). 
Finally, the search for alternative conclusions is 
accomplished for a fixed number of trials. A different 
representation is thus given as an input in order to see if the 
BHM will generate the same or a different conclusion. The 
more alternative possible representations are allowed, the 
higher the probability of finding the correct answer. If the 
conclusions given by the BHM are contradictory, the 
syllogistic problem will not be considered valid. If a 
conclusion is still true regardless of its representation, the 
problem will be deemed valid. 

Simulations were performed in order to compare the 
system with human performance. Every simulation 
followed the three steps described previously and was 
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performed on one possible representation of the 27 valid 
problems. Therefore, the BHM had to learn only 27 pairs of 
patterns rather than every possible premise (3884) to a 
respective conclusion.   

Methodology 
Following the topographic rules illustrated in Figure 3, 

colored squares are used to illustrate the three terms (major 
term, middle term, and minor term). The figure also 
illustrates the rules used to form a stimulus that will be 
shown to the network. In order to represent quantities, 
whether all or some, two sizes are used: four pixels for all 
and two pixels for some (upper right corner of Figure 3). 
The information is positioned in the center of the area 
restricted to the antecedent or outside of this area to 
represent the affirmative or negative of the antecedent, 
respectively.  Thus the spatial information represents the 
quality (is or is not) and the size of the square represents 
the quantity.  

 
Figure 3: Representation system for the premises and at the 

right the following premise example: All Greens are not 
Red 

 
The square representing the quantity of the antecedent is 

the same color as the term. If the antecedent is the middle 
term, the color is red; for the minor term, the color is blue; 
and for the major term, the color is green. Finally, if the 
consequent is the middle term, the color of the area 
restricted to the consequent is red, it is blue if the 
consequent is the minor term, and green if it is the major 
term. The following example can be seen at the right side 
of Figure 3: All greens are not red. In this example, since 
the quantity of the antecedent is all, the square is bigger. In 
addition, since the quality is negative, the square is situated 
on the exterior to the area restricted to the antecedent. 
   A list of images representing every possibility for the first 
premise (four images) for every valid syllogistic problem is 
established. This list is built from the different possibilities 
issued from the construction rules as previously illustrated 
(Figure 3). The first list of stimuli contains the major 
premises, made up of the color green for the major term 
and red for the middle term. Another list of images 
representing every possibility for the second premise (four 
images) for every valid syllogism is established using the 
same process. This second list then holds the minor 

premise, made up of the color blue for the minor term and 
red for the middle term. For every problem, there are 16 
possible representations. Since there are 27 valid 
syllogisms, there are a total of 432 syllogistic problem 
representations. To limit the number of images, the 
information representing the antecedent is positioned in the 
corners of the area restricted to the antecedent (upper left, 
upper right, lower left, lower right). For this reason, there 
are only four possible images per premise.  
   Every premise is made of 9 X 18 pixels, for which three 
values give a color pixel. These dimensions were chosen as 
they permit the smallest representation that allows for an 
accounting of all the characteristics needed for a 
representation. The vector (-1,1,1) defines the red color, 
(1,-1,1) defines green, and (1,1,-1) blue. The correlation 
between each pair of colors was -0.5. The correlations 
between the stimuli vary between 0.21 and 0.996. The 
correlations can be high because the quantifier some is 
represented by only two pixels, so sometimes two images 
can differ by only few pixels. A first juxtaposition of the 
two premises of a problem forms the problem’s image, 
which is then vectorized. This vector must be associated 
with another vector that represents the conclusion. This 
associated conclusion vector represents a connection 
between the subject (minor term) and the predicate (major 
term). These input vectors have a dimensionality of 972 
pixels (2 X 9 X 18 X 3). 
   The conclusion is built according to the following: 
Firstly, for every premise, the consequents must be situated 
minimally on the same topographic region as the 
antecedents. Secondly, the size of the consequent can vary 
and be larger than the antecedent. The consequent on the 
conclusion is limited to three different sizes, thereby 
making nine possible conclusions for one given 
representation (remember that the problem is made up of 
two premises). The training is thus accomplished under 
variability for each syllogism representation. For a given 
syllogistic problem, the BHM must associate an answer 
representing the connection between the subject (minor 
term) and the conclusion’s predicate (major term). 
Considering every possible valid representation for a 
syllogistic vector, using the cartographic rules, and 
considering the possible spatial representations for the 
conclusions, 3888 pairs of stimuli are possible. Of those 
possibilities, the BHM model associates a subsample of 27 
pairs: one pair per valid syllogism.  

Learning was deemed accomplished when the sum of 
squared error was less than 10-4. Usually, learning required 
approximately 500 epochs.  

Following the learning, recall tests were performed. 
During a recall trail, random selections of the stimuli 
representing the two premises from the whole sample (3888 
pairs) were were were were were were were were were   
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Figure 5: Observed (blue bar) and predicted (green bar) proportions of success on the 27 valid syllogisms. Premises of the 

syllogisms problem are abbreviated using A for all, E for none, I for some, and O for some are not. Numbers 1 to 4 
represent the syllogistic figure as described in the introduction. Error bars show 95% confidence intervals. Red circles 

indicate when the difference does not fall into the confidence interval. 
 
randomly selected. An output (conclusion) is generated 
using the BHM according to Equation 1. If an alternative 
conclusion is allowed, a novel stimuli representation is 
selected and a conclusion is generated. The number of 
alternative conclusions followed the given rules: 0 
alternative conclusions 90% of the time, 1 alternative 
conclusion 5% of the time, and 2 alternatives conclusions 
for 5% as well. The final conclusion is that which is true for 
all the alternative conclusions. If the conclusions are 
contradictory for one problem, then the problem is deemed 
invalid. It is important to note that in some cases the 
conclusions aren’t always similar but are not contradictory. 
In those cases, the answer is the conclusion that is most 
conservative. For example, if two alternative conclusions 
are some greens are blues and a third conclusion is all 
greens are blues, the final answer will be some greens are 
blues because for the three alternative conclusions, there 
are at least some greens that are blues. If the answer is 
possible in both orders, one of the orders is picked 
randomly. 
    The 27 syllogistic problems are tested one after the other. 
The system is successful if the conclusion given by the 
system is true. Otherwise, the trial is considered a failure. 
Every problem is tested 150 times in order to obtain an 
average value of the performances.  

Results 
The average performance of the system for every 

syllogistic problem is calculated in function of the three 
steps, as described previously for the 27 valid syllogisms. 
Results illustrated in Figure 5 show both human and system 
performance. The human performances are taken from the 
study of Johnson-Laird and Byrne (1991). The correlation 
between the two is strong, r(52) = .92, p < .01. Differences 
that lay outside the 95% confidence interval are marked by 
a red circle. Another way to look at the performance results 
is by using an ordinal pattern analysis. First, the 27 
syllogisms are ranked from the easiest to the most difficult 
(Thorngate, 2013) according to human performance. The 
performance of the system is also ranked in a similar 
fashion. A total of 351 possibilities of matches can be 
computed by calculating the number of possible pairs that 
can be obtained with 27 problems. The 27th problem 
performance for the system is then supposed to be higher 
then all the other problems and so on (27 > 26, 27 > 25, ... 

27 > 1, 26 > 25, etc.). In order to test how well the 
predictions match the observed ranking, the proportion of 
good matches is calculated. A total of 301 good matches on 
351 were found, leading to a proportion of .86   (p < .001). 
This proportion is far from .50, the proportion that would 
have been obtained by chance.  

Discussion and Conclusion 
The results show that the BHM network does not need to be 
trained on all possible representation in order to be 
efficient. For a given simulation, the learning phase is 
accomplished on a random set of 27 pairs of stimuli, with 
one representation per syllogistic problem. During recall, 
novel pairs were presented, which affected the performance 
of the network. Because BHM develops attractors, its 
learning can be generalized. This difficulty induced in the 
network creates variability in the performance. Some 
syllogistic problems are less affected by stimuli variability. 
Of course, generalization will be influenced by the 
correlation. The higher the correlation of the representation, 
the better the generalization. For example, in all greens are 
red and all reds are blue, the possible representations 
resemble very closely, which will lead to similar 
conclusions. Similarly, the lower the correlation between 
the representations, the less likely the BHM is to reproduce 
the right conclusions. In short, the difficulty level 
associated with syllogisms could arise from the 
dissimilarities in their corresponding representations. 
Another source of variability in performance is the number 
of allowed alternative conclusions. The network was not 
able to reproduce human performance on all syllogism 
problems. For example, the performances on the problems 
IE3, OA3, and AO3 were significantly different from those 
of humans. This can be explained by the lack of possible 
sizes for the consequents of the premises that are built with 
the topographic rules. Another difference can be observed 
on problem AA1, where the system performance is much 
higher than the human performance. This can be explained 
by the fact that the system does not differentiate the order 
in which the two premises are presented. In fact, the 
problem AA1 becomes very easy to the human by simply 
reversing the two premises. This inversion can alleviate 
memory loading. 

Future empirical study will look at how human 
performances are influenced by the representation method 
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introduced in the current study without limited time to 
accomplish the task. Also, future simulations should be 
done using more than three sizes for the consequents, as 
was used in this study. Even if some premise 
representations are less probable than others, there are some 
alternative conclusions that are still not formulated by the 
system. Moreover, a more thorough exploration of the 
parameter of the system should be studied in order to 
determine its robustness. For example, it might be more 
probably that the size of the consequent for premises built 
by humans is closer to the size of the antecedent quantity. 
Following the idea of Khemlani, Trafton, and Johnson-
Laird (2013), using a Poisson distribution for the size of the 
consequent would be interesting. Finally, it would be 
interesting to test the system on all syllogisms, valid or not. 
Multiple series of syllogism could also easily be tested with 
this system. In fact, when premises are added a more 
complex syllogism is created. It would then be interesting 
to simulate a complex case of syllogism for comparison 
with human performance. 
   In conclusion, the three-step system of integrating a BHM 
network allows a basic framework for the study of 
syllogisms. This provides the system with a realistic human 
cognitive perspective. The system can then be used to 
evaluate the performance under various constraints. 
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