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Abstract

Classical syllogistic reasoning, also known as Aristotelian
reasoning, is of particular interest in cognition. Such
reasoning, which can seem simple at first, is known to be
associated with high error rates. Although some research has
been done on this topic, the underlying mechanisms used by
human beings remain largely unknown. To understand the
underlying cognitive properties associated with solving
syllogistic problems, this study uses a connectionist approach
composed of three steps inspired from Laird and Bara
(1984): spatial representation, associative memory, and
alternative searching conclusion. Results show that the
network produces similar performances as humans.

Keywords: Syllogistic reasoning; artificial neural network;
neurodynamic modeling.

Introduction

Classical syllogistic reasoning has been studied since
Aristotle’s era. One of his works on deductive reasoning,
Prior Analytics, discusses the syllogistic method.
Aristotelian reasoning is defined by the act of problem
solving solely based on propositions. A syllogism is a type
of deductive logic that asks for a verification of the
truthfulness of a conclusion based on the presupposed
validity of two premises. An example of a syllogism might
be: If all human are mammals and all mammals have four
legs, then all humans have four legs. In this case, the
syllogism is valid because the structure of the conclusion
given is true. (If all As are Bs and all Bs are Cs, then all As
are Cs). Logic reasoning and its cognitive foundations are
of particular interest in psychology and neuroscience.
Nowadays, the idea of mental models (Johnson-Laird &
Bara, 1984) dominates the literature explaining human
syllogistic reasoning. Although syllogisms are made of two
affirmations, their conclusion is far from being simple. In
fact, humans frequently make mistakes as a problem
increases in complexity (Dickstein, 1976; Dickstein, 1978;
Erickson, 1974). For example, given the problem No Bs are
As and all Bs are Cs, what is the relationship between As
and Cs? In this problem, the possible conclusions are that
some As are Cs, all As are Cs, no As are Cs, some As are
not Cs, some Cs are As, all Cs are As, no Cs are As, or
some Cs are not As. However, the only valid final

conclusion is that some Cs are not As, which is not
intuitive.

As shown in the previous examples, a syllogism is
comprised of two premises. One premise is deemed major
and the other minor, with each premise leading to a
conclusion. The major premise is made up of two terms: the
conclusion’s predicate and the middle term. The minor
premise is also made up of two components: the
conclusion’s subject and the middle term. Notice that the
middle term is a component in both premises and links the
conclusion’s subject and predicate together. In addition,
every premise can be formed from one of the following
four qualifications: the universal affirmative, the particular
affirmative, the universal negative, and the particular
negative. Every premise comprises of two terms, the
antecedent and the consequent. There are 64 syllogistic
problems, 27 of which are valid, meaning they have a valid
conclusion.

In the field of cognition, there are three principal currents
of thought explaining syllogistic reasoning. The first
current, formal logic, is based on language rules (Rips,
1994). The second current postulates that the probabilistic
heuristics of an event’s occurrence are involved in
explaining logical reasoning mistakes (Chater & Oaksford,
1999). The last current is based on mental schemes. While
performing syllogistic problems, humans use mental
representations of the information given (Johnson-Laird &
Bara, 1984). In this case, it is more probable that the
information is represented by, for example, geometric
forms or images instead of mathematical symbols. This
study will focus on the last current of thought.

The use of computational systems can be a great tool for
a better understanding of syllogistic reasoning. Recent
research in syllogisms has focused on modeling properties
of syllogisms, in particular on the influence of term order
and on the number of representations needed to solve these
reasoning tasks. For example, in a study conducted by
Bara, Bucciarelli, and Lombardo in 2001, it was
hypothesized that the order of terms influences
performance. In other words, they support that the
information is reorganized in order to simplify the problem
by putting the middle term adjacent to each other. The
performances of the system on easy to difficult problems
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were compared to human performances and were shown to
correlate. In fact, on three different problems with a range
of difficulty levels, the easiest one was the most successful,
followed by the intermediate one, and finally by the
hardest. Humans seem to organize information in a
transitive manner so that the terms within the premises fit
within each other. This kind of strategy leads to systematic
mistakes in the conclusions provided because the premises
are reorganized according to the transitive order of the
terms. For example, if the syllogism is in the form B-A-C-
B, by inverting the first premise with the second, the result
becomes C-B-B-A, which facilitates organizing the
information into memory. This study shows that the
number of mental representations needed is not the only
variable that explains the difficulty in syllogisms; the figure
(term order) is another important aspect of the difficulty.

In fact, the difficulty of a syllogism is a function of
several factors: the order of the terms in the premises, the
number of possible conclusions, the presence of negation,
the presence of a quantity proposition, the likelihood that a
syllogism will lead to a generalization mistake, and the way
the problem can be represented schematically.

The current study aims to determine if a computational
system composed of spatial representation of premises
combined with a recurrent associative memory neural
networks can replicate human performance on syllogistic
problems. The simulations will be performed according to
the three steps proposed by Johnson-Laird and Bara (1984):
1) the integration and interpretation of the premises, 2) the
formulation of a first conclusion based on the
representation of the premises, and 3) the search for
alternative conclusions. Finally, if the syllogism is judged
valid, a general conclusion is generated. An inference will
be valid if it is true for every possible interpretation of its
premises (Laird & Bara, 1984).

The neural network must be able to generalize to new
premise representations of other syllogistic problems. In
addition, the information handled by the BHM model needs
to be preprocessed in accordance with mental models
(Johnson-Laird & Bara, 1984). This preprocessing must be
done using a system of spatial representation of the stimuli.
The stimuli must not be unique. Thus, several images can
be used to represent one problem because syllogistic
problem solving is based on the search for alternative
conclusions through different possible representations of
the premises. In addition, the spatial representation must
also take into account the presence of negation, the relative
size of the terms, and the term order in the generation of
representations. As for the neural network model, it must be
able to associate the right conclusions to the premises of a
given syllogistic problem.

The objective of the present study is to use topographic
maps as a fundamental basis in syllogistic problem solving.
These maps will be used as inputs to an associative
memory. Results from the simulation will be compared
with the results from human participants.

The next section will introduce the idea behind the
representation that will be used to encode a syllogistic
problem. The bidirectional heteroassociative memory

(BHM) neural networks (Chartier & Boukadoum, 2006,
2011) are then presented, followed by the simulation,
results, and discussion sections.

Spatial representation of the stimuli

Following the idea that a spatial representation of the
information is formed while performing a syllogisms task,
the stimuli should be represented as a topographic map.
Therefore, they exist multiple ways of spatial
representation arrangements. An important element of
syllogistic reasoning is the positive or negative character of
the quantifier. A premise can be iconically represented.
Such iconic representation can be schematized as a diagram
(Erikson, 1974). A diagram can visually account for the
negative and positive characters of the quantifier. In such a
diagram, negative information is visualized outside of
another entity, while positive information is visualized as
included inside another entity. Based on that type of
representation, we hypothesize that negative information is
visualized as more peripheral than positive information. In
other words, the mental image of negative information
would be more fuzzy and far from the person’s attentional
field, while the mental image of positive information would
be situated at (or at least closer to) the center of the
person’s attentional field. According to this hypothesis, we
deduce that it would be easier to remember positive
information than negative information, as it would be more
central in the person’s cognitive representation. Moreover,
this may lead to a bigger probability of forgetting about
alternative representations of the information. Figure 1
illustrates this idea.

Central focus

Are would be more
central than Are Not

Central attention vs
peripheral information
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Figure 1: Illustration of the central panel

The left box illustrates the idea that the attention could be
focused on the center field or on the peripheral region of a
mental scheme. The center box shows that a positive
quantifier would be more central than a negative quantifier.
The right box illustrates an example where it is easy to
forget about an alternative representation if the negative
information remains far from the center of the cognitive
attentional field. In this example, it would be less probable
to think about a blue circle that touches the green circle.
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Model: The
Memory (BHM)

bidirectional Heteroassociative

A premise in a syllogism can be represented in several
ways and the model must be robust to this constraint. This
constraint should be taken into account by a Bidirectional
Heteroassociative ~ Memory  (BHM)  (Chartier &
Boukadoum, 2006, 2011). Using a BHM provides the
system with a more realistic process, since memory is an
important part of syllogistic reasoning (Gilhooly, Logie, &
Wynn, 1999). For example, interference in short-term
memory may lead to increase the resolution difficulty due
to an overload of information in the brain. The lack of fluid
memory may lead to particular errors, particularly when the
premises are formulated in a way where humans need to
inverse spatial information throughout the whole reasoning
process. Moreover, the BHM has the particularity to deal
with noise, allowing the use of multiple ways to present the
same premise to the system. In order to solve syllogisms,
generally more than one spatial representation of the same
linguistic information is needed. The BHM is a neural
network that is most likely able to deal with this constraint.
Following these arguments, the BHM is a great way to
provide a more realistic overall system to study syllogistic
reasoning.

Architecture of the BHM

The architecture is made of two Hopfield-like (Hopfield,
1982) neural networks interconnected in a head-to-toe
fashion, which allows the association of a pair of stimuli.
The architecture is presented in Figure 2, where x(0) and
y(0) represent the initial state of the input vectors to be
associated, ¢ represents the number of iterations cycle
performed, and W and V are the weight connections.
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Figure 2: Architecture of the BAM

Transmission function
The transmission is defined by the following equations:
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where N and M are the number of units in each layer, i is
the unit index, y(#+1) and x(z+1) are the output given at
time #+1, J is a general transmission parameter, and a and b
are the activation. These activations are obtained the usual
way: a(f)=Wx(¢) and b(¥)=Vy(?).

Learning rule

The weight connections are modified following
Hebbian/Anti-Hebbian principles (Storkey & Valabregue,
1999; Bégin & Proulx, 1996):

T
Wiery) = Wao +1(¥0) = Yo) X + X))

T @
Virn = Vao +1(x0) = X)) +¥o)
where k is the trial number, V and W are the weight
connections, and /4 is a small positive learning parameter.
The weight connections are adjusted in function of the
difference between the initial activation state (y(0) and
x(0)) and the output at time ¢ (y(¢) and x(¢)). The network
converges to a solution when x(0) = x(¢#) or when y(0) =
y(?). In other words, the weights converge when the
difference between the desired value and the actual time
value is null.

Simulation

Three-step process

The proposed system consists of a succession of the
three-step process proposed by the upholders of mental
models. The first step is the integration and the
interpretation of the premises. This was based on the
postulate that human beings integrate and interpret
syllogistic premises as mental schemes. At this step in the
system, the information on each problem is preprocessed in
function of predefined rules before being transformed into
input vectors for the BHM. The premises are expressed
graphically and are juxtaposed to form one input pattern.
The BHM then gives the associated conclusion (output).
Finally, the search for alternative conclusions is
accomplished for a fixed number of trials. A different
representation is thus given as an input in order to see if the
BHM will generate the same or a different conclusion. The
more alternative possible representations are allowed, the
higher the probability of finding the correct answer. If the
conclusions given by the BHM are contradictory, the
syllogistic problem will not be considered valid. If a
conclusion is still true regardless of its representation, the
problem will be deemed valid.

Simulations were performed in order to compare the
system with human performance. Every simulation
followed the three steps described previously and was
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performed on one possible representation of the 27 valid
problems. Therefore, the BHM had to learn only 27 pairs of
patterns rather than every possible premise (3884) to a
respective conclusion.

Methodology

Following the topographic rules illustrated in Figure 3,
colored squares are used to illustrate the three terms (major
term, middle term, and minor term). The figure also
illustrates the rules used to form a stimulus that will be
shown to the network. In order to represent quantities,
whether all or some, two sizes are used: four pixels for all
and two pixels for some (upper right corner of Figure 3).
The information is positioned in the center of the area
restricted to the antecedent or outside of this area to
represent the affirmative or negative of the antecedent,
respectively. Thus the spatial information represents the
quality (is or is not) and the size of the square represents
the quantity.

Quantity ﬂ( D Al

representation D
- Some

I

Antecedent,
- i

Positive (inside) “
Quality
Negative (outside)iJ"’ePfesentaﬁOH

{ Term

example

.Middle term
A representation .Minurterm
D Major term

Figure 3: Representation system for the premises and at the
right the following premise example: All Greens are not
Red

The square representing the quantity of the antecedent is
the same color as the term. If the antecedent is the middle
term, the color is red; for the minor term, the color is blue;
and for the major term, the color is green. Finally, if the
consequent is the middle term, the color of the area
restricted to the consequent is red, it is blue if the
consequent is the minor term, and green if it is the major
term. The following example can be seen at the right side
of Figure 3: All greens are not red. In this example, since
the quantity of the antecedent is all, the square is bigger. In
addition, since the quality is negative, the square is situated
on the exterior to the area restricted to the antecedent.

A list of images representing every possibility for the first
premise (four images) for every valid syllogistic problem is
established. This list is built from the different possibilities
issued from the construction rules as previously illustrated
(Figure 3). The first list of stimuli contains the major
premises, made up of the color green for the major term
and red for the middle term. Another list of images
representing every possibility for the second premise (four
images) for every valid syllogism is established using the
same process. This second list then holds the minor

premise, made up of the color blue for the minor term and
red for the middle term. For every problem, there are 16
possible representations. Since there are 27 valid
syllogisms, there are a total of 432 syllogistic problem
representations. To limit the number of images, the
information representing the antecedent is positioned in the
corners of the area restricted to the antecedent (upper left,
upper right, lower left, lower right). For this reason, there
are only four possible images per premise.

Every premise is made of 9 X 18 pixels, for which three
values give a color pixel. These dimensions were chosen as
they permit the smallest representation that allows for an
accounting of all the characteristics needed for a
representation. The vector (-1,1,1) defines the red color,
(1,-1,1) defines green, and (1,1,-1) blue. The correlation
between each pair of colors was -0.5. The correlations
between the stimuli vary between 0.21 and 0.996. The
correlations can be high because the quantifier some is
represented by only two pixels, so sometimes two images
can differ by only few pixels. A first juxtaposition of the
two premises of a problem forms the problem’s image,
which is then vectorized. This vector must be associated
with another vector that represents the conclusion. This
associated conclusion vector represents a connection
between the subject (minor term) and the predicate (major
term). These input vectors have a dimensionality of 972
pixels (2 X 9 X 18 X 3).

The conclusion is built according to the following:
Firstly, for every premise, the consequents must be situated
minimally on the same topographic region as the
antecedents. Secondly, the size of the consequent can vary
and be larger than the antecedent. The consequent on the
conclusion is limited to three different sizes, thereby
making nine possible conclusions for one given
representation (remember that the problem is made up of
two premises). The training is thus accomplished under
variability for each syllogism representation. For a given
syllogistic problem, the BHM must associate an answer
representing the connection between the subject (minor
term) and the conclusion’s predicate (major term).
Considering every possible valid representation for a
syllogistic vector, using the cartographic rules, and
considering the possible spatial representations for the
conclusions, 3888 pairs of stimuli are possible. Of those
possibilities, the BHM model associates a subsample of 27
pairs: one pair per valid syllogism.

Learning was deemed accomplished when the sum of
squared error was less than 10™. Usually, learning required
approximately 500 epochs.

Following the learning, recall tests were performed.
During a recall trail, random selections of the stimuli
representing the two premises from the whole sample (3888
pairs) were
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Figure 5: Observed (blue bar) and predicted (green bar) proportions of success on the 27 valid syllogisms. Premises of the
syllogisms problem are abbreviated using A for all, E for none, 1 for some, and O for some are not. Numbers 1 to 4
represent the syllogistic figure as described in the introduction. Error bars show 95% confidence intervals. Red circles
indicate when the difference does not fall into the confidence interval.

randomly selected. An output (conclusion) is generated
using the BHM according to Equation 1. If an alternative
conclusion is allowed, a novel stimuli representation is
selected and a conclusion is generated. The number of
alternative conclusions followed the given rules: 0
alternative conclusions 90% of the time, 1 alternative
conclusion 5% of the time, and 2 alternatives conclusions
for 5% as well. The final conclusion is that which is true for
all the alternative conclusions. If the conclusions are
contradictory for one problem, then the problem is deemed
invalid. It is important to note that in some cases the
conclusions aren’t always similar but are not contradictory.
In those cases, the answer is the conclusion that is most
conservative. For example, if two alternative conclusions
are some greens are blues and a third conclusion is all
greens are blues, the final answer will be some greens are
blues because for the three alternative conclusions, there
are at least some greens that are blues. If the answer is
possible in both orders, one of the orders is picked
randomly.

The 27 syllogistic problems are tested one after the other.
The system is successful if the conclusion given by the
system is true. Otherwise, the trial is considered a failure.
Every problem is tested 150 times in order to obtain an
average value of the performances.

Results

The average performance of the system for every
syllogistic problem is calculated in function of the three
steps, as described previously for the 27 valid syllogisms.
Results illustrated in Figure 5 show both human and system
performance. The human performances are taken from the
study of Johnson-Laird and Byrne (1991). The correlation
between the two is strong, 1(52) = .92, p < .01. Differences
that lay outside the 95% confidence interval are marked by
a red circle. Another way to look at the performance results
is by using an ordinal pattern analysis. First, the 27
syllogisms are ranked from the easiest to the most difficult
(Thorngate, 2013) according to human performance. The
performance of the system is also ranked in a similar
fashion. A total of 351 possibilities of matches can be
computed by calculating the number of possible pairs that
can be obtained with 27 problems. The 27" problem
performance for the system is then supposed to be higher
then all the other problems and so on (27 > 26, 27 > 25, ...

27 > 1, 26 > 25, etc.). In order to test how well the
predictions match the observed ranking, the proportion of
good matches is calculated. A total of 301 good matches on
351 were found, leading to a proportion of .86 (p <.001).
This proportion is far from .50, the proportion that would
have been obtained by chance.

Discussion and Conclusion

The results show that the BHM network does not need to be
trained on all possible representation in order to be
efficient. For a given simulation, the learning phase is
accomplished on a random set of 27 pairs of stimuli, with
one representation per syllogistic problem. During recall,
novel pairs were presented, which affected the performance
of the network. Because BHM develops attractors, its
learning can be generalized. This difficulty induced in the
network creates variability in the performance. Some
syllogistic problems are less affected by stimuli variability.
Of course, generalization will be influenced by the
correlation. The higher the correlation of the representation,
the better the generalization. For example, in all greens are
red and all reds are blue, the possible representations
resemble very closely, which will lead to similar
conclusions. Similarly, the lower the correlation between
the representations, the less likely the BHM is to reproduce
the right conclusions. In short, the difficulty level
associated with syllogisms could arise from the
dissimilarities in their corresponding representations.
Another source of variability in performance is the number
of allowed alternative conclusions. The network was not
able to reproduce human performance on all syllogism
problems. For example, the performances on the problems
IE3, OA3, and AO3 were significantly different from those
of humans. This can be explained by the lack of possible
sizes for the consequents of the premises that are built with
the topographic rules. Another difference can be observed
on problem AA1, where the system performance is much
higher than the human performance. This can be explained
by the fact that the system does not differentiate the order
in which the two premises are presented. In fact, the
problem AA1 becomes very easy to the human by simply
reversing the two premises. This inversion can alleviate
memory loading.

Future empirical study will look at how human
performances are influenced by the representation method
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introduced in the current study without limited time to
accomplish the task. Also, future simulations should be
done using more than three sizes for the consequents, as
was used in this study. Even if some premise
representations are less probable than others, there are some
alternative conclusions that are still not formulated by the
system. Moreover, a more thorough exploration of the
parameter of the system should be studied in order to
determine its robustness. For example, it might be more
probably that the size of the consequent for premises built
by humans is closer to the size of the antecedent quantity.
Following the idea of Khemlani, Trafton, and Johnson-
Laird (2013), using a Poisson distribution for the size of the
consequent would be interesting. Finally, it would be
interesting to test the system on all syllogisms, valid or not.
Multiple series of syllogism could also easily be tested with
this system. In fact, when premises are added a more
complex syllogism is created. It would then be interesting
to simulate a complex case of syllogism for comparison
with human performance.

In conclusion, the three-step system of integrating a BHM
network allows a basic framework for the study of
syllogisms. This provides the system with a realistic human
cognitive perspective. The system can then be used to
evaluate the performance under various constraints.
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