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Abstract

The dynamics of cooperation in repeated Prisoner's Dilemma
(PD) interactions are captured by an instance-based learning
model that assumes dynamic adjustment of expected
outcomes (IBL-PD model). This research presents this
model’s predictions across a large number of PD payoff
matrices, in the absence of human data. Rapoport and
Chammah (1965) test three hypotheses in a large set of PD
payoff matrices: (1) as reward of cooperation increases, more
cooperation is observed; (2) as the temptation to defect
increases, less cooperation is observed; and (3) as punishment
for defection increases, more cooperation is observed. We
demonstrate that the same IBL-PD model that was found to
predict the dynamics of cooperation in one particular payoff
matrix of the PD produces accurate predictions of human
cooperation behavior in six additional games. We also make
detailed predictions of the dynamics of cooperation that
support these three hypotheses.
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Modeling; Prisoner's Dilemma; Cooperation; Trust.

Cognitive

Learning to Cooperate

Productive endeavors in society often rely on people's
willingness to engage in cooperation, even in situations that
may be individually costly. People engage in cooperative
behavior often: long-term marriages, business initiatives,
friendships, and international agreements all depend on
expectations of reciprocity that often involve a sacrifice
from the individual perspective.

In the laboratory, researchers have studied these social
dilemmas using economic games, in which incentives
depend on the actions of two players (Rapoport, Guyer, &
Gordon, 1976). Extensive research in Economics and
Psychology has indicated that in one-time interactions, these
games may result in very different behavior than in repeated
interactions (Camerer, 2003). However, research on learning
that can explain the emergence, sustainability, and
adaptability of cooperation from repeated two-agent
interactions is very scarce (Gonzalez et al., in press).
Existing models underplay the role of cognitive processes
necessary to recognize, remember, adapt, and respond to
one's prior history of interactions with an opponent (Ben-
Asher, Dutt, & Gonzalez, 2013; Gonzalez et al., in press).

Recently, novel results were reported regarding how
individuals learn while playing a well-known social
dilemma (Prisoner's Dilemma) repeatedly in succession,

given different levels of interdependency information
(Martin, Gonzalez, Juvina, & Lebiere, in press). Their
findings include a significant effect of the information
available on the average levels of individual and mutual
cooperation, as well as on the trends of cooperation over
repeated trials. They found greater cooperation with higher
levels of information, and increasing trends on the
cooperation over trials when fully descriptive information of
the payoff matrix was available to the participants.

A large number of models in the BGT tradition make one
common assumption: that players have full and complete
information regarding the state of the environment,
including the actions taken and the outcomes received by
themselves and their opponents, as well as each player’s
forgone payoffs (outcomes that would have been received
had one chosen the other option). Also, most of these
models make cognitively implausible assumptions, such as
players being able to remember large amounts of
information. Gonzalez and colleagues (Gonzalez et al., in
press) proposed a cognitive model for repeated social
interactions that does not require on the full information
assumption. In fact, this model, IBL-PD, builds on a model
of individual learning and decisions from experience in
repeated binary choice (IBL model, Gonzalez & Dutt, 2011;
Lejarraga et al., 2012).

The IBL-PD model relies on a formalization of the
connection between Social Value Orientation (SVO)
research in social dilemmas (Murphy & Ackerman, 2014)
and a cognitive learning theory of dynamic decision making
(IBLT) (Gonzalez, Lerch, & Lebiere, 2003). By
systematically testing a set of assumptions regarding how
humans account for the opponent’s actions and outcomes
into their own decisions, Gonzalez and colleagues conclude
that the best IBL-PD model is one that assumes dynamic
adjustment of expected outcomes rather than static functions
of how a player accounts for the opponent’s information in
evaluating her own actions. This model indicates that the
social mechanism that best captures the dynamics of
cooperation is the adaptation of dynamic expectations,
where players adjust the weight given to the opponent's
outcomes based on expectations and the opponent’s actual
behavior (i.e., surprise).

This model was able to account for several patterns of
dynamics in the human data. For example, the fact that even
with full information, participants displayed an initial
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attempt to act selfishly and a gradual discovery of the
benefits of cooperation with experience with the same
partner.

Although Gonzalez et al. (in press) already demonstrated
a number of generalizations of a model that was initially
developed to account for individual dynamic decision
making, their demonstrations of the IBL-PD model used one
single PD payoff matrix. The question we address here is
that of the robustness of the predictions that the IBL-PD
model can make across a wider range of payoff matrices in
the PD. In the current research we produce predictions of
average cooperation as well as dynamics of cooperation in
the absence of human data. Thus, the current work is not a
model comparison exercise.

The same IBL-PD model developed by Gonzalez et al. (in
press) is used here to test three hypotheses regarding the
effects of rewards, temptation to defect, and punishment on
the overall proportion of cooperation, proposed by Rapoport
and Chammah (1965) (RC65 hereafter). In addition to
making behavioral predictions on the average proportion of
cooperation in seven different matrices (reported in RC65),
we also make predictions of the dynamics of cooperation in
repeated interactions on these seven different payoff
matrices (for which human patterns are not reported in
RC65). Implications of these results for our understanding
of cooperation and trust, and the power and limitations of
the IBL-PD model’s predictions are discussed.

The Prisoner's Dilemma and Rapoport and
Chammah’s (1965) hypotheses

The Prisoner's Dilemma (PD) is perhaps the most well-
known example of a social dilemma. This is a non-
cooperative game in which two players independently
choose between two possible strategies: to cooperate or to
defect. In the generic game matrix that is illustrated in
Figure 1, R refers to the payoff that each player receives as a
reward when both players cooperate; S refers to the payoff
received by the player who cooperated while the other
defected; T refers to the payoff that a player hopes to get if
he can defect and get away with it; and P is the payoff of
both players when both defect.

Player 2 Options
C D

2) As T increases, less cooperation will be observed.

3) As P decreases, more cooperation will be observed (all

else held constant).

The seven payoff matrices (games) used are shown in
Figure 2.

R ST
S PP

. C R
Player 1 Options D T ,

Figure 1. Generic definition of payoffs in a 2x2 game.

The PD presents a situation with the following rank order
of outcomes: S < P <R < T. RC65 defined seven variants of
the PD designed to investigate whether the motivations from
the relationships of payoffs would be reflected directly in
human performance. More precisely, they defined and tested
three hypotheses:

1) As R increases, more cooperation will be observed (all

else held constant).

Game | Game Il
C D C D
cCl|99 -10, 10 cl|11 -10, 10
D|10,-10 | -1,-1 D|10,-10 | -9,-9
Game I Game IV
C D C D
cl|11 -10, 10 C|11|-22
D|10,-10 | -1,-1 D|2-2|-1-1
Game V Game XI
C D C D
cl|11 -50, 50 C |55 -10, 10
D|50-50|-1,-1 D |10,-10 |-1,-1
Game XII C D
C 1,1 -10, 10
D|10,-10 | -5,-5

Figure 2. Seven payoff matrices in RC65 for the PD

Games |11, XI, and | were used to test Hypothesis 1: R
increased from 1 to 5 to 9, while T, S, and P were held
constant. Games IV, 111, and V were used to test Hypothesis
2, where T and S increased from 2 (-2) to 10 (-10) to 50 (-
50), while R went from 9 in game IV to 1 in games Il and
V, and P are held constant. Please note that, this hypothesis
suggest that the temptation to defect T is equivalent to the
absolute value of the payoff received by the player who
cooperated while the other defected. Finally, games I11, XII,
and Il were used to test Hypothesis 3, where P value
decreased from -1 to -5 to -9, while R, S, and T were kept
constant.

In each interaction (trial), two players repeatedly decided
to cooperate or to defect, without communicating and while
explicitly given information about the payoff matrix (see
Appendix | in RC65 for specific instructions). Participants
interacted with the same opponent across 300 trials of one
specific game, without being aware of the number of
interactions. Their aggregated results (pp. 47, RC65) serve
as a benchmark to compare IBL-PD model’s predictions.

The IBL-PD model

The IBL-PD model reported in Gonzalez et al. (in press)
is an extension of a cognitive model of individual repeated
binary choice (Lejarraga, Dutt & Gonzalez, 2012). The IBL-
PD includes two IBL models representing individuals
making selections between two options, and they are
“connected” to one another according to the PD's actions
and outcomes in a payoff matrix. The IBL-PD model relies
on the concept of Social Value Orientation (SVO) to test
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hypotheses regarding how a player would account for the
opponent's outcome when evaluating one’s own potential
actions.

The IBL model of individual binary choice has been
described in detail in many publications (e.g., Gonzalez &
Dutt, 2011; Lejarraga, et al., 2012), and it can be
summarized as follows:

In each trial t, the IBL model chooses an option with the
highest Blended Value (V;). The V of j is evaluated as:

V= EF:lpi_i'-ri_i' )

where ¥; is the value of the observed outcome i, and p; is
the probability of retrieving that outcome from memory. At
trial t, the retrieval probability of the observed outcome i is
a function of that outcome’s activation relative to the

activation of all the observed k outcomes for option j.
A.
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where t is random noise defined as T = 2, and & is a
parameter fitted to the data (see below). At trial t, the
activation (Anderson & Lebiere, 1998) of an outcome i is:

A= (Zren e 0l -t ) +o-In (%) ()

where d is a decay parameter fitted to human data (see
below); ¥ is a random draw from a uniform distribution
bounded between 0 and 1 for each outcome and trial; and t;
is each of the previous trial indexes in which the outcome i
was encountered.

Two main extensions to account for the dynamics of
cooperation in PD (Gonzalez et al., in press) are:

1) Integration of Social Value Orientation in the Blending
Equation.

Social Value Orientation (SVO), defined as the degree to
which somebody cares about the outcomes of others
(Balliet, Parks, & Joireman, 2009), was integrated into the
IBL’s blending mechanism by replacing Equation 1 with the
following blending equation:

V=Elipg {I-_'j tw ”'-'J'} “)

Where x;; and o;; are the values of the player’s outcome
and the opponent's outcome, respectively, in instance i
associated with the option j; w represents the extent to
which a player considers the other player's outcome for each
option when attempting to make a choice that maximizes
gains in each trial; and pj; is the probability of retrieving the
instance i associated with option j from memory (see
Equation 2). Note that oj; represents the opponent’s outcome
(which comes from its choice of option C or D), given that
the player chooses option j.

2) Dynamic expectations and choice as a function of
surprise.

Gonzalez et al. (in press) proposed a dynamic adjustment
of w as a function of the gap between expected outcomes
and the actual outcomes obtained in a trial. The difference
between the expected outcomes and those actually obtained
are referred to as a "surprise,” (disconfirmed expectations)
(Maguire, Maguire, & Keane, 2011). In this model, w; (the
regards to the opponent's outcome at trial t) was defined as
follows:

w, = 1— Surprise, @)

where w; varies between selfish behavior w=0 and
complete fairness w=1 according to the surprise resulting
from the difference between expected and actual opponent's
behavior in that trial. Surprise at trial t, was defined
according to past formulations (Erev, Ert, & Roth, 2010;
Gonzalez, Dutt, & Lejarraga, 2011) as follows:

(8)

Surprise; = [MeanlGape+ Gap,l

Where the Gap at time t is the absolute value of the
difference between the expected utility for choosing option
j, which is V; at the previous time period (t-1), and the
corresponding actual joint outcome, which is the sum of the
player's outcome and the opponent's outcome: (X; + Oj).
Defined as follows:

Gap, = Abs[Vip_y) — {Xij + G'ij}] 9)

The Mean Gap at time t was defined assuming a horizon
of 200 trials of repeated PD as follows:

Mean (Gap,) = Mean (Gap,_, ) (1 - i) + Gap(t) {L:I

00

(10)

IBL-PD model's predictions and the effects of
payoffs on Cooperation

Gonzalez et al. (in press) fitted the IBL-PD model to data
reported in Martin et al. (in press), which was collected
using Game Il (Figure 2). The fitting of the d and o
parameters in the IBL-PD model led to values of 2.038 and
0.495, respectively

For the current research we generate predictions in the
absence of human data in the additional matrices shown in
Figure 2. We ran this model for 100 simulated pairs of
players in each of these matrices and produced data to test
the different hypotheses in RC65. The human data presented
in the following figures come from our estimation of the
average values found in the graphs published in RC65. We
do not possess any human data to demonstrate those effects.
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Hypothesis 1: As reward (R) increases, more
cooperation is observed (all else being constant).

Figure 3 shows the average proportion of cooperation
resulting from the IBL-PD model’s predictions and the
proportion of cooperation reported in the RC65
experiments, to test Hypothesis 1. In agreement with the
RC65 results, the IBL-PD model predicts that as the reward
for cooperation (CC cell) goes from 1 to 5 to 9 (while all
other payoffs stay the same), the proportion of cooperation
increases.
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Figure 3. Average proportion of cooperation resulting from the
human data reported in RC65 and the IBL-PD model predictions in
matrices I11, XI, and I: showing that as the mutual cooperation
reward increases, the proportion of cooperation increases.

Hypothesis 2: As temptation (T) increases, less
cooperation is observed.

Figure 4 shows the average proportion of cooperation
observed in the RC65 human experiments and the IBL-PD
model’s predictions for Hypothesis 2. RC65’s data
corroborate their hypothesis showing a decrease in
cooperation as the temptation to defect, T increases from 2
to 10 to 50. The IBL-PD model shows a decrease in
cooperation from Game IV to Game Ill, but not a decrease
from Game Il to Game V. The higher cooperation in Game
IV compared to the other games may be explained by the
relative small advantage for cooperation over defection in
this game (T-R=1), compared to the Games Ill and V where
the gain from defection is much larger compared with the
gain from cooperation (T-R=9 and 49, respectively). Thus,
and as we will observe in the next section, learning about
the benefit of cooperation require longer repeated
interaction. As the value of w (Equation 4) gets closer to 1
with repeated experiences, the model considers the
opponent's outcome as equally important as the player's own
outcome. Given the exact asymmetry of S and T and the
RC65 assumption that T=|S| that we also adopted in the
model, S and T values "cancel" each other out as w is closer
to 1, making the model less sensitive to the mixed CD, DC
actions. As a result the model becomes more sensitive to the
reward (CC action), and given that R is the same in both,
Game 11l and Game 1V, the model ends up making similar
overall proportion of cooperation in these two games.
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Figure 4. Average proportion of cooperation resulting from the
human data reported in RC65 and the IBL-PD model predictions in
matrices IV, 111, and V: showing that as the temptation to defect
increases, the proportion of cooperation decreases.

Hypothesis 3: As punishment (P) increases, more
cooperation is observed (all else being constant).

Figure 5 shows the average proportion of cooperation
observed in RC65 human experiments and the IBL-PD
model’s predictions for Hypothesis 3. RC65’s data show
that as the outcome from mutual defection (DD cell)
increases from 1 to 5 to 9 (all else held constant), the
proportion of cooperation increases. The IBL-PD model
makes accurate predictions of this trend.
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Figure 5. Average proportion of cooperation resulting from the
human data reported in RC65 and the IBL-PD model predictions in
matrices 11, XII, and Il: showing that as the punishment for
defection increases, the proportion of cooperation increases.

IBL model's predictions of dynamics of
cooperation

We make predictions of the dynamics of cooperation over
200 trials that correspond to the three hypotheses of RC65.

As seen in Figure 6, which corresponds to Hypothesis 1,
the trends in the proportion of cooperation over time are
sensitive to the value of the reward from mutual
cooperation. As the magnitude of the reward increases, the
IBL-PD model converges sooner towards increasing
cooperation, through learning that cooperation is more
beneficial when the reward is larger (R=1, 5, 9).
Importantly, and as observed in Gonzalez et al. (in press),
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the dynamics of cooperation in the short-term are different
from those in the long-term. In all the games, there is an
initial tendency towards decreased cooperation. This initial
dent lasts longer when the reward is small (Game I11) than
when the reward in larger (Games Xl, and ). The
magnitude of the reward influences the initial dent of
cooperation and the speed of the increasing trend towards
cooperation.
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Figure 6. Dynamics of cooperation as a function of the increase
in the reward for mutual cooperation.

Although from the perspective of reward, Game Xl is
halfway between Games Ill and I, it seems that the
proportion of cooperation in Game XI at trial 200 is more
similar to Game | than to Game Ill. The learning process in
Game |11 seems to be slower, probably due to the relatively
larger difference between R and T (R-T=9) in this game,
compared to the two other games (4 and 1, respectively).

Figure 7 illustrates the dynamics of cooperation as the
temptation to defect increases that correspond to the
Hypothesis 2. As observed, dynamic behavior in game 1V is
clearly different from behavior in games Il and V. In Game
IV the initial decrease of cooperation does not occur. Rather
soon, participants realize that the temptation to defect (T=2)
is not worth when compared to the reward for cooperation
in this game (R=1). For this game, the model quickly learns
that the most beneficial decision is to cooperate; and the
proportion of cooperation reaches about 80% in less than 50
trials, then ultimately to about 100% within 100 trials. In
contrast, the higher temptation values in Games Ill and V
(T=10 and 50, respectively), compared to the reward from
cooperation in both of these games (R=1), leads to an initial
decrease in the proportion of cooperation. This initial dent is
deeper in Game V than in Game Ill. However, as observed
in the dynamics, the increase towards cooperation after the
initial decrease occurs faster for Game V than for Game IlI.
Eventually by trial 200, the proportion of cooperation in
Game V is higher than in Game I11. As suggested before, the
increase in T from 10 to 50, produces an initial larger
tendency to defect in Game V than in Game Ill. But, as the
simulated players start to mutually cooperate and the weight
given to the opponent's outcome increases (w approaches 1),
the value of the mixed actions (CD and DC) starts to
decrease (to zero) given the exact asymmetry of the

outcomes (e.g. T=+10, S=-10 in Game III) and model's
Blending Value formulation (Equation 4).
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Figure 7. Dynamics of cooperation as a function of the increase
in the temptation to defect.

Figure 8 illustrates the dynamics of cooperation as the
punishment (P) to defect increases. As the punishment to
defect goes from -1 to -5 to -9 with all else being equal, the
convergence towards cooperation occurs sooner and faster.
High punishment, as in Game Il, accelerates learning and
shows an immediate rapid increase in cooperation
converging into full cooperation rather quickly. High
punishment given mutual defection seems to resolve the
social dilemma relatively quickly, leading to a relatively
stable 100% cooperation after the 50" trial. This behaviour
might be attributed to the SVO-inpired consideration of the
opponent’s payoffs. Considering the other’s payoffs
amplifies the punishment, as both players receive the same
negative payoff for mutual defections. Because the
temptation to defect is the same for all of these games,
lowering the punishment leads to an initial decrease in
cooperation in games Xl and I11. With low punishment of -1
like in Game Il and a relatively high temptation to defect
(10), the attempts to benefit from defection seems to last for
a much longer compared to other Games.
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Figure 8. Dynamics of cooperation as a function of the
increase in the punishment for mutual defection.
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Conclusions

This paper presents novel predictions from a model
recently proposed to account for the dynamics of
cooperation in repeated social dilemma interactions, IBL-
PD (Gonzalez et al., in press). The IBL-PD model is an
extension of the individual version of the model (Lejarraga
et al., 2012; Gonzalez & Dutt, 2011). In the IBL-PD the
concept of SVO is used to test a set of hypotheses about
how players in a PD social dilemma consider their
opponents’ outcomes. In Gonzalez et al. (in press), the
model that best accounts for the dynamics of cooperation is
one that adjusts the consideration for the opponent’s
outcome in the player’s own decisions as a function of the
“surprise”: the difference between expectations and actual
outcomes.

In the current research we present one important
demonstration of the robustness of the IBL-PD model. We
use the IBL-PD model without modifications, to make
predictions in six additional payoff matrices, in the absence
of human data. Data produced from the IBL-PD model
reproduces the average behavioral results from RC65 on the
proportion of cooperation quite well. Furthermore we report
predictions of the dynamics of cooperation in all these
additional payoff matrices.

Models that can make general predictions of behavior in
multiple tasks are rare (see discussion of this argument in
Lejarraga et al., 2013; Gonzalez & Dutt, 2011). The IBL
general decision process that makes use of memory and
activation mechanisms in the ACT-R theory of cognition
(Anderson & Lebiere, 1998) has demonstrated robustness
across a large number of tasks. The present work provides
predictions of an extension of this model to social
dilemmas. The model captures essential phenomena across
multiple payoff matrices in the well-known PD.

Future research should compare other models to the IBL-
PD model in their ability to make accurate predictions
across many payoff matrices in the absence of human data.
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