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Abstract 

The dynamics of cooperation in repeated Prisoner's Dilemma 
(PD) interactions are captured by an instance-based learning 
model that assumes dynamic adjustment of expected 
outcomes (IBL-PD model). This research presents this 
model’s predictions across a large number of PD payoff 
matrices, in the absence of human data. Rapoport and 
Chammah (1965) test three hypotheses in a large set of PD 
payoff matrices: (1) as reward of cooperation increases, more 
cooperation is observed; (2) as the temptation to defect 
increases, less cooperation is observed; and (3) as punishment 
for defection increases, more cooperation is observed. We 
demonstrate that the same IBL-PD model that was found to 
predict the dynamics of cooperation in one particular payoff 
matrix of the PD produces accurate predictions of human 
cooperation behavior in six additional games. We also make 
detailed predictions of the dynamics of cooperation that 
support these three hypotheses.  

Keywords: Instance-Based Learning Theory; Cognitive 
Modeling; Prisoner's Dilemma; Cooperation; Trust. 

Learning to Cooperate 

Productive endeavors in society often rely on people's 

willingness to engage in cooperation, even in situations that 

may be individually costly. People engage in cooperative 

behavior often: long-term marriages, business initiatives, 

friendships, and international agreements all depend on 

expectations of reciprocity that often involve a sacrifice 

from the individual perspective. 

In the laboratory, researchers have studied these social 

dilemmas using economic games, in which incentives 

depend on the actions of two players (Rapoport, Guyer, & 

Gordon, 1976). Extensive research in Economics and 

Psychology has indicated that in one-time interactions, these 

games may result in very different behavior than in repeated 

interactions (Camerer, 2003). However, research on learning 

that can explain the emergence, sustainability, and 

adaptability of cooperation from repeated two-agent 

interactions is very scarce (Gonzalez et al., in press). 

Existing models underplay the role of cognitive processes 

necessary to recognize, remember, adapt, and respond to 

one's prior history of interactions with an opponent (Ben-

Asher, Dutt, & Gonzalez, 2013; Gonzalez et al., in press). 

Recently, novel results were reported regarding how 

individuals learn while playing a well-known social 

dilemma (Prisoner's Dilemma) repeatedly in succession, 

given different levels of interdependency information 

(Martin, Gonzalez, Juvina, & Lebiere, in press). Their 

findings include a significant effect of the information 

available on the average levels of individual and mutual 

cooperation, as well as on the trends of cooperation over 

repeated trials. They found greater cooperation with higher 

levels of information, and increasing trends on the 

cooperation over trials when fully descriptive information of 

the payoff matrix was available to the participants. 

A large number of models in the BGT tradition make one 

common assumption: that players have full and complete 

information regarding the state of the environment, 

including the actions taken and the outcomes received by 

themselves and their opponents, as well as each player’s 

forgone payoffs (outcomes that would have been received 

had one chosen the other option). Also, most of these 

models make cognitively implausible assumptions, such as 

players being able to remember large amounts of 

information. Gonzalez and colleagues (Gonzalez et al., in 

press) proposed a cognitive model for repeated social 

interactions that does not require on the full information 

assumption. In fact, this model, IBL-PD, builds on a model 

of individual learning and decisions from experience in 

repeated binary choice (IBL model, Gonzalez & Dutt, 2011; 

Lejarraga et al., 2012).  

The IBL-PD model relies on a formalization of the 

connection between Social Value Orientation (SVO) 

research in social dilemmas (Murphy & Ackerman, 2014) 

and a cognitive learning theory of dynamic decision making 

(IBLT) (Gonzalez, Lerch, & Lebiere, 2003). By 

systematically testing a set of assumptions regarding how 

humans account for the opponent’s actions and outcomes 

into their own decisions, Gonzalez and colleagues conclude 

that the best IBL-PD model is one that assumes dynamic 

adjustment of expected outcomes rather than static functions 

of how a player accounts for the opponent’s information in 

evaluating her own actions. This model indicates that the 

social mechanism that best captures the dynamics of 

cooperation is the adaptation of dynamic expectations, 

where players adjust the weight given to the opponent's 

outcomes based on expectations and the opponent’s actual 

behavior (i.e., surprise). 

This model was able to account for several patterns of 

dynamics in the human data. For example, the fact that even 

with full information, participants displayed an initial 
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attempt to act selfishly and a gradual discovery of the 

benefits of cooperation with experience with the same 

partner. 

Although Gonzalez et al. (in press) already demonstrated 

a number of generalizations of a model that was initially 

developed to account for individual dynamic decision 

making, their demonstrations of the IBL-PD model used one 

single PD payoff matrix. The question we address here is 

that of the robustness of the predictions that the IBL-PD 

model can make across a wider range of payoff matrices in 

the PD. In the current research we produce predictions of 

average cooperation as well as dynamics of cooperation in 

the absence of human data. Thus, the current work is not a 

model comparison exercise.  

The same IBL-PD model developed by Gonzalez et al. (in 

press) is used here to test three hypotheses regarding the 

effects of rewards, temptation to defect, and punishment on 

the overall proportion of cooperation, proposed by Rapoport 

and Chammah (1965) (RC65 hereafter). In addition to 

making behavioral predictions on the average proportion of 

cooperation in seven different matrices (reported in RC65), 

we also make predictions of the dynamics of cooperation in 

repeated interactions on these seven different payoff 

matrices (for which human patterns are not reported in 

RC65). Implications of these results for our understanding 

of cooperation and trust, and the power and limitations of 

the IBL-PD model’s predictions are discussed. 

The Prisoner's Dilemma and Rapoport and 

Chammah's (1965) hypotheses 

The Prisoner's Dilemma (PD) is perhaps the most well-

known example of a social dilemma. This is a non-

cooperative game in which two players independently 

choose between two possible strategies: to cooperate or to 

defect. In the generic game matrix that is illustrated in 

Figure 1, R refers to the payoff that each player receives as a 

reward when both players cooperate; S refers to the payoff 

received by the player who cooperated while the other 

defected; T refers to the payoff that a player hopes to get if 

he can defect and get away with it; and P is the payoff of 

both players when both defect. 

 

 
Player 2 Options 

C D 

Player 1 Options 
C R, R S, T 

D T, S P, P 

 
Figure 1. Generic definition of payoffs in a 2×2 game. 

 

The PD presents a situation with the following rank order 

of outcomes: S < P < R < T. RC65 defined seven variants of 

the PD designed to investigate whether the motivations from 

the relationships of payoffs would be reflected directly in 

human performance. More precisely, they defined and tested 

three hypotheses: 

1) As R increases, more cooperation will be observed (all 

else held constant). 

2) As T increases, less cooperation will be observed. 

3) As P decreases, more cooperation will be observed (all 

else held constant). 

The seven payoff matrices (games) used are shown in 

Figure 2. 

 

Game I 

 C D 

C 9, 9 -10, 10 

D 10, -10 -1, -1 
 

 

Game II 

 C D 

C 1, 1 -10, 10 

D 10, -10 -9, -9 
 

 

Game III 

 C D 

C 1, 1 -10, 10 

D 10, -10 -1, -1 
 

 

Game IV 

 C D 

C 1, 1 -2, 2 

D 2, -2 -1, -1 
 

 

Game V 

 C D 

C 1, 1 -50, 50 

D 50, -50 -1, -1 
 

 

Game XI 

 C D 

C 5, 5 -10, 10 

D 10, -10 -1, -1 
 

 

Game XII 

 

 

 

 C D 

C 1, 1 -10, 10 

D 10, -10 -5, -5 

Figure 2. Seven payoff matrices in RC65 for the PD 

 

Games III, XI, and I were used to test Hypothesis 1: R 

increased from 1 to 5 to 9, while T, S, and P were held 

constant. Games IV, III, and V were used to test Hypothesis 

2, where T and S increased from 2 (-2) to 10 (-10) to 50 (-

50), while R went from 9 in game IV to 1 in games III and 

V, and P are held constant. Please note that, this hypothesis 

suggest that the temptation to defect T is equivalent to the 

absolute value of the payoff received by the player who 

cooperated while the other defected. Finally, games III, XII, 

and II were used to test Hypothesis 3, where P value 

decreased from -1 to -5 to -9, while R, S, and T were kept 

constant. 

In each interaction (trial), two players repeatedly decided 

to cooperate or to defect, without communicating and while 

explicitly given information about the payoff matrix (see 

Appendix I in RC65 for specific instructions). Participants 

interacted with the same opponent across 300 trials of one 

specific game, without being aware of the number of 

interactions. Their aggregated results (pp. 47, RC65) serve 

as a benchmark to compare IBL-PD model’s predictions. 

The IBL-PD model 

The IBL-PD model reported in Gonzalez et al. (in press) 

is an extension of a cognitive model of individual repeated 

binary choice (Lejarraga, Dutt & Gonzalez, 2012). The IBL-

PD includes two IBL models representing individuals 

making selections between two options, and they are 

“connected” to one another according to the PD's actions 

and outcomes in a payoff matrix. The IBL-PD model relies 

on the concept of Social Value Orientation (SVO) to test 
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hypotheses regarding how a player would account for the 

opponent's outcome when evaluating one’s own potential 

actions. 

The IBL model of individual binary choice has been 

described in detail in many publications (e.g., Gonzalez & 

Dutt, 2011; Lejarraga, et al., 2012), and it can be 

summarized as follows: 

In each trial t, the IBL model chooses an option with the 

highest Blended Value (Vj). The V of j is evaluated as: 

 

   (1) 

where xi is the value of the observed outcome i, and pi is 

the probability of retrieving that outcome from memory. At 

trial t, the retrieval probability of the observed outcome i is 

a function of that outcome’s activation relative to the 

activation of all the observed k outcomes for option j. 

   (2) 

where τ is random noise defined as , and  is a 

parameter fitted to the data (see below). At trial t, the 

activation (Anderson & Lebiere, 1998) of an outcome i is: 

 

 (3) 

where d is a decay parameter fitted to human data (see 

below); is a random draw from a uniform distribution 

bounded between 0 and 1 for each outcome and trial; and ti 

is each of the previous trial indexes in which the outcome i 

was encountered.  

Two main extensions to account for the dynamics of 

cooperation in PD (Gonzalez et al., in press) are: 

1) Integration of Social Value Orientation in the Blending 

Equation. 

Social Value Orientation (SVO), defined as the degree to 

which somebody cares about the outcomes of others 

(Balliet, Parks, & Joireman, 2009), was integrated into the 

IBL’s blending mechanism by replacing Equation 1 with the 

following blending equation: 

 

                        (4) 

 

Where xij and oij are the values of the player’s outcome 

and the opponent's outcome, respectively, in instance i 

associated with the option j; w represents the extent to 

which a player considers the other player's outcome for each 

option when attempting to make a choice that maximizes 

gains in each trial; and pij is the probability of retrieving the 

instance i associated with option j from memory (see 

Equation 2). Note that oij represents the opponent’s outcome 

(which comes from its choice of option C or D), given that 

the player chooses option j.   

 

2) Dynamic expectations and choice as a function of 

surprise. 

Gonzalez et al. (in press) proposed a dynamic adjustment 

of w as a function of the gap between expected outcomes 

and the actual outcomes obtained in a trial. The difference 

between the expected outcomes and those actually obtained 

are referred to as a "surprise," (disconfirmed expectations) 

(Maguire, Maguire, & Keane, 2011). In this model, wt (the 

regards to the opponent's outcome at trial t) was defined as 

follows:  

 

                                  (7) 

 
where wt varies between selfish behavior wt=0 and 

complete fairness wt=1 according to the surprise resulting 

from the difference between expected and actual opponent's 

behavior in that trial. Surprise at trial t, was defined 

according to past formulations (Erev, Ert, & Roth, 2010; 

Gonzalez, Dutt, & Lejarraga, 2011) as follows: 

 

                         (8) 

 

Where the Gap at time t is the absolute value of the 

difference between the expected utility for choosing option 

j, which is Vj at the previous time period (t-1), and the 

corresponding actual joint outcome, which is the sum of the 

player's outcome and the opponent's outcome: (Xij + Oij). 

Defined as follows: 

 

                   (9) 

 

The Mean Gap at time t was defined assuming a horizon 

of 200 trials of repeated PD as follows: 

 

    

(10) 

IBL-PD model's predictions and the effects of 

payoffs on Cooperation 

Gonzalez et al. (in press) fitted the IBL-PD model to data 

reported in Martin et al. (in press), which was collected 

using Game III (Figure 2). The fitting of the d and σ 

parameters in the IBL-PD model led to values of 2.038 and 

0.495, respectively 

For the current research we generate predictions in the 

absence of human data in the additional matrices shown in 

Figure 2. We ran this model for 100 simulated pairs of 

players in each of these matrices and produced data to test 

the different hypotheses in RC65. The human data presented 

in the following figures come from our estimation of the 

average values found in the graphs published in RC65. We 

do not possess any human data to demonstrate those effects. 
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Hypothesis 1: As reward (R) increases, more 

cooperation is observed (all else being constant).  

Figure 3 shows the average proportion of cooperation 

resulting from the IBL-PD model’s predictions and the 

proportion of cooperation reported in the RC65 

experiments, to test Hypothesis 1. In agreement with the 

RC65 results, the IBL-PD model predicts that as the reward 

for cooperation (CC cell) goes from 1 to 5 to 9 (while all 

other payoffs stay the same), the proportion of cooperation 

increases.  

 
Figure 3. Average proportion of cooperation resulting from the 

human data reported in RC65 and the IBL-PD model predictions in 

matrices III, XI, and I: showing that as the mutual cooperation 

reward increases, the proportion of cooperation increases. 

Hypothesis 2: As temptation (T) increases, less 

cooperation is observed. 

Figure 4 shows the average proportion of cooperation 

observed in the RC65 human experiments and the IBL-PD 

model’s predictions for Hypothesis 2. RC65’s data 

corroborate their hypothesis showing a decrease in 

cooperation as the temptation to defect, T increases from 2 

to 10 to 50. The IBL-PD model shows a decrease in 

cooperation from Game IV to Game III, but not a decrease 

from Game III to Game V. The higher cooperation in Game 

IV compared to the other games may be explained by the 

relative small advantage for cooperation over defection in 

this game (T-R=1), compared to the Games III and V where 

the gain from defection is much larger compared with the 

gain from cooperation (T-R=9 and 49, respectively). Thus, 

and as we will observe in the next section, learning about 

the benefit of cooperation require longer repeated 

interaction. As the value of w (Equation 4) gets closer to 1 

with repeated experiences, the model considers the 

opponent's outcome as equally important as the player's own 

outcome. Given the exact asymmetry of S and T and the 

RC65 assumption that T=|S| that we also adopted in the 

model, S and T values "cancel" each other out as w is closer 

to 1, making the model less sensitive to the mixed CD, DC 

actions. As a result the model becomes more sensitive to the 

reward (CC action), and given that R is the same in both, 

Game III and Game IV, the model ends up making similar 

overall proportion of cooperation in these two games. 

 
Figure 4. Average proportion of cooperation resulting from the 

human data reported in RC65 and the IBL-PD model predictions in 

matrices IV, III, and V: showing that as the temptation to defect 

increases, the proportion of cooperation decreases. 

Hypothesis 3: As punishment (P) increases, more 

cooperation is observed (all else being constant). 

Figure 5 shows the average proportion of cooperation 

observed in RC65 human experiments and the IBL-PD 

model’s predictions for Hypothesis 3. RC65’s data show 

that as the outcome from mutual defection (DD cell) 

increases from 1 to 5 to 9 (all else held constant), the 

proportion of cooperation increases. The IBL-PD model 

makes accurate predictions of this trend.  

 
Figure 5. Average proportion of cooperation resulting from the 

human data reported in RC65 and the IBL-PD model predictions in 

matrices III, XII, and II: showing that as the punishment for 

defection increases, the proportion of cooperation increases. 

IBL model's predictions of dynamics of 

cooperation 

We make predictions of the dynamics of cooperation over 

200 trials that correspond to the three hypotheses of RC65. 

As seen in Figure 6, which corresponds to Hypothesis 1, 

the trends in the proportion of cooperation over time are 

sensitive to the value of the reward from mutual 

cooperation. As the magnitude of the reward increases, the 

IBL-PD model converges sooner towards increasing 

cooperation, through learning that cooperation is more 

beneficial when the reward is larger (R=1, 5, 9). 

Importantly, and as observed in Gonzalez et al. (in press), 
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the dynamics of cooperation in the short-term are different 

from those in the long-term. In all the games, there is an 

initial tendency towards decreased cooperation. This initial 

dent lasts longer when the reward is small (Game III) than 

when the reward in larger (Games XI, and I). The 

magnitude of the reward influences the initial dent of 

cooperation and the speed of the increasing trend towards 

cooperation.  

 
Figure 6. Dynamics of cooperation as a function of the increase 

in the reward for mutual cooperation. 
 

Although from the perspective of reward, Game XI is 

halfway between Games III and I, it seems that the 

proportion of cooperation in Game XI at trial 200 is more 

similar to Game I than to Game III. The learning process in 

Game III seems to be slower, probably due to the relatively 

larger difference between R and T (R-T=9) in this game, 

compared to the two other games (4 and 1, respectively). 

Figure 7 illustrates the dynamics of cooperation as the 

temptation to defect increases that correspond to the 

Hypothesis 2. As observed, dynamic behavior in game IV is 

clearly different from behavior in games III and V. In Game 

IV the initial decrease of cooperation does not occur. Rather 

soon, participants realize that the temptation to defect (T=2) 

is not worth when compared to the reward for cooperation 

in this game (R=1). For this game, the model quickly learns 

that the most beneficial decision is to cooperate; and the 

proportion of cooperation reaches about 80% in less than 50 

trials, then ultimately to about 100% within 100 trials. In 

contrast, the higher temptation values in Games III and V 

(T=10 and 50, respectively), compared to the reward from 

cooperation in both of these games (R=1), leads to an initial 

decrease in the proportion of cooperation. This initial dent is 

deeper in Game V than in Game III. However, as observed 

in the dynamics, the increase towards cooperation after the 

initial decrease occurs faster for Game V than for Game III. 

Eventually by trial 200, the proportion of cooperation in 

Game V is higher than in Game III. As suggested before, the 

increase in T from 10 to 50, produces an initial larger 

tendency to defect in Game V than in Game III. But, as the 

simulated players start to mutually cooperate and the weight 

given to the opponent's outcome increases (w approaches 1), 

the value of the mixed actions (CD and DC) starts to 

decrease (to zero) given the exact asymmetry of the 

outcomes (e.g. T=+10, S=-10 in Game III) and model's 

Blending Value formulation (Equation 4). 

 
Figure 7. Dynamics of cooperation as a function of the increase 

in the temptation to defect.  

 

Figure 8 illustrates the dynamics of cooperation as the 

punishment (P) to defect increases. As the punishment to 

defect goes from -1 to -5 to -9 with all else being equal, the 

convergence towards cooperation occurs sooner and faster. 

High punishment, as in Game II, accelerates learning and 

shows an immediate rapid increase in cooperation 

converging into full cooperation rather quickly. High 

punishment given mutual defection seems to resolve the 

social dilemma relatively quickly, leading to a relatively 

stable 100% cooperation after the 50
th

 trial. This behaviour 

might be attributed to the SVO-inpired consideration of the 

opponent’s payoffs. Considering the other’s payoffs 

amplifies the punishment, as both players receive the same 

negative payoff for mutual defections. Because the 

temptation to defect is the same for all of these games, 

lowering the punishment leads to an initial decrease in 

cooperation in games XI and III. With low punishment of -1 

like in Game III and a relatively high temptation to defect 

(10), the attempts to benefit from defection seems to last for 

a much longer compared to other Games.  

 
Figure 8. Dynamics of cooperation as a function of the 

increase in the punishment for mutual defection. 
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Conclusions 

This paper presents novel predictions from a model 

recently proposed to account for the dynamics of 

cooperation in repeated social dilemma interactions, IBL-

PD (Gonzalez et al., in press). The IBL-PD model is an 

extension of the individual version of the model (Lejarraga 

et al., 2012; Gonzalez & Dutt, 2011). In the IBL-PD the 

concept of SVO is used to test a set of hypotheses about 

how players in a PD social dilemma consider their 

opponents’ outcomes. In Gonzalez et al. (in press), the 

model that best accounts for the dynamics of cooperation is 

one that adjusts the consideration for the opponent’s 

outcome in the player’s own decisions as a function of the 

“surprise”: the difference between expectations and actual 

outcomes. 

In the current research we present one important 

demonstration of the robustness of the IBL-PD model. We 

use the IBL-PD model without modifications, to make 

predictions in six additional payoff matrices, in the absence 

of human data. Data produced from the IBL-PD model 

reproduces the average behavioral results from RC65 on the 

proportion of cooperation quite well. Furthermore we report 

predictions of the dynamics of cooperation in all these 

additional payoff matrices.  

Models that can make general predictions of behavior in 

multiple tasks are rare (see discussion of this argument in 

Lejarraga et al., 2013; Gonzalez & Dutt, 2011). The IBL 

general decision process that makes use of memory and 

activation mechanisms in the ACT-R theory of cognition 

(Anderson & Lebiere, 1998) has demonstrated robustness 

across a large number of tasks. The present work provides 

predictions of an extension of this model to social 

dilemmas. The model captures essential phenomena across 

multiple payoff matrices in the well-known PD. 

Future research should compare other models to the IBL-

PD model in their ability to make accurate predictions 

across many payoff matrices in the absence of human data. 
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