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Abstract 
TRACX (French, Addyman, & Mareschal, 2011) is a 
recursive connectionist system that implicitly extracts chunks 
from sequence data. It can account for experiments on infant 
statistical learning and adult implicit learning, as well as real-
world phoneme data, and an experiment using backward 
transitional probabilities that simple recurrent networks 
cannot account for. One criticism of TRACX, however, is the 
implausibility in a connectionist model of if-then-else 
statements. In particular, one of these statements controls 
what data is copied from the model’s internal memory into its 
input, based on a hard error threshold. We, therefore, 
developed a more biologically-plausible version of TRACX 
devoid of if-then-else statements, relying only on spreading 
activation and without any learning error threshold.  This new 
model, TRACX 2.0, performs essentially as well as the 
original TRACX model and, in addition, has two fewer 
parameters than the original and accounts for the graded 
nature of chunks.  

Keywords: chunk extraction; statistical learning; implicit 
learning; recursive autoassociative memory; autoassociators. 
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Introduction 
No one disputes that individuals learn to extract structure 
from their sensory environment. There is, however, a heated 
debate is over just how this is done. In what follows we will 
suggest a neurobiologically plausible, memory-based model 
that achieves this in the auditory domain. The model 
provides a strong hypothesis as to how people -- infants, as 
well as adults -- might segment continuous syllable streams 
into words. The model is an improvement of a recent 
connectionist memory-based model of sequence 
segmentation and chunking, TRACX (French, Addyman, & 
Mareschal, 2011). The new model improves TRACX by 
removing a crucial if-then-else statement in the model and 
replaces it with a simple connectionist mechanism.  

The mainstream view of how segmentation is done, one 
that has held sway for the nearly two decades, is based on 
the notion of prediction. This theory supposes that 
individuals, based on their previous experience with the 
world, are constantly in the process of making predictions 
about what is going to happen next in their environment. In 
so doing, they gradually learn to align their predictions with 
what actually happens in the world. In order to make these 

predictions, they must gradually learn the probabilities of 
successive events in the world. We learn that a flash of 
lightning will invariably be followed by a clap of thunder, 
that a “hello” will usually be reciprocated, that a phone call 
will sometimes be for us, but sometimes not, that the 
flashing light on a police car will usually be for someone 
else, but occasionally for us, and so on.  

This is the basis of the transitional probability (TP) 
theory of sequence segmentation. The idea is simple. In the 
syllable stream that an infant hears, many multi-syllable 
words will be repeated frequently (e.g., bay-bee, mah-mee, 
bah-tul, and so on) and, as a result, the infant will become 
better at predicting upcoming within-word syllables 
compared to upcoming between-word syllables. (The 
syllable pair bay-bee will be followed by the initial syllable 
of many different words, whereas as bay will be very 
frequently followed by bee. The infant thus learns the word 
bay-bee.) Thus, low syllable-to-syllable TPs (failures to 
predict) indicate word boundaries. High syllable-to-syllable 
TPs bind syllables together into words and facilitate their 
learning. An obvious connectionist candidate for this kind 
of transitional-probability based learning is the well-known 
Simple Recurrent Network (SRN, Elman, 1990).   

While we don’t doubt that prediction is an important 
aspect of cognition, there are other plausible explanations as 
to how infants (and adults) learn to segment continuous 
speech streams into words. Broadly speaking, there are four 
classes of models used to explain sequence segmentation 
and word extraction. These are: 

- Predictive connectionist models

- 

, most prominent 
among them the SRN (Elman, 1990; Cleeremans & 
McClelland, 1991; Servan-Schreiber, Cleeremans, & 
McClelland, 1991); 
Chunking connectionist models

- 

, i.e., TRACX (French, 
et al., 2011);  
Symbolic hybrid models

- 

, the best known of which are 
probably PARSER (Perruchet & Vinter, 1998, 2002) 
and the Competitive Chunker (Servan-Schreiberr & 
Anderson, 1990)  
Normative statistical models

Recently, Kurumada, Meylan, and Frank (2013) ran a series 

 (Frank, Goldwater, 
Griffiths & Tenenbaum, 2010; Goldwater, Griffiths, & 
Johnson, 2009; Börschinger, & Johnson, 2011). 
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of tests on models from each of these classes and found that 
“computational models that implement ‘chunking’ are more 
effective than ‘transition finding’ models” at reproducing 
segmentation in a context where the frequency of words 
followed a Zipfian distribution (e.g., words in real natural 
language). TRACX was singled out as the model that best 
captured human word-segmentation performance in a 
Zipfian context. 

However, even though French et al. (2011) criticize the 
lack of neurobiological plausibility of competing non-
connectionist models of sequence segmentation, one of the 
key features of their own model undermines its claim to 
neurobiological plausibility. This feature (an if-then-else 
switch) plays a crucial role in ensuring that the network can 
re-use syllable chunks that it has detected in the input. In 
what follows we show that this flaw can be overcome and 
develop a new, simpler implementation of the original 
TRACX model, which we call TRACX 2.0. This modified 
version of TRACX not only replaces the problematic feature 
with a simple, neurobiologically sound mechanism, but also 
requires two fewer parameters than the original model. We 
also show that TRACX 2.0 produces qualitatively the same 
results as the original TRACX model on five datasets for 
infants and adults. 

TRACX 
The architecture of the TRACX model is explained in detail 
in French et al. (2011). Here we present a brief summary of 
the architecture.  

TRACX is a member of the Recursive Auto-Associative 
Memory (RAAM) family of connectionist architectures 
(Pollack, 1990; Blank, Meeden & Marshall, 1992). It is a 
three-layer (input-hidden-output) connectionist 
autoassociator whose key ability is to learn to recognize 
when it has seen pairs of input items before.  

Autoassociators gradually learn to produce output that is 
identical to their input. This means that items that they have 
seen frequently on input will be accurately reproduced on 
output, unlike items that have not been seen by the 
autoassociator before, or have only been seen infrequently. 
This provides the autoassociator with a simple way of 
determining whether or not it has previously encountered 
the vector of values currently on its input: if the output is 
very different from the input, it is novel. If it is very close, it 
is known.  This signal is also the error signal that drives the 
weight changes, making the output more similar to the 
input.  

Plausibility of Autoassociation 
Autoassociators have a long history in the computational 
modeling of cognition. The first model to make a lasting 
mark was Anderson’s Brain State in a Box (BSB) model 
(Anderson, Silverstein, Ritz and Jones, 1977). This model 
had no hidden layer and could not learn internal 
representations of its input. Ackley, Hinton, and Sejnowski 
(1985) were the first to add a hidden layer to their 
autoassociators, thereby allowing them learn compact 

representations of their input (hence these models are also 
called autoencoders). 

Today, the psychological and biological plausibility of 
autoassociation is widely accepted (Rolls & Treves, 1997). 
Autoassociators have been successfully used as psycho-
biologically plausible models in many areas of cognition. 
For example, Mareschal, French, & Quinn (2000) and 
French, Mareschal, Mermillod & Quinn (2004) developed 
an autoassociator model of infant categorization based on 
the autoassociative principles of Sokolov (1963) and others. 
Other psycho-biologically plausible models using 
autoassociators include models of face perception (Cottrell 
& Metcalfe, 1991), of hippocampal/episodic memory 
(Metcalfe, Cottrell & Mencl, 1992; Gluck & Granger, 
1993), of serial recall memory (Farrell & Lewandowsky, 
2002), and infant habituation (Sirois & Mareschal, 2004).  

The Architecture of TRACX 
The original TRACX autoassociator is constructed as 
follows. The input layer is divided into a Left-Hand Side 
(LHS) and a Right-Hand Side (RHS), each with the same 
number of units. Being an autoassociator, it, of course, has 
the same number of inputs and outputs; being a RAAM, the 
hidden layer has half as many units as the input layer, which 
allows the hidden layer to be copied back to the input layer 
and combined with the next input. Aside from the potential 
copy-back, the network is fully feedforward. The weights 
are changed by standard backpropagation based on the error 
between the input and output. Learning stops when the 
network is below an error threshold of 0.4. The input data 
was encoded with bipolar units (-1 and 1).………...………..        

  
 

Figure 1. TRACX architecture: a 2N-N-2N autoassociator. 

How TRACX Works 
The easiest way to explain the architecture of TRACX is by 
means of an example. Assume we have a language that 
consists of four 3-syllable words made of distinct syllables: 
abc, def, ghi, and jkl. We then present to the network a 
continuous syllable stream made up of these words: 

abcjkldefghidefabcdefabcghiabcdefabc... 
These syllables are read by TRACX in sequential order. So, 
(the bipolar encoding of) a is put into the LHS and b into 
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the RHS. From the input layer, activation spreads forward to 
the output layer. The difference between the input and the 
output determines the error signal, and the weights of the 
system are modified by backpropagation based on this error. 
Initially, this error will be high. If the error is above 
threshold (in this case, 0.4), the value in the RHS will be 
shifted into the LHS and the next syllable -- in this case, c -- 
will be shifted into the RHS.  If, on the other hand, the 
network has seen the a-b input many times, its output will 
be close to a-b, and the error will be small. The fact that a  

Figure 2. TRACX behavior at t+1 depends on error at t. 

and b occur together many times in the input is another way 
of saying that a-b form a chunk. Once the network 
“recognizes” that a-b is a chunk (because the 
autoassociative error for a-b is below the error threshold), 
its behavior changes. On the following time step, instead of 
putting b into the LHS, it puts the hidden unit 
representation of a-b (call it Hab) into the LHS. As before, it 
puts the next syllable, c, into the RHS (Figure 2). Now it 
attempts to autoassociate Hab-c. Since, in fact, it will see a-
b-c many times, it will eventually learn to autoassociate 
(and chunk) Hab-c. It will not chunk further because c can be 
followed by any one of four different syllables, so the error 
will always be high. 

This switch in behavior based on the error threshold is 
the if-then-else we would like to eliminate in our new 
version of the model.  

Testing TRACX: words vs. partwords 
Words are syllable groups that are “bound together” as a 
chunk. On the other hand, partwords are typically made up 
of the final syllable of one word and the initial syllable(s) of 
another word. It turns out that humans - infants and adults - 
learn to segment words from a continuous syllable stream 
better than partwords. In the example in the previous 
section, abc, def, ghi, and jkl are words, whereas cjk, lde, 
fgh, ide, cde, cgh, etc. are partwords. In all five of the 
experiments we model below, three involving infants and 

two involving adults, words are learned significantly better 
than partwords. 

After the model has been trained, it is tested on a stream 
of data similar to the one it was trained on (as are humans 
and babies). There are numerous ways in which the output 
error of words and partwords could have been calculated.  
The one we chose is as follows. An item (in this case, a 3-
syllable word or partword), say abc (or partword, cde), is 
given to the network. a and b are put on the input. This 
input is fed through to the hidden layer, which produces a 
vector of hidden-unit activations. For words/partwords 
longer than two syllables, as is the case here, this hidden-
unit vector is then put in the LHS of the network and c is put 
in the RHS. This is then fed through to the output, and the 
maximum of the absolute values of the error across all 
output nodes is the error measure for item abc. 

Improving TRACX  
The problem with the original TRACX model is that if-
then-else statements are not palatable in a connectionist 
context where it is unclear how such a branching behavior 
can be implemented (but such behavior can be learned - see 
Cottrell & Tsung, 1993).  

The operation of the original TRACX model cannot 
function without two conditionals in its midst. The first is 
by far the most important:  

 

IF  Network error is greater than the Error Threshold, 
THEN  Put the element in the RHS in the LHS 
ELSE  Put the hidden unit vector into the LHS. 
 

The network then grabs the next element in the sequence 
and puts it into the RHS and feeds what is on the input layer 
through to the output layer of the network. At this point the 
second conditional is applied: 
 

IF  LHS contains the previous Hidden-unit vector 
THEN  Do a backpropagation pass 25% of the time 
ELSE Do a backpropagation pass. 

 

This was a simple means of ensuring that the network, like 
people, place less emphasis on internally generated input 
compared to input from the sensory interface.  In TRACX 
2.0 neither of these statements is necessary.   

TRACX without Tears 
The improved version of TRACX is based on a simple 
observation concerning the graded nature of chunking. In 
the previous version of TRACX, the two elements on the 
input were either considered by the network to be chunked 
(if the error on output was below the Error Threshold) or 
they were not. There was no middle ground. But this is 
cognitively unrealistic, since, in fact, chunks are graded. By 
this we mean that some chunks are more “chunked” than 
others. To illustrate this, consider some chunks made, not 
from syllables, but from words. For example, almost no one 
hears the component words “cup” and “board” in the word 
“cupboard”. The word has been with us since the late 14th  
century when it meant a board on which cups and other 
similar objects were placed. But over the course of 500 
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years, the two words, “cup” and “board”, have fused so 
completely that we no longer hear them as separate entities. 
On the other hand, newer compound words, such as 
“smartphone”, “mousepad”, or “congresswoman” are at the 
other extreme: these words are weakly chunked; we still 
clearly hear their component words. These words are far 
less strongly chunked than words like “breakfast”, 
“football” or “cupboard”. 

  

 
 

Figure 3. Information transfer in TRACX 2.0. 
 

Thus, beyond the neurobiological implausibility of the 
if-then-else statement in the original TRACX, the 
dichotomous nature of chunks is dubious. We have changed 
this in TRACX 2.0. In the new model the contents of the 
LHS at time t+1 is a weighted sum of the hidden-layer 
vector and the RHS: 

 
where Δ is the absolute value of the maximum (component-
wise) error on the output (hence it ranges from 0 to 2, and, 
therefore, tanh(Δ) ranges between 0 to 1) at time t. If Δ is 
small (“I’ve seen these two items together in the input 
numerous times before”), then the contribution from the 
hidden layer will be large. If Δ is large, most of the 
contribution to the LHS will come almost exclusively from 
the RHS (Figure 3). This can easily be implemented via a 
unit that takes Δ as input, and then multiplicatively gates the 
connections to the LHS (positively with the RHS, and 
negatively with a bias of 1 on the hidden layer). 
 

This weighted sum of activation sent to the LHS 
removes the problematic if-then-else statements in the 
original TRACX, and implements the graded notion of 
chunks. In addition, we have found that modifying the 
amount of backpropagation, as in the original TRACX 
model is unnecessary. Chunks become stronger over time 
the more they are encountered, as we know occurs in 
humans (perhaps our children do not hear “smart” and 
“phone” when they refer to their “smartphone”, but those of 
us of a certain age still do).  

 Testing TRACX 2.0 
We tested TRACX 2.0 on five of the data sets on which 

the original TRACX model was tested (see French et al., 
2011). In what follows we will briefly consider each of 
these data sets and discuss the performance of TRACX, 
TRACX 2.0, and an SRN on this data. These experiments 
are: Saffran et al. (1996), Aslin et al. (1998), Perruchet & 
Desaulty (2008), forward TPs, Perruchet & Desaulty (2008), 

backward TPs, and French et al. (2008), Equal TPs. In all of 
these experiments with human participants, words were 
learned better than partwords. This is also the case for both 
TRACX and TRACX 2.0, but not the case for the SRN. 

 
Saffran, Aslin & Newport (1996) This is the seminal paper 
in infant syllable-sequence segmentation. Six different 
words were used, each with 3 distinct syllables from a 12-
syllable alphabet. A random sequence of 90 of these words 
(270 syllables) with no immediate repeats or pauses 
between words was presented twice to 8-month-old infants. 
After this familiarization period, the infants heard a word 
from the familiarization sequence and a partword from that 
sequence. A head-turn preference procedure was used to 
show that infants had a novelty preference for partwords. 
The conclusion of the authors was that the infants had 
learned words better than partwords. 

We simulated this experiment with TRACX, TRACX 
2.0 and an SRN using the same number of words drawn 
from a 12-syllable alphabet. The familiarization sequence 
was the same length as the one the infants heard. All three 
models learned words better than partwords, although the 
SRN is considerably farther from human performance than 
TRACX or TRACX 2.0 (Table 1). 

 
Aslin, Saffran & Newport (1998) In Saffran et al. (1996) 
there was a confound -- namely, words were heard three 
times as often as partwords. Aslin et al. designed an 
experiment that was meant to remove the unbalanced 
frequency of words and partwords. There were four 3-
syllable words, two of which occurred twice as often in the 
familiarization sequence as the other two. Thus, the 
partwords spanning the two high-frequency words would 
have the same overall frequency in the familiarization 
sequence as the low-frequency words. The same head-turn 
preference procedure showed, again, that infants had a 
novelty preference for partwords. The conclusion of the 
authors was that the infants had learned words better than 
partwords. 

Once again, we designed a set of words exactly like 
those used in Aslin et al. The length of the familiarization 
sequence was also identical to that used in Aslin et al. We 
tested TRACX, TRACX 2.0 and an SRN on words and 
partwords from this sequence, and found that all three 
networks learned words better than partwords, although the 
SRN is, again, farther from human performance than either 
TRACX or TRACX 2.0 (Table 1). 

 
Perruchet & Desaulty (2008), forward TPs This is an 
experiment on adults. Nine 2-syllable words were 
constructed from 12 syllables. The familiarization string 
was 1035 words long, and each word occurred 115 times. 
The internal forward transitional probability between 
syllables in each word was 1. Not surprisingly, participants 
learned words better than partwords. We simulated this 
experiment by using 2-syllable words drawn from a 12-
syllable alphabet to construct a familiarization sequence 
identical in length to the one used by Perruchet & Desaulty. 

( )1 tanh( ) * tanh( )*LHS Hid RHS= − ∆ + ∆
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TRACX, TRACX 2.0 and the SRN learned words better 
than partwords. Again, the performance of the SRN was the 
farthest from human data (Table 1). 
 
Perruchet & Desaulty (2008), Backward TPs This 
experiment, run on adults, is of crucial importance. 
Perruchet & Desaulty were the first to realize that backward 
TPs could serve as a segmentation cue. To illustrate the 
contrast between backward and forward TPs, consider the 
bigram qu in English. Given a q, the probability that it will 
be followed by a u is, essentially, 1. However, given a u, the 
probability that it will be preceded by a q (i.e., the backward 
TP) is only 0.01. Backward TPs can, in some cases, actually 
be higher than forward TPs. Consider the extremely 
common suffix ez in French, as in, "Parlez-vous français?" 
The probability that, given a z, it will be preceded by an e is 
approximately 0.84, whereas the probability that an “e” will 
be followed by a “z” is a mere 0.027 
(http://www.lexique.org/listes/liste_bigrammes). Perruchet 
& Desaulty created a set of 2-syllable words that made up a 
familiarization sequence in which the first syllable of each 
word was perfectly predicted by second syllable (i.e., 
backward TP = 1), whereas the second syllable was only 
very weakly predicted by the first syllable. They showed 
that under these conditions, participants still recognized 
words better than partwords.  

We encoded the Perruchet & Desaulty vocabulary and 
generated sequences identical to theirs in which the word 
chunking cues were exclusively the backward TPs between 
the two syllables of the words. Since SRNs are sensitive 
only to forward prediction, we predicted that the SRN 
would fail on this data set. This proved to be the case. For 
this data the SRN learned partwords significantly better than 
words. On the other hand, both TRACX and TRACX 2.0, 
once again, recognized words better than partwords (Table 
1). The reason for this is clear. Both of these models rely on 
the recognition of previously seen chunks. They are not 
concerned with TPs, whether forward or backward, between 
the syllables comprising a word. They rely on remembering 
having seen the pairs of syllables making up words, 
something that does not require TPs. 

 
French, Addyman & Mareschal, (2011), Equal forward 
TPs In this experiment, run on infants, all forward TPs 
between syllables and between the words in the language 
were identical. Backward TPs within words were 1 and 
backward TPs between words were 0.25. Each word is 
associated with two partwords. French et al. determined by 
means of a head-turn preference procedure identical to the 
one used by Aslin et al. (1998), that infants exposed to this 
“language” learn words significantly better than partwords. 

  
 

Table 1. Proportion of words learned better than partwords for the three models and humans on five experimental data sets. 

We expected that the SRN would also learn words better 
than partwords, because of the greater frequency of words. 
However, in the absence of forward TP information, we also 
expected it to perform far less well than it did with the 
Saffran et al. (1996), the Aslin et al. (1998) and Perruchet & 
Desaulty (2008), forward-TP data sets. This is, indeed, what 
we observed (Table 1). Both TRACX and TRACX 2.0 also 
learn words better than partwords. However, the 
performance of original TRACX model is quite far from 
human performance, unlike TRACX 2.0, which is much 
closer to human performance on this data set (Table 1). 

In Table 1, we use a “proportion better” measure to 
compare model results and empirical data. This is a relative-
difference measure that can be applied equally well to error 
measures, to looking times, or to proportion-correct scores. 

(See French et al., 2011, footnote 5, p. 422, for a detailed 
justification of this measure.) It is calculated by taking 
difference of the measures for partwords and words and 
dividing this difference by the sum of these two measures. 

Finally, we compared the human data from the five 
experiments and the average overall performance of 
TRACX, TRACX 2.0,and the SRN.  The performance of 
TRACX and TRACX2.0 are essentially equivalent over the 
set of problems (Figure 4).  Even though the performance of 
TRACX is closer to human data on three of the problems in  
Table 1, TRACX 2.0 is better on two of two others, and 
over all five experiments, the performance of the two 
models is similar. By contrast, the SRN's performance is 
considerably farther from human data on these 5 tasks. 

 Segmentation cues Score type 

 
Words learned significantly better than Partwords? 

(proportion better) 
Humans TRACX TRACX 2.0 SRN 

Saffran et al. (1996) Freq. + Fwd TPs looking time Yes 
0.06 

Yes 
0.08 

Yes 
0.11 

Yes 
0.68 

Aslin et al. (1998) Fwd TPs looking time Yes 
0.04 

Yes 
0.13 

Yes 
0.09 

Yes 
0.58 

Perruchet & Desaulty (2008). 
Expt. 2 Fwd TPs % correct 

responses 
Yes 
0.34 

Yes 
0.38 

Yes 
0.17 

Yes 
0.80 

Perruchet & Desaulty (2008). 
Expt. 2 Bkwd TPs % correct  

responses 
Yes 
0.22 

Yes 
0.32 

Yes 
0.05 

No 
-0.10 

Equal TP Freq. + Bkwd TPs looking time Yes 
0.13 

Yes 
0.50 

Yes 
0.06 

Yes 
0.05 
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Figure 4. The three models’ match to human performance, 
averaged over 5 experiments. 
 

Conclusion 
This article is not claiming that TRACX 2.0’s performance 
is superior to that of the original TRACX. Rather, it is 
sufficient for our purposes that TRACX 2.0 performs in a 
qualitatively similar manner compared to the original 
TRACX model. What is important is that TRACX 2.0 no 
longer requires the inclusion of an error-threshold 
parameter, nor an external world/internal representation 
parameter governing how often learning takes place, and 
still performs in a manner qualitatively similar to TRACX.  
The new model, like TRACX, is a recursive autoassociator 
but, unlike its predecessor, it makes use only of spreading 
activation and error backpropagation, which has been shown 
to be isomorphic to the neurobiologically plausible 
mechanism of contrastive Hebbian learning (O'Reilly & 
Munakata, 2000).  This is a considerable improvement over 
the original model for a number of reasons, namely: i) it 
considerably increases the neurobiological plausibility of 
the model; ii) it treats chunks in an appropriate, graded 
manner, rather than dichotomously; iii) it reduces the 
number of free parameters in the model by two; and, finally, 
iv) these changes do not significantly degrade the original 
model's performance. 
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