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Abstract

TRACX (French, Addyman, & Mareschal, 2011) is a
recursive connectionist system that implicitly extracts chunks
from sequence data. It can account for experiments on infant
statistical learning and adult implicit learning, as well as real-
world phoneme data, and an experiment using backward
transitional probabilities that simple recurrent networks
cannot account for. One criticism of TRACX, however, is the
implausibility in a connectionist model of if-then-else
statements. In particular, one of these statements controls
what data is copied from the model’s internal memory into its
input, based on a hard error threshold. We, therefore,
developed a more biologically-plausible version of TRACX
devoid of if-then-else statements, relying only on spreading
activation and without any learning error threshold. This new
model, TRACX 2.0, performs essentially as well as the
original TRACX model and, in addition, has two fewer
parameters than the original and accounts for the graded
nature of chunks.

Keywords: chunk extraction; statistical learning; implicit
learning; recursive autoassociative memory; autoassociators.

Introduction

No one disputes that individuals learn to extract structure
from their sensory environment. There is, however, a heated
debate is over just how this is done. In what follows we will
suggest a neurobiologically plausible, memory-based model
that achieves this in the auditory domain. The model
provides a strong hypothesis as to how people -- infants, as
well as adults -- might segment continuous syllable streams
into words. The model is an improvement of a recent
connectionist  memory-based model of  sequence
segmentation and chunking, TRACX (French, Addyman, &
Mareschal, 2011). The new model improves TRACX by
removing a crucial if-then-else statement in the model and
replaces it with a simple connectionist mechanism.

The mainstream view of how segmentation is done, one
that has held sway for the nearly two decades, is based on
the notion of prediction. This theory supposes that
individuals, based on their previous experience with the
world, are constantly in the process of making predictions
about what is going to happen next in their environment. In
so doing, they gradually learn to align their predictions with
what actually happens in the world. In order to make these

predictions, they must gradually learn the probabilities of
successive events in the world. We learn that a flash of
lightning will invariably be followed by a clap of thunder,
that a “hello” will usually be reciprocated, that a phone call
will sometimes be for us, but sometimes not, that the
flashing light on a police car will usually be for someone
else, but occasionally for us, and so on.

This is the basis of the transitional probability (TP)
theory of sequence segmentation. The idea is simple. In the
syllable stream that an infant hears, many multi-syllable
words will be repeated frequently (e.g., bay-bee, mah-mee,
bah-tul, and so on) and, as a result, the infant will become
better at predicting upcoming within-word syllables
compared to upcoming between-word syllables. (The
syllable pair bay-bee will be followed by the initial syllable
of many different words, whereas as bay will be very
frequently followed by bee. The infant thus learns the word
bay-bee.) Thus, low syllable-to-syllable TPs (failures to
predict) indicate word boundaries. High syllable-to-syllable
TPs bind syllables together into words and facilitate their
learning. An obvious connectionist candidate for this kind
of transitional-probability based learning is the well-known
Simple Recurrent Network (SRN, Elman, 1990).

While we don’t doubt that prediction is an important
aspect of cognition, there are other plausible explanations as
to how infants (and adults) learn to segment continuous
speech streams into words. Broadly speaking, there are four
classes of models used to explain sequence segmentation
and word extraction. These are:

- Predictive connectionist models, most prominent
among them the SRN (Elman, 1990; Cleeremans &
McClelland, 1991; Servan-Schreiber, Cleeremans, &
McClelland, 1991);

- Chunking connectionist models, i.e., TRACX (French,
etal., 2011);

- Symbolic hybrid models, the best known of which are
probably PARSER (Perruchet & Vinter, 1998, 2002)
and the Competitive Chunker (Servan-Schreiberr &
Anderson, 1990)

- Normative _statistical models (Frank, Goldwater,
Griffiths & Tenenbaum, 2010; Goldwater, Griffiths, &
Johnson, 2009; Bérschinger, & Johnson, 2011).

Recently, Kurumada, Meylan, and Frank (2013) ran a series
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of tests on models from each of these classes and found that
“computational models that implement ‘chunking’ are more
effective than ‘transition finding” models” at reproducing
segmentation in a context where the frequency of words
followed a Zipfian distribution (e.g., words in real natural
language). TRACX was singled out as the model that best
captured human word-segmentation performance in a
Zipfian context.

However, even though French et al. (2011) criticize the
lack of neurobiological plausibility of competing non-
connectionist models of sequence segmentation, one of the
key features of their own model undermines its claim to
neurobiological plausibility. This feature (an if-then-else
switch) plays a crucial role in ensuring that the network can
re-use syllable chunks that it has detected in the input. In
what follows we show that this flaw can be overcome and
develop a new, simpler implementation of the original
TRACX model, which we call TRACX 2.0. This modified
version of TRACX not only replaces the problematic feature
with a simple, neurobiologically sound mechanism, but also
requires two fewer parameters than the original model. We
also show that TRACX 2.0 produces qualitatively the same
results as the original TRACX model on five datasets for
infants and adults.

TRACX

The architecture of the TRACX model is explained in detail
in French et al. (2011). Here we present a brief summary of
the architecture.

TRACX is a member of the Recursive Auto-Associative
Memory (RAAM) family of connectionist architectures
(Pollack, 1990; Blank, Meeden & Marshall, 1992). It is a
three-layer (input-hidden-output) connectionist
autoassociator whose key ability is to learn to recognize
when it has seen pairs of input items before.

Autoassociators gradually learn to produce output that is
identical to their input. This means that items that they have
seen frequently on input will be accurately reproduced on
output, unlike items that have not been seen by the
autoassociator before, or have only been seen infrequently.
This provides the autoassociator with a simple way of
determining whether or not it has previously encountered
the vector of values currently on its input: if the output is
very different from the input, it is novel. If it is very close, it
is known. This signal is also the error signal that drives the
weight changes, making the output more similar to the
input.

Plausibility of Autoassociation

Autoassociators have a long history in the computational
modeling of cognition. The first model to make a lasting
mark was Anderson’s Brain State in a Box (BSB) model
(Anderson, Silverstein, Ritz and Jones, 1977). This model
had no hidden layer and could not learn internal
representations of its input. Ackley, Hinton, and Sejnowski
(1985) were the first to add a hidden layer to their
autoassociators, thereby allowing them learn compact

representations of their input (hence these models are also
called autoencoders).

Today, the psychological and biological plausibility of
autoassociation is widely accepted (Rolls & Treves, 1997).
Autoassociators have been successfully used as psycho-
biologically plausible models in many areas of cognition.
For example, Mareschal, French, & Quinn (2000) and
French, Mareschal, Mermillod & Quinn (2004) developed
an autoassociator model of infant categorization based on
the autoassociative principles of Sokolov (1963) and others.
Other  psycho-biologically  plausible  models using
autoassociators include models of face perception (Cottrell
& Metcalfe, 1991), of hippocampal/episodic memory
(Metcalfe, Cottrell & Mencl, 1992; Gluck & Granger,
1993), of serial recall memory (Farrell & Lewandowsky,
2002), and infant habituation (Sirois & Mareschal, 2004).

The Architecture of TRACX

The original TRACX autoassociator is constructed as
follows. The input layer is divided into a Left-Hand Side
(LHS) and a Right-Hand Side (RHS), each with the same
number of units. Being an autoassociator, it, of course, has
the same number of inputs and outputs; being a RAAM, the
hidden layer has half as many units as the input layer, which
allows the hidden layer to be copied back to the input layer
and combined with the next input. Aside from the potential
copy-back, the network is fully feedforward. The weights
are changed by standard backpropagation based on the error
between the input and output. Learning stops when the
network is below an error threshold of 0.4. The input data
was encoded with bipolar units (-1 and 1).

Hidden layer is
exactly half the
size of the input :
layer It compares its

input to its output

Two items on input

Figure 1. TRACX architecture: a 2N-N-2N autoassociator.

How TRACX Works

The easiest way to explain the architecture of TRACX is by
means of an example. Assume we have a language that
consists of four 3-syllable words made of distinct syllables:
abc, def, ghi, and jkl. We then present to the network a
continuous syllable stream made up of these words:
abcjkldefghidefabcdefabcghiabcdefabc...
These syllables are read by TRACX in sequential order. So,
(the bipolar encoding of) a is put into the LHS and b into
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the RHS. From the input layer, activation spreads forward to
the output layer. The difference between the input and the
output determines the error signal, and the weights of the
system are modified by backpropagation based on this error.
Initially, this error will be high. If the error is above
threshold (in this case, 0.4), the value in the RHS will be
shifted into the LHS and the next syllable -- in this case, ¢ --
will be shifted into the RHS. If, on the other hand, the
network has seen the a-b input many times, its output will
be close to a-b, and the error will be small. The fact that a
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Figure 2. TRACX behavior at t+1 depends on error at t.

and b occur together many times in the input is another way
of saying that a-b form a chunk. Once the network
“recognizes” that a-b is a chunk (because the
autoassociative error for a-b is below the error threshold),
its behavior changes. On the following time step, instead of
putting b into the LHS, it puts the hidden unit
representation of a-b (call it Hyp,) into the LHS. As before, it
puts the next syllable, c, into the RHS (Figure 2). Now it
attempts to autoassociate Hg,-C. Since, in fact, it will see a-
b-c many times, it will eventually learn to autoassociate
(and chunk) Hg,-c. 1t will not chunk further because ¢ can be
followed by any one of four different syllables, so the error
will always be high.

This switch in behavior based on the error threshold is
the if-then-else we would like to eliminate in our new
version of the model.

Testing TRACX: words vs. partwords

Words are syllable groups that are “bound together” as a
chunk. On the other hand, partwords are typically made up
of the final syllable of one word and the initial syllable(s) of
another word. It turns out that humans - infants and adults -
learn to segment words from a continuous syllable stream
better than partwords. In the example in the previous
section, abc, def, ghi, and jkl are words, whereas cjk, lde,
fgh, ide, cde, cgh, etc. are partwords. In all five of the
experiments we model below, three involving infants and

two involving adults, words are learned significantly better
than partwords.

After the model has been trained, it is tested on a stream
of data similar to the one it was trained on (as are humans
and babies). There are numerous ways in which the output
error of words and partwords could have been calculated.
The one we chose is as follows. An item (in this case, a 3-
syllable word or partword), say abc (or partword, cde), is
given to the network. a and b are put on the input. This
input is fed through to the hidden layer, which produces a
vector of hidden-unit activations. For words/partwords
longer than two syllables, as is the case here, this hidden-
unit vector is then put in the LHS of the network and c is put
in the RHS. This is then fed through to the output, and the
maximum of the absolute values of the error across all
output nodes is the error measure for item abc.

Improving TRACX

The problem with the original TRACX model is that if-
then-else statements are not palatable in a connectionist
context where it is unclear how such a branching behavior
can be implemented (but such behavior can be learned - see
Cottrell & Tsung, 1993).

The operation of the original TRACX model cannot
function without two conditionals in its midst. The first is
by far the most important:

IF Network error is greater than the Error Threshold,
THEN Put the element in the RHS in the LHS
ELSE Put the hidden unit vector into the LHS.

The network then grabs the next element in the sequence
and puts it into the RHS and feeds what is on the input layer
through to the output layer of the network. At this point the
second conditional is applied:

IF LHS contains the previous Hidden-unit vector
THEN Do a backpropagation pass 25% of the time
ELSE Do a backpropagation pass.

This was a simple means of ensuring that the network, like
people, place less emphasis on internally generated input
compared to input from the sensory interface. In TRACX
2.0 neither of these statements is necessary.

TRACX without Tears

The improved version of TRACX is based on a simple
observation concerning the graded nature of chunking. In
the previous version of TRACX, the two elements on the
input were either considered by the network to be chunked
(if the error on output was below the Error Threshold) or
they were not. There was no middle ground. But this is
cognitively unrealistic, since, in fact, chunks are graded. By
this we mean that some chunks are more “chunked” than
others. To illustrate this, consider some chunks made, not
from syllables, but from words. For example, almost no one
hears the component words “cup” and “board” in the word
“cupboard”. The word has been with us since the late 14"
century when it meant a board on which cups and other
similar objects were placed. But over the course of 500
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years, the two words, “cup” and “board”, have fused so
completely that we no longer hear them as separate entities.
On the other hand, newer compound words, such as
“smartphone”, “mousepad”, or “congresswoman” are at the
other extreme: these words are weakly chunked; we still

clearly hear their component words. These words are far

less strongly chunked than words like “breakfast”,
“football” or “cupboard”.
‘I;r Absolute
value of
Hid difference
between

—m input and
|| output

(1-tanh(a)) “Hid| H RAS ‘

tanh(A) * RHS
Figure 3. Information transfer in TRACX 2.0.

Thus, beyond the neurobiological implausibility of the
if-then-else statement in the original TRACX, the
dichotomous nature of chunks is dubious. We have changed
this in TRACX 2.0. In the new model the contents of the
LHS at time t+1 is a weighted sum of the hidden-layer
vector and the RHS:

LHS = (1-tanh(A))* Hid + tanh(A)* RHS

where A is the absolute value of the maximum (component-
wise) error on the output (hence it ranges from 0 to 2, and,
therefore, tanh(A) ranges between 0 to 1) at time t. If A is
small (“I’ve seen these two items together in the input
numerous times before”), then the contribution from the
hidden layer will be large. If A is large, most of the
contribution to the LHS will come almost exclusively from
the RHS (Figure 3). This can easily be implemented via a
unit that takes A as input, and then multiplicatively gates the
connections to the LHS (positively with the RHS, and
negatively with a bias of 1 on the hidden layer).

This weighted sum of activation sent to the LHS
removes the problematic if-then-else statements in the
original TRACX, and implements the graded notion of
chunks. In addition, we have found that modifying the
amount of backpropagation, as in the original TRACX
model is unnecessary. Chunks become stronger over time
the more they are encountered, as we know occurs in
humans (perhaps our children do not hear “smart” and
“phone” when they refer to their “smartphone”, but those of
us of a certain age still do).

Testing TRACX 2.0

We tested TRACX 2.0 on five of the data sets on which
the original TRACX model was tested (see French et al.,
2011). In what follows we will briefly consider each of
these data sets and discuss the performance of TRACX,
TRACX 2.0, and an SRN on this data. These experiments
are: Saffran et al. (1996), Aslin et al. (1998), Perruchet &
Desaulty (2008), forward TPs, Perruchet & Desaulty (2008),

backward TPs, and French et al. (2008), Equal TPs. In all of
these experiments with human participants, words were
learned better than partwords. This is also the case for both
TRACX and TRACX 2.0, but not the case for the SRN.

Saffran, Aslin & Newport (1996) This is the seminal paper
in infant syllable-sequence segmentation. Six different
words were used, each with 3 distinct syllables from a 12-
syllable alphabet. A random sequence of 90 of these words
(270 syllables) with no immediate repeats or pauses
between words was presented twice to 8-month-old infants.
After this familiarization period, the infants heard a word
from the familiarization sequence and a partword from that
sequence. A head-turn preference procedure was used to
show that infants had a novelty preference for partwords.
The conclusion of the authors was that the infants had
learned words better than partwords.

We simulated this experiment with TRACX, TRACX
2.0 and an SRN using the same number of words drawn
from a 12-syllable alphabet. The familiarization sequence
was the same length as the one the infants heard. All three
models learned words better than partwords, although the
SRN is considerably farther from human performance than
TRACX or TRACX 2.0 (Table 1).

Aslin, Saffran & Newport (1998) In Saffran et al. (1996)
there was a confound -- namely, words were heard three
times as often as partwords. Aslin et al. designed an
experiment that was meant to remove the unbalanced
frequency of words and partwords. There were four 3-
syllable words, two of which occurred twice as often in the
familiarization sequence as the other two. Thus, the
partwords spanning the two high-frequency words would
have the same overall frequency in the familiarization
sequence as the low-frequency words. The same head-turn
preference procedure showed, again, that infants had a
novelty preference for partwords. The conclusion of the
authors was that the infants had learned words better than
partwords.

Once again, we designed a set of words exactly like
those used in Aslin et al. The length of the familiarization
sequence was also identical to that used in Aslin et al. We
tested TRACX, TRACX 2.0 and an SRN on words and
partwords from this sequence, and found that all three
networks learned words better than partwords, although the
SRN is, again, farther from human performance than either
TRACX or TRACX 2.0 (Table 1).

Perruchet & Desaulty (2008), forward TPs This is an
experiment on adults. Nine 2-syllable words were
constructed from 12 syllables. The familiarization string
was 1035 words long, and each word occurred 115 times.
The internal forward transitional probability between
syllables in each word was 1. Not surprisingly, participants
learned words better than partwords. We simulated this
experiment by using 2-syllable words drawn from a 12-
syllable alphabet to construct a familiarization sequence
identical in length to the one used by Perruchet & Desaulty.
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TRACX, TRACX 2.0 and the SRN learned words better
than partwords. Again, the performance of the SRN was the
farthest from human data (Table 1).

Perruchet & Desaulty (2008), Backward TPs This
experiment, run on adults, is of crucial importance.
Perruchet & Desaulty were the first to realize that backward
TPs could serve as a segmentation cue. To illustrate the
contrast between backward and forward TPs, consider the
bigram qu in English. Given a g, the probability that it will
be followed by a u is, essentially, 1. However, given a u, the
probability that it will be preceded by a g (i.e., the backward
TP) is only 0.01. Backward TPs can, in some cases, actually
be higher than forward TPs. Consider the extremely
common suffix ez in French, as in, "Parlez-vous francais?"
The probability that, given a z, it will be preceded by an e is
approximately 0.84, whereas the probability that an “e” will
be followed by a “z is a mere 0.027
(http://www.lexique.org/listes/liste_bigrammes). Perruchet
& Desaulty created a set of 2-syllable words that made up a
familiarization sequence in which the first syllable of each
word was perfectly predicted by second syllable (i.e.,
backward TP = 1), whereas the second syllable was only
very weakly predicted by the first syllable. They showed
that under these conditions, participants still recognized
words better than partwords.

We encoded the Perruchet & Desaulty vocabulary and
generated sequences identical to theirs in which the word
chunking cues were exclusively the backward TPs between
the two syllables of the words. Since SRNs are sensitive
only to forward prediction, we predicted that the SRN
would fail on this data set. This proved to be the case. For
this data the SRN learned partwords significantly better than
words. On the other hand, both TRACX and TRACX 2.0,
once again, recognized words better than partwords (Table
1). The reason for this is clear. Both of these models rely on
the recognition of previously seen chunks. They are not
concerned with TPs, whether forward or backward, between
the syllables comprising a word. They rely on remembering
having seen the pairs of syllables making up words,
something that does not require TPs.

French, Addyman & Mareschal, (2011), Equal forward
TPs In this experiment, run on infants, all forward TPs
between syllables and between the words in the language
were identical. Backward TPs within words were 1 and
backward TPs between words were 0.25. Each word is
associated with two partwords. French et al. determined by
means of a head-turn preference procedure identical to the
one used by Aslin et al. (1998), that infants exposed to this
“language” learn words significantly better than partwords.

) Words learned significantly better than Partwords?
Segmentation cues Score type (proportion better)

Humans TRACX TRACX 2.0 SRN

Saffran et al. (1996) looking time Yes Yes Yes Yes
Freg. + Fwd TPs 0.06 0.08 0.11 0.68

Aslin et al. (1998) looking time Yes Yes Yes Yes
Fwd TPs 0.04 0.13 0.09 0.58

Perruchet & Desaulty (2008). Fwd TPs % correct Yes Yes Yes Yes
Expt. 2 responses 0.34 0.38 0.17 0.80
Perruchet & Desaulty (2008). Bkwd TPs % correct Yes Yes Yes No
Expt. 2 responses 0.22 0.32 0.05 -0.10
looking time Yes Yes Yes Yes

Equal TP Freq. + Bkwd TPs 013 050 0.06 005

Table 1. Proportion of words learned better than partwords for the three models and humans on five experimental data sets.

We expected that the SRN would also learn words better
than partwords, because of the greater frequency of words.
However, in the absence of forward TP information, we also
expected it to perform far less well than it did with the
Saffran et al. (1996), the Aslin et al. (1998) and Perruchet &
Desaulty (2008), forward-TP data sets. This is, indeed, what
we observed (Table 1). Both TRACX and TRACX 2.0 also
learn words better than partwords. However, the
performance of original TRACX model is quite far from
human performance, unlike TRACX 2.0, which is much
closer to human performance on this data set (Table 1).

In Table 1, we use a “proportion better” measure to
compare model results and empirical data. This is a relative-
difference measure that can be applied equally well to error
measures, to looking times, or to proportion-correct scores.

(See French et al., 2011, footnote 5, p. 422, for a detailed
justification of this measure.) It is calculated by taking
difference of the measures for partwords and words and
dividing this difference by the sum of these two measures.
Finally, we compared the human data from the five
experiments and the average overall performance of
TRACX, TRACX 2.0,and the SRN. The performance of
TRACX and TRACX2.0 are essentially equivalent over the
set of problems (Figure 4). Even though the performance of
TRACX is closer to human data on three of the problems in
Table 1, TRACX 2.0 is better on two of two others, and
over all five experiments, the performance of the two
models is similar. By contrast, the SRN's performance is
considerably farther from human data on these 5 tasks.
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Figure 4. The three models’ match to human performance,
averaged over 5 experiments.

Conclusion

This article is not claiming that TRACX 2.0’s performance
is superior to that of the original TRACX. Rather, it is
sufficient for our purposes that TRACX 2.0 performs in a
qualitatively similar manner compared to the original
TRACX model. What is important is that TRACX 2.0 no
longer requires the inclusion of an error-threshold
parameter, nor an external world/internal representation
parameter governing how often learning takes place, and
still performs in a manner qualitatively similar to TRACX.
The new model, like TRACX, is a recursive autoassociator
but, unlike its predecessor, it makes use only of spreading
activation and error backpropagation, which has been shown
to be isomorphic to the neurobiologically plausible
mechanism of contrastive Hebbian learning (O'Reilly &
Munakata, 2000). This is a considerable improvement over
the original model for a number of reasons, namely: i) it
considerably increases the neurobiological plausibility of
the model; ii) it treats chunks in an appropriate, graded
manner, rather than dichotomously; iii) it reduces the
number of free parameters in the model by two; and, finally,
iv) these changes do not significantly degrade the original
model's performance.
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