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Abstract

Previous research has shown that the mental models partici-
pants use throughout a task influence the efficiency with
which they learn and adapt to changes in their environment
(Lee & Johnson-Laird, 2013; Stoéttinger et al, 2014). We
wanted to measure the influence of different types of mental
models participants hold before engaging in a task. Using a
modified version of the game “Plinko”, participants predict-
ed the likelihood that a ball falling through pegs would land
in one of forty slots. Importantly, participants were asked to
make likelihood estimations before seeing the first ball
drop. This initial probability estimate was used to categorize
participants into different groups based on distinct a priori
models. Results indicated that participants came into this
task with a number of distinct initial models, and that the
type of model influenced their ability to accurately represent
different distributions of ball drops in Plinko.

Introduction

Humans are proficient at detecting regularities in
their environment (Turk-Browne et al., 2005;
Griffiths & Tenenbaum, 2006). This ability al-
lows us to compress large volumes of sensory in-
formation and build mental models to represent
the events we perceive (Tenebaum et al., 2011).
When these models fail to explain certain obser-
vations, they must be updated to reflect new envi-
ronmental contingencies (Danckert et al., 2012:
Filipowicz et al., 2013). The ability to build and
update models depends in part on the expectations
we have when interpreting sensory information
(Lee & Johnson-Laird, 2013; Stottinger et al.,
2014). The aim of the present study was to ex-
plore the role of prior expectations on model
building and updating.

A large body of research has demonstrated the
efficiency with which humans detect regularities
in their environment (Turk-Browne et al., 2005).
These processes can occur automatically (Turk-

Browne et al., 2005; Nissen & Bullemer, 1987)
and manifest themselves at an early age (Saffran
et al., 1996). Yet despite this seemingly optimal
proficiency, studies have found consistent subop-
timal behavior on certain statistical learning tasks.
One classic example is a phenomenon known as
probability matching: when asked to predict the
result of a stochastic event with a specific rate of
bias, rather than choose the biased event 100% of
the time, participants tend to predict the biased
event at the same rate as its underlying probability
(e.g., if a biased coin comes up heads 70% of the
time, participants will choose heads as the likely
next outcome on 70% of their guesses rather than
following the optimal prediction strategy of
choosing heads 100% of the time; Vulkan, 2000).
How do we reconcile findings that show optimali-
ty in some forms of learning, yet suboptimal be-
havior in others?

Mental model theory attempts to explain this
discrepancy by implicating prior knowledge in
our ability to learn from our environment. One of
the primary tenets of this theory describes mental
models as being formed by an interaction between
our direct perception of events and the knowledge
we have accumulated over our lifetime (Johnson-
Laird, 2004). This theory suggests that our a pri-
ori expectations related to specific events influ-
ence our current predictions. Indeed, Green and
colleagues (2010) found that probability matching
behaviour depended on a participant’s belief re-
garding the underlying process responsible for
generating the events. Participants who believed
they had control over the task parameters were
much more likely to maximize their selection of
the optimal choice than those that revealed uncer-
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tainty about the task’s underlying generative pro-
cess (Green et al., 2010). This suggests that our
ability to build and update models depends not
only on the current sensory information we are
attempting to interpret, but also on the beliefs and
expectations we use to interpret the information.
In support of this notion, studies have found that
model building and updating are facilitated when
the expectations relating to a task closely match
the task’s underlying structure (Lee & Johnson-
Laird, 2013; Stottinger et al., 2014).

Most research exploring our ability to exploit
event regularities does not take into account a par-
ticipant’s prior belief insofar as they are not
measured prior to commencing the task of inter-
est. Clearly, it is challenging to first objectively
establish what prior beliefs a participant has be-
fore they begin a task in which we have external
control of the contingencies. Here we present a
novel task that provides a measure of a partici-
pant’s a priori expectations coming into the task,
before they have seen or responded to any actual
stimulus events. This allows us to then measure
the influence of these a priori models on a partici-
pant’s ability to learn and adapt to task probabili-
ties. Using a computerized version of the game
“Plinko”, we had participants make estimations of
the probability that a ball would land in a series of
slots before starting the task. We used these initial
estimates to categorize different participant mod-
els and measured the efficiency with which par-
ticipants managed to learn a distribution of
events.

Methods

Participants

40 undergraduates from the University of Water-
loo participated in our study (27 female, mean age
=19.5 years, SD = 1.6 years). The study protocol
was approved by the University of Waterloo’s
Office of Research Ethics and each participant
gave informed consent before participating in the
study.

Task environment and instructions

Participants were exposed to a computerized ver-
sion of the game “Plinko” (a game featured on the
American game show The Price is Right). The
entire task environment was programmed in Py-

thon using the PsychoPy library (Peirce, 2009). In
our game, a red ball would fall through a pyramid
of pegs and land in one of 40 possible slots locat-
ed side by side below the pegs. The pyramid con-
sisted of 29 rows of black pegs that increased in
number from the top to the bottom of the pyramid
(i.e., the top row contained 1 peg and the bottom
row contained 29 pegs). A rectangle was located
below the 40 slots spanning their width. Partici-
pants were instructed to make their responses in
this space (Fig. 1).

Ball lands in slot -

participant can
adjust bars

Participant draws
bars

Ball falls through
pegs
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Figure 1. Example of a single trial.

Participants were instructed that a ball would
fall through a series of pegs and that their goal
was to accurately predict the likelihood that a ball
would fall in any of the 40 slots on future trials.
Participants adjusted bars under each slot in the
space below the pyramid to represent their likeli-
hood estimations. Bars were drawn using the
computer mouse: the height of the bars could be
adjusted by holding down the left mouse button
and changing the position of the cursor. The
height of the bar would match the position of the
cursor within the limits of the rectangle below the
slots. Participants could also erase a single bar by
right clicking with the cursor on the bar they
wished to delete, or by clicking the backspace key
to delete all bars on the screen. The bars were not
assigned any value; participants were simply told
that taller bars represented a higher probability
that a ball would fall in a slot, shorter bars a lower
probability, and no bars represented zero proba-
bility. Participants were informed that they had
the option of adjusting their bars at the start of
every trial and that they had to have bars on
screen before proceeding with the trial. Crucially,
this instruction was applied at the start of the task
— that is, participants had to indicate their likeli-
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hood estimates before seeing the first ball drop.
Once participants had indicated their likelihood
estimates, they pressed the spacebar to proceed
with the trial (Fig. 1).

Ball distributions

Participants were exposed to one of two distribu-
tions of ball drops. Both distributions were gener-
ated by randomly sampling 100 integers from
Gaussian distributions with a mean of 17, but dif-
ferent standard deviations (6.0 and 1.9 respective-
ly). The resulting sequences of 100 integers de-
termined the slot in which the ball fell on each
trial, with slot 1 representing the slot farthest to
the left of the screen and slot 40 representing the
slot farthest to the right. 20 participants were ex-
posed to the distribution with a wider variance,
while 20 participants were exposed to the distri-
bution with a narrow variance. Participants in
each of the two conditions were exposed to the
same respective sequences of ball drops.

Results

Accuracy measurements

In order to measure participant estimates, partici-
pant bars were normalized on every trial. The
height of each bar could have one of 100 equal
height increments (a height of 1 being the shortest
bar possible and 100 being the tallest bar possi-
ble). Each bar was normalized by taking its height
and dividing it by the summed height of all drawn
bars for that trial. This normalization provided a
probability distribution of a participant’s slot es-
timates on every trial. An accuracy score was
generated for each participant on each trial by
comparing the overlap between the participant’s
distribution of estimates and the computer’s dis-
tribution of ball drops. Accuracy scores could
range between 0 and 1, with 1 indicating perfect
overlap between participant and computer distri-
butions.

Participant initial distributions

We began by categorizing participants based on
the shape of their initial probability distributions
prior to seeing a single ball drop. We did this by
plotting slot estimates on the first trial for each
individual participant, and categorizing them

based on similarity in shape (Fig. 2). Initially we
expected two primary types of distributions.
Those potentially familiar with Sir Francis Gal-
ton’s work may know that the expected distribu-
tion of ball drops in a Plinko game should approx-
imate a normal distribution, with its mean cen-
tered on the ball’s initial starting position (Galton,
1889). Those unfamiliar with the task may choose
to take an approach of extreme uncertainty, and
report a uniform distribution, similar to uniform
priors used in Bayesian learning algorithms (e.g.,
Nassar et al., 2010). Of the 40 participants who
completed the task, 7 participants reported a
Gaussian-like shape as their first distribution, and
5 reported uniform distributions. Of the remaining
28 participants, 12 participants reported a bimodal
distribution, 2 participants reported negatively
skewed distributions, and 14 participants reported
what we termed as “jagged” distributions, where
participants only drew a few interspersed bars on
the screen (in some cases only one bar; Fig.2).
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Figure 2. Participant estimates on the first trial. Partici-
pants were grouped into categories based on the shape of
their initial distribution.

2200



Measuring participant performance

In order to measure how well groups managed to
learn each of the distributions, we fit a standard
exponential learning curve to the changes in accu-
racy for each group (e.g., Estes, 1950; Heathcote,
Brown, & Mewhort, 2000; Ritter & Schooler,
2001):

A, = 0y — (A — ay)e "

were n denotes the trial number, a, a participant’s
estimated accuracy on trial n, ao initial accuracy,
a., asymptotic accuracy, and « a constant rate co-
efficient to capture how quickly participants reach
their asymptote from their initial accuracy. We fit
this function to each participant’s accuracy scores
using a nonlinear least squares function in the R
statistical package (nls function; R Core Team,
2014). Given that participant accuracy could only
range between 0 and 1, we set the upper and low-
er limits for both the asymptote and initial accura-
cy to 1 and O respectively. Each fit provided ini-
tial, asymptotic, and learning values for each par-
ticipant. This function fit every participant except
one in the uniform group who did not make any
changes to their bars throughout the task. We ex-
cluded this participant’s performance from our
subsequent analyses, resulting in a sample of 19
participants exposed to the wide Gaussian distri-
bution and 20 exposed to the narrow Gaussian.

Group initial accuracy

We began by comparing group performance in
each of the two conditions of ball drops. Many of
the initial participant distributions had high vari-
ances, spanning a large number of slots (average
standard deviation for initial distribution = 8.83
slots). We therefore predicted that participant ini-
tial accuracy values would be lower for partici-
pants exposed to a distribution with a smaller var-
iance. An independent t-test confirmed that initial
accuracy values in the wide condition were higher
than those in the narrow condition (Mean initial
accuracy: wide = 0.45, narrow = 0.32; t(37) =
2.106, p < 0.05). Participants who reported initial
estimates with high variance were primarily in the
Gaussian, uniform, skew, and bimodal groups,
particularly when compared to participants in the
jagged condition. We expected that these first
groups would have higher initial accuracy in the

wide condition given that their distributions
would have more total overlap with the comput-
er’s wide distribution. Initial accuracy values
ranged between 0.58 and 0.65 for non-jagged
groups, with the Gaussian group having the high-
est initial accuracy value, while participants in the
jagged group started with a mean initial accuracy
value of only 0.18 (Fig. 3a,c).

These differences were much smaller in partic-
ipant groups exposed to the narrow distribution
given that the computer’s distribution covered
fewer slots than in the wide condition. Initial ac-
curacy in all groups other than the skewed condi-
tion ranged between 0.30 and 0.39 (Fig. 3b,d). In
the narrow condition there was only one partici-
pant that reported a skewed distribution. This par-
ticipant’s initial expectation was that the majority
of balls would fall to the right of center. The
computer’s distribution fell slightly to the left of
center, a stark difference from this participant’s
initial estimate. Despite having the lowest initial
accuracy value, this participant’s a value was sec-
ond highest among participants in the narrow
condition, indicating that this participant’s accu-
racy rapidly reached its maximum value from its
initial value. When examining the raw accuracy
data, this participant’s accuracy jumped from .17
to .75 within 8 trials, and stayed in this range for
the remainder of the task.

Learning of each distribution

Next we examined the learning rates within the
groups that were exposed to wide vs. narrow
Gaussian distributions. Of particular interest was
the comparison between participant asymptote
values in the Gaussian group. Of the 7 partici-
pants categorized in the Gaussian group, 3 partic-
ipants were exposed to the wide distribution,
while 4 participants were exposed to the narrow
distribution. In both cases, initial estimates for
these participants had large variances (mean SD
for wide group = 7.63 slots, narrow group = 9.20
slots). This does not present any major conse-
quences for participants exposed to the wide dis-
tribution of ball drops, as their initial beliefs
match the computer’s variance. However, partici-
pants exposed to the narrow distribution would
need to change the variance in their estimates to
reflect the computer’s distribution. In total, partic-
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Figure 3. Participant accuracy performance in the narrow and wide distribu-
tion conditions. Raw accuracy is depicted in graphs (a) and (b) while fit accu-

racy is depicted in graphs (c) and (d).

ipants exposed to the wide distribution tended to
have higher mean asymptote values than those in
the narrow condition (mean asymptote values:
wide = 0.72, narrow = 0.65). Of the 4 participants
in the narrow group, 2 participants managed to
adapt their distributions to reflect a narrow vari-
ance by the end of the task, resulting in a mean
asymptote of 0.85, while the other 2 participants
made fewer changes to the variance of their dis-
tributions, resulting in a mean asymptote of 0.45.

Online task performance
As a last step we were interested in tracking
changes to participant distributions over the
course of the experiment. One of the aspects of
participant performance that is not fully captured
by the exponential learning curve is some of the
participant strategies used throughout the task. Of
particular note, there was a large dip in accuracy
in the uniform group at trial 43 (Fig. 3a). A closer
look at individual performances showed that this
dip is the result of one participant who deleted all
bars on screen save one, and continued through
the experiment by drawing bars trial by trial in
slots that received a ball (ultimately leading to a
final raw accuracy score of .81, second highest
among participants exposed to the wide distribu-
tion).

A look at the trends from participants estimat-
ing the narrow distribution shows at least one par-

ticipant that followed a similar strategy. As indi-
cated earlier, 2 of the 4 participants in the Gaussi-
an group managed to adjust their distributions to
reflect the tighter variance in ball drops. One of
these participants deleted most of their bars on
trial 53 and followed a strategy similar to that of
the participant in the uniform condition (leading
this participant to finish with the highest raw ac-
curacy among those in the Gaussian group; Fig.
3b).

Discussion

The aim of the current study was to explore the
influence of a priori mental models on our ability
to learn from the regularity of events in our envi-
ronment. Previous research has demonstrated that
models we build during a task influence our abil-
ity to adapt to later changes in incoming infor-
mation (Lee & Johnson-Laird, 2013; Stéttinger et
al., 2014). We expanded on this research by
measuring the influence of a participant’s a priori
expectations on their ability to learn the probabil-
ity distribution of certain events occurring.

We demonstrated that far from being uniform,
participant expectations coming into our task var-
ied widely. In addition to the distributions we had
predicted (i.e., Gaussian and uniform), 30% of the
participants reported initially expecting a bimodal
distribution of ball drops, while another 35% of
participants followed a ‘jagged’ strategy. In the

5
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groups that we did expect to find, performance
varied, with participants in the Gaussian condition
performing well on distributions that matched
their initial estimate of variance, but having more
difficulty representing distributions with narrower
variance. Our task also provided us with the op-
portunity to see how these initial models changed
over time. We found two examples in which par-
ticipants completely abandoned their initial strat-
egies and adopted new ones, eventually leading
them to high levels of accuracy. We were able to
locate when this shift in strategy occurred, and
track the participants’ new strategy as they pro-
gressed on future trials. Finally, we saw one ex-
ample of a highly erroneous a priori model lead-
ing a participant to rapidly and efficiently adapt to
the correct task contingencies. This example sug-
gests that the level of mismatch between an ex-
pected model and observations can influence the
efficiency with which we detect and adjust to pre-
diction errors.

We acknowledge that our observations are
based on small groups of participants, and that
larger samples are needed to make more conclu-
sive statements about the influence of specific a
priori expectations. Nevertheless, our results pro-
vide evidence to support the notion that our men-
tal models coming into a task are not always uni-
form, and can affect the way we learn and adapt
to task contingencies.
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