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Abstract

The brain encodes the space in various reference frames. The
key role in spatial transformations is played by the posterior
parietal cortex where neurons combine retinal location of vi-
sual stimulus with gaze direction to encode spatial informa-
tion. This nonlinear dependence of neuronal responses, gain
modulation, is considered a fundamental computational prin-
ciple used in the brain. The important insight can be obtained
through computational models, typically artificial neural net-
works. In this paper, we test the Zipser–Andersen model but
use more realistic and variable stimuli, employing the sim-
ulated iCub robot. The multi-layer perceptron was able to
successfully perform coordinate transformation from eye- to
body-centered reference frame, using gaze information. Model
achieves high accuracy of 2 to 4 degrees on testing data, de-
pending on the dataset variability. We provide visualisation
techniques for analysing the network, and the effects of gain
modulation and shifting receptive fields. Our results confirm
previous findings that hidden neurons use various intermediate
codings that mediate transformations.
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Introduction
Determining the object position in space is always related to
some point at known location. This relationship is captured
by the concept of reference frame in which we can define
a concrete coordinate system (Batista, 2002). Humans are
able to use both egocentric and allocentric reference frames,
which can be combined to support behavior according to the
task (Burgess, 2006). In general, reference frame may be an-
chored to practically anything, to our head, hand, or any other
object. Neuroscientists naturally adopted the concept of refer-
ence frames to better understand how the space is represented
in the brain. Cells in the visual system respond to the stimuli
located only in particular location called the receptive field in
cases where the response is considered to be strictly sensory.
The receptive field (also called response field) can also refer
to the set of patterns that evoke neuron’s activation.

Research on reference frames that has been progressing for
the past 25 years suggests that reference frames do not always
exist in an explicit form, but rather as some intermediate rep-
resentations of space that are further processed for specific
purposes, for instance to generate reaching commands. The
process of converting sensory stimuli into the motor plans
is referred to as sensorimotor transformation. These are of-
ten formalised in terms of spatial transformations from eye-
centred (retinotopic) or head-centered coordinates into hand-
centered coordinates.

Coordinate transformations are also a key component for
learning the body schema (Hoffmann et al., 2011). In most
cases, the authors use artificially generated inputs and out-

puts for training the model. In this paper, we take advan-
tage of the simulated iCub robotic environment (Tikhanoff
et al., 2008) that naturally provides embodied data of higher
complexity for learning the task. The classical view, com-
ing from geometry, applied commonly in robotics, assumes
that coordinate transformations are computed explicitly and
applied sequentially. On the contrary, in a novel view, being
more consistent with neuroscientific data, coordinate trans-
formations are computed implicitly and in parallel (Blohm
& Crawford, 2009). Hence, we analyze the phenomenon of
coordinate transformations in the context of the progressive
cognitive robotics that offers a promising pathway to build-
ing autonomous systems. We are not aware of this type of
work with iCub. For coordinate transformation, we use the
original Zipser–Andersen model described below, and show
that the implicit transformation can be learned equally well
despite using more complex data. We also introduce visual-
ization techniques that reveal model behavior.

Background
Andersen and Mountcastle (1983) discovered that neurons in
area 7a of posterior parietal cortex (PPC) of monkeys com-
bine retinal location of visual stimulus with gaze direction to
encode spatial information. The role of PPC as a sensorimo-
tor interface for visually guided eye and arm movements has
been also supported by later findings (Buneo & Andersen,
2006; Khan, Pisella, & Blohm, 2012). Cells in PPC appear
to nonlinearly combine information from different modal-
ities, while their sensitivity is modulated by one modality
(e.g. gaze direction) without changing their selectivity to the
other modality (visual stimuli). This phenomenon was coined
as gain modulation and the changes in neuron’s sensitivity as
gain fields. The subsequent studies of gain modulation have
revealed that it is an extremely widespread mechanism that
appears to be a fundamental computational principle behind
coordinate transformations (Salinas & Thier, 2000; Salinas &
Sejnowski, 2001; Blohm & Crawford, 2009).

The types of signals that could produce gain fields in-
clude gaze direction, head position, eye vergence, target dis-
tance, chromatic contrast or attention, all together leading to
the suggestion that gain modulation is a general mechanism
for multimodal integrations that underlie important cogni-
tive functions like sensorimotor transformation, object recog-
nition, motion processing or focusing attention (Salinas &
Thier, 2000). The essential feature of gain fields is nonlin-
earity. However, the biophysical basis that allows neurons to
combine information from two sources such that their output
is close to the product of two functions is still unclear.

In the first computational model, Zipser and Andersen
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(1988) trained an artificial neural network to compute the
head-centered position of target from eye-centered visual
stimuli and gaze direction. Their network spontaneously de-
veloped visual receptive fields (RF), gain modulated by eye
position similar to what had been observed in PPC in area 7a
(Andersen & Mountcastle, 1983). Their artificial simuli used
for training the network were simple but nicely illustrated the
concept of gain fields as analysed in the hidden layer of the
three-layer feedforward network.

Since then, computational models have been proposed to
account for coordinate transformations. For instance, Xing
and Andersen (2000) analyzed simple neural network mod-
els of the PPC and concluded that the gain field is an effec-
tive mechanism for performing coordinate transformations.
Blohm and Crawford (2009) studied coordinate transforma-
tions in the context of visually guided reaching in 3D. Their
four-layer neural network was successfully trained to per-
form visuomotor transformation from gaze-centered inputs to
a shoulder-centered output used for reaching.

The model
The neural network performs transformation from the eye-
centered (retinal) object position to the body-centered object
position (attached to robot’s waist),1 modulated by the infor-
mation about eye positions (which determine gaze direction).

Data generation
To generate the data in iCub simulator, we randomly moved
iCub’s eyes and randomly positioned an object in robot’s vi-
sual space. Then we collected the data as shown in Figure 1.

Figure 1: Generating the dataset in iCub simulator involves:
setting the eye position, positioning the object in the scene,
and collecting 3 pieces of data: retinal images (shown left),
eye positions and target object position. We removed the
background to get a B&W image.

1Our model differs in this detail from Zipser–Andersen model
that uses head-centered coordinates. Howeveer, both models can be
seen as equivalent, since the taget reference frames only differ in
vertical coordinate.

During random eye positioning, we needed to determine
iCub’s field of view. Two cameras with a resolution 320×240
pixels use a simple pinhole projection with the focal lengths
equivalent to 257 pixel units (in both directions), which yields
a field of view of ∼64◦. We set both eyes to be kept parallel in
the simulator (no convergence). In order to generate the data,
we randomly placed an object in front of iCub and randomly
moved its eyes by the same angle, regardless of the object
position. We always checked that the object remained in the
visual field and did not get under the ground. The simulator
has three predefined object types: box, sphere and cylinder.
We generated datasets with these 3 types and also datasets
with only spheres. To make the data diverse enough, we gen-
erated objects with random sizes, within a reasonable scale
range. We repeated the object setting procedure 1500 times to
generate a sufficient number of training and testing patterns.
These patterns covered the entire visual space quite densely,
such that they could be assumed to be representative.

Figure 2: Learned transformation: from eye-centered ob-
ject coordinates, and given eye-positions to object position
in body-centered frame of reference. Robot’s head is fixed.

Model architecture
In order to use the dataset as an input for the neural network,
we converted each pattern (pixelwise) into the set of real num-
bers in the interval [0,1]. Camera images from the left and
right eyes were flipped in both directions and downscaled to
64×48 pixels. For better performance, we also removed the
background.2 The processed image is illustrated in Figure 1
(white ball on black background). The image input was hence
represented by 2×64×48 = 6144 neurons. Eye positions
and object position were represented by biologically plausi-
ble population coding3 that lends itself to robustness and good
generalization (Averbeck, Latham, & Pouget, 2006). Eye po-
sitions are represented by eye tilt and eye version. Eye tilt
is encoded by 11 neurons with preferred directions uniformly
distributed over the interval [−35◦,15◦] and eye version by

2This diminishes our motivation to use more realistic data, but
what is still preserved is the varying object size and the shading. We
assumed that the image segmentation component performed figure–
ground separation.

3In population coding, a value x is represented as a vector of
activations yi of neurons with equidistantly shifted centres xi of their
Gaussian RFs with the same width σ: yi(x) = exp(−(x− xi)

2/2σ2).
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21 neurons distributed over the interval [−50◦,50◦]. The ob-
ject position (network output) is represented by two slopes
(shown in Figure 2), horizontal (19 neurons) and vertical (19
neurons), making it a 2.5D model that calculates the direc-
tion to the object from iCub’s chest, rather than the distance.
The preferred directions of output neurons are for both coor-
dinates uniformly distributed over the interval [−90◦,90◦].

We used a multi-layer perceptron with full connectivity
between layers. The input layer consisted of 6144 + 11 +
21 = 6176 neurons, the hidden layer had 64 neurons (re-
sult of experimentation in the range 50–300; performance
with smaller values was limited) and the output layer con-
tained 38 neurons. It turned out to be useful to also opti-
mize the slope k of the neuron’s activation function f (net) =
1/(1+exp(−k.net)). For the hidden layer we used kH = 0.05
and for the output layer kO = 0.1, found experimentally.

Input balancing
Since there were more input units encoding the retinal im-
age than those encoding the eyes position (6144 versus 32),
we decided to proportionally modify the weights of input–
hidden connections in order to guarantee good functioning of
the model (in the original Zipser–Andersen model this was
not an issue). Here we solved this problem by using the ap-
propriate scaling coefficient. This can be expressed as

net = cret

Nret

∑
i=1

wiri + cpos

Npos

∑
j=1

w je j (1)

where net is the input to a hidden neuron, cret and cpos are
the coefficients used for balancing retinal inputs ri and eye-
position inputs e j, Nret and Npos are the numbers of units en-
coding the corresponding modality. We calculated the two
coefficients to correspond to the desired ratio R :E, where R
is the desired size of retinal inputs contribution and E is the
desired contribution of eye-position inputs. The equations for
calculating both coefficients are

cret =
R(Nret +Npos)

Nret(R+E)
, cpos =

E(Nret +Npos)

Npos(R+E)
. (2)

We chose R:E = 2:1, but there was no significant difference
in network performance for slightly different ratios. Even the
original network (i.e. without balancing) was able to success-
fully perform the transformations, but by setting this ratio we
achieved faster training, better accuracy and weight profiles
that were nicer for visualisation purposes.

Results
We tested several versions of backpropagation (BP) algorithm
(using the FANN simulator; (Nissen, 2005)) and stopped the
training when the mean-squared-error decreased below the
value 5×10−4, found experimentally. In the first trials, we
achieved the best training performance with RPROP algo-
rithm (Riedmiller & Braun, 1993) which performed approx-
imately 8 times faster than standard BP and about 10 times

faster than QuickProp algorithm (Fahlman, 1988). Adding
the momentum to standard BP dramatically increased the
speed of training. Inspired by Qian (1999), we used values
of the learning rate (α = 1.5) and the momentum (µ = 0.9),
with which the online BP outperformed RPROP. The addi-
tional disadvantage of RPROP and QuickProp algorithms is
that they often generated large weights and were thus not suit-
able for visualisation purposes. This is an interesting point,
because it indicates that the right choice of the training al-
gorithm may be important for the purposes of studying the
internal structures of the network.

Table 1: Testing errors as a function of dataset variability.
Data set Error
Boxes, spheres and cylinders at various sizes 4◦±3.5◦

Spheres of various sizes 3◦±3◦

Spheres of fixed size 2◦±2◦

The training dataset contained 1000 patterns, the testing
data set 500 patterns which varied according to the variability.
We summarize the testing errors in Table 1. The best results
were for these model parameters: the population curves with
σT = 5 for eye-tilt neurons, σV = 7 for eye-version neurons,
and σO = 10 for output neurons coding the object position.
We did not find any significant correlation between the error
size for a particular pattern and the position of eyes or the ob-
ject. The distribution of testing errors was positively skewed
(i.e. towards smaller errors). These results reveal that even in
this more realistic scenario with the iCub robot the modelled
transfomation is accurate and generalizes well. The model
performance on the more complex datasets is comparable to
that of monkeys trained on saccades (Robinson, Noto, & Be-
vans, 2003).

In the following we analyze the hidden layer of the trained
network, focusing on three aspects: receptive fields, gain
modulation and the reference frames. We illustrate the model
properties using one hidden neuron (unit 4) and show that all
hidden units learn various intermediate reference frames.

Receptive fields
After the network learned to accurately perform the transfor-
mation, we examined the hidden layer for the effect of gain
modulation and shifting RFs. For this purpose, we first vi-
sualised the RFs of hidden units by plotting their incoming
weights. We found a wide variety of RFs but these could be
roughly divided into three groups as shown in Figure 3.

In group A, we can distinguish continuous area with pos-
itive weights contrasting with an area of smaller or negative
weights (e.g. neuron 4). Group B has RFs divided into two
parts, usually with stronger weights on the sides. In group C,
we were not able to find any continuous area and the RF was
hard to interpret without further investigation. Quantitatively,
in our network with 64 hidden units we found 41 units of type
A, 15 of type B and 8 of type C. These numbers are specific
for the given network and would be slightly different if we
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Figure 3: Examples of receptive fields: continuous (left), di-
vided into two parts (middle), unspecified (right).

repeated the training process. Based on the analysis of well-
trained models, we may conclude that the majority of units
have developed continuous RFs for particular area(s) in the
visual space.

Gain modulation
Gain modulation is revealed when a modulatory input
changes the response amplitude of a neuron to the other in-
put, without modifying its selectivity (Salinas & Sejnowski,
2001). To examine this effect, we recorded the responses of
hidden units to the fixed visual stimuli and different eye posi-
tions, which were changed in a systematic way with a 10◦ step
in vertical direction (tilt) and 20◦ step in horizontal direction
(version). Hence, we considered 25 different eye positions
arranged in a 5×5 grid.

We repeated this process with 9 different retinal images
that depicted the object at particular locations, arranged ana-
logically in a 3×3 grid, from top left to bottom right region
of the image. Thus, all together there were 9×25 different
configurations of visual stimuli and eye positions that lead
to neuron’s response profile (i.e. a vector of 225 responses).
We investigated the response profiles of the hidden units, and
illustrate here the model behaviour using one example: re-
sponse profile of neuron 4, shown in Figure 4.

Panels A–I indicate the object locations relative to iCub
gazing straight ahead (A means the object was up left; I
means bottom right). Empty magenta circles show how the
neuron would respond only to the visual stimuli without the
influence of eye position. In every panel, filled blue circles
represent unit responses to the visual stimuli modulated by
corresponding eye position. Top left circle denotes response
when gazing top left, bottom right circle corresponds to gaz-
ing bottom right. The plus sign means that the effect of modu-
lation is excitatory. The effect of gain modulation is evident in
all panels. For instance, in panel D, blue bottom circles illus-
trate that the unit is active even though its response to purely
visual input is weak. Gain modulation has the same direction
as the RF (see also Figure 6 and the associated text), mean-
ing that the RF is sensitive to the object at the bottom and the
effect of gain modulation is highest when gazing down.

We can arrive at consistent conclusion when looking at
hidden–output connections and output neurons (see Figure 5).
Consider an output neuron whose activity indicates that the
object is located close to the ground. This neuron is fed by the
population of hidden neurons, each of which can be thought
of as indicating a specific position of the object. The out-

Figure 4: Gain modulation of hidden neuron’s response. For
explanation see the text.

Figure 5: Weights of connections between neuron 4 and out-
put neurons encoding vertical object position.

put neuron thus collects these indications and responds. Let
us look at the hidden neuron 4 whose RF suggests that it re-
sponds to objects located on the ground. Let us consider var-
ious combinations of the visual stimulus and eye positions.
The object cannot be on the ground when iCub looks up and
sees an object. When iCub gazes straight ahead, the object is
on the ground only when its projection falls on the top part
of the retina. When iCub gazes down, the object is always
on the ground. We would expect that the output neuron in-
dicating this position will have strong connections from hid-
den neuron 4. This is actually what one can see in Figure 5
when looking at the weights from hidden neuron 4 to the out-
put units. Looking down corresponds to −35◦ (of the range
[−90◦,90◦]), therefore the strongest connections are in the
left part close to the centre (components 6–9).
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RF–GF differences Following the procedure described in
Xing and Andersen (2000), we also analyzed the hidden neu-
rons in terms of direction differences between the RF and the
gain field (GF). Unit’s RF is defined as the input area that
evokes more than 50% of unit’s maximal response. We ex-
amined the relationship between unit’s gain and the RF by
comparing their directions. The GF direction points to the
best-tuned unit relative to the central eye position, and RF
direction is calculated as the center of mass of the unit’s re-
sponse across the input map. The angle between these two
directions, i.e. RF–GF, serves for testing whether GF and RF
are aligned in the same or opposite way. We show RF–GF
direction differences for all hidden units in Figure 6. We can
see that the majority of hidden units has this difference close
to zero, which implies that RF and GF are aligned. This also
replicates results of Model 1–4 in Xing and Andersen (2000).

Figure 6: Histogram of RF–GF direction differences.

Figure 7: Star plot visualisation of the response profile (neu-
ron 4). Each neuron response is plotted on one axis.

Variability of response profiles We observed that the re-
sponse profiles of many hidden units are more complex than
the one shown in Figure 4. To explore if there are any charac-
teristic profiles or clusters of profiles, we used a visualisation
method based on star plots. For illustration, visualisation of
the response profile of neuron 4 is shown in Figure 7. We
then trained a one-dimensional self-organizing map (SOM)
with 64 units to topographically organize response profiles
(Kohonen, 1982). Figure 8, nicely reveal gradual changes in
these profiles both in terms of (direction/position) selectivity
and in terms of amplitude (line length, gain modulated). This
suggests that there is a continuum of responses profiles (rather
than a discrete set) that emerged in the hidden layer as a result
of learned transformation. We can also say that the response
profiles appear to be specialized in similar manner as the RFs
due to the effect of gain modulation.

Figure 8: Response profiles, topographically sorted by the
SOM. Every circle represents the response profile of one hid-
den unit.

Reference frames
Here we examined how the centre of mass of the RF shifts
for different gaze directions. To determine the centre of RF,
we swapped the organizion of units’ response profiles to get
a grid of 25×9 responses. In order to determine the refer-
ence frames used by the population of hidden neurons, we
computed the absolute shifts of RFs and their standard devi-
ations for all units and put them into histograms in Figure 9.
Absolute shifts close to zero are interpreted as encoding in
eye-centered reference frame. Absolute shifts close to one in-
dicate body-centered reference frame. Since we observe none
of these situations, we conclude that the hidden layer encodes
the object position in intermediate coordinates between eye-
and body-centered reference frames.

Figure 9: Histograms of absolute RF shifts (left) and their
standard deviations (right). The vertical axis denotes the
number of units with the given value of the shift. Both hori-
zontal and vertical shifts are superimposed, so the sum of bars
in each histogram is 2×64 = 128.
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Conclusion
We replicated experiments with Zipser–Andersen model, us-
ing more complex (more realistic) data generated with the
iCub simulator. For learning the model, we achieved the best
results with the standard version of BP with the momentum
term. The network was able to successfully perform the trans-
formation task with testing accuracy within 2◦ in case of a
more homogeneous set of objects, and with accuracy of 4◦ in
case of more variable object sets. This implies that coordi-
nate transformations could be successfully realized using the
data from iCub simulator. We examined the hidden layer by
means of visualisation techniques that revealed the nonlinear
effect of gain modulation and shifting receptive fields. The re-
sults of the reference frame analysis indicate that the hidden
neurons encode object position in the intermediate reference
frames between eye- and body-centered coordinates. It is in-
teresting that these reference frames are actually an emergent
process that results from error minimization within a super-
vised learning task. It is possible that similar emergent pro-
cesses could take place in the brain, possibly implemented by
mechanisms other than BP that is considered biologically im-
plausible. However, alternatives exist that avoid explicit error
propagation between layers (O’Reilly, 1996) and share some
features also with unsupervised Hebbian learning.

The brain must be able to integrate different sources of in-
formation which can significantly differ in terms of the num-
ber of afferent pathways, to avoid dominance of one modality
to the expense of the other. Some theories and computational
models can be found in Makin, Fellows, and Sabes (2013) and
references therein. Given the higher dimensionality of input
data we optimized the integration of different modalities in a
more straightforward, albeit hardwired manner.
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