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Abstract

We investigate the hypothesis that multisensory representa-
tions mediate the crossmodal transfer of shape knowledge
across visual and haptic modalities. In our experiment, par-
ticipants rated the similarities of pairs of synthetic 3-D objects
in visual, haptic, cross-modal, and multisensory settings. Our
results offer two contributions. First, we provide evidence for
a single multisensory shape representation common to both vi-
sual and haptic modalities. Second, our analyses suggest that
these representations are part-based, representing objects as
compositions of subparts.
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Introduction
Imagine the following simple scenario. You see an object,
and later you are asked to find that object among a set of
objects by using only your sense of touch. How might the
visual information about the object be transferred to the hap-
tic modality to achieve object recognition in this task? One
hypothesis is that haptic input is mapped to a visual shape rep-
resentation, maybe like a form of visual imagery, and object
recognition is achieved in this visual shape space. It is also
plausible that an analogous haptic imagery process is at play,
and object perception takes place in a haptic shape space. The
third alternative and the hypothesis we are arguing for is the
Multisensory Hypothesis. This hypothesis states that peo-
ple use sensory representations of objects to infer amodal or
multisensory representations characterizing objects’ intrinsic
properties, and object perception is mediated by these multi-
sensory representations.

The first question we address is exactly this question of
whether people use modality-specific (vision-specific and
haptic-specific) object representations or whether they use
modality-independent (multisensory) representations. The
second question concerns the fine-grained structure of object
representations. If multisensory representations underlie our
object perception, what can we say about the nature of these
representations? An influential hypothesis in the cognitive
science literature is that object representations are part-based,
meaning that objects are represented in terms of their parts
and the spatial relations among these parts (Marr & Nishi-
hara, 1978; Biederman, 1987).

To address these questions, we collected similarity judg-
ments from people about pairs of novel objects when objects
are viewed, when objects are grasped, when one object is
viewed and the other is grasped, and when both objects are
viewed and grasped. We found that participants gave similar
ratings in all experimental conditions, providing evidence for

the existence of multisensory object representations. More-
over, our analyses suggest that our multisensory object repre-
sentations are part-based.

Related Research

Previous studies provide behavioral and neurophysiological
evidence for the existence of multisensory representations.
Quiroga (2012), for example, reported the existence of “con-
cept cells” which are neurons that respond selectively to par-
ticular persons or objects regardless of the modality used to
sense those persons or objects. One neuron, for instance, re-
sponded when a person viewed an image of the television host
Oprah Winfrey, viewed her written name, or heard her spoken
name (Quiroga, Kraskov, Koch, & Fried, 2009). Additionally,
brain imaging studies (Amedi, Jacobson, Hendler, Malach, &
Zohary, 2002) show that LOtv, a neural region within the hu-
man lateral occipital complex, is activated both by viewing
and touching objects.

Behavioral results are consistent with neurophysiological
findings. Konkle, Wang, Hayward, and Moore (2009) re-
ported that motion aftereffects transferred between vision and
touch—when adapted to visual motion in a certain direc-
tion, people felt tactile motion aftereffects in the opposite
direction, and vice versa. Such a finding provides strong
evidence for a shared representation underlying visual and
tactile motion perception. In another study, Lacey, Pappas,
Kreps, Lee, and Sathian (2009) found that subjects initially
showed viewpoint-dependent object recognition in both vi-
sual and haptic modalities. However, following unimodal
training with either visual or haptic stimuli, people’s object
recognition performances became viewpoint-independent in
both modalities. A set of studies by Wallraven, Bülthoff,
and colleagues also provide evidence for common object rep-
resentations underlying visual and haptic object perception.
In these studies (Cooke, Jäkel, Wallraven, & Bülthoff, 2007;
Gaissert, Wallraven, & Bülthoff, 2010; Gaissert, Bülthoff, &
Wallraven, 2011; Gaissert & Wallraven, 2012), subjects pro-
vided similarity judgments for different sets of objects, both
artificial and natural, in vision alone, haptic alone, and vision-
haptic conditions. It was found that subjects’ similarity rat-
ings were similar in all three sensory conditions, thereby sug-
gesting that these ratings were based on shared, multisensory
representations. The experiment reported here uses a similar
procedure, but extends this earlier work by focusing on the
part-based nature of these representations.
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Experiment
Stimuli
We designed 16 novel objects based on a previously existing
set of objects known as “Fribbles”. Fribbles are complex, 3-D
objects with multiple parts and spatial relations among parts.
They have previously been used in studies of visual (Hayward
& Williams, 2000; Tarr, 2003) and visual-haptic (Yildirim &
Jacobs, 2013) object perception.

Each object is comprised of four parts that are attached to a
cylindirical body that is common to all objects.The four parts
vary from object to object, though they are always located
at the same four locations in an object. A particular object
is specified by selecting one of two interchangeable parts at
each location (4 locations with 2 possible parts per location
yields 16 objects).

Visual stimuli consisted of images of objects rendered from
a canonical (three-quarter) viewpoint so that an object’s parts
and spatial relations among parts are clearly visible (see Fig-
ure 1). Stimuli were presented on a 19-inch CRT computer
monitor. Participants sat approximately 55 cm from the mon-
itor. When displayed on the monitor, visual stimuli spanned
about 20 degrees in the horizontal dimension and 15 degrees
in the vertical dimension. Visual displays were controlled us-
ing the PsychoPy software package (Peirce, 2007).

Participants received haptic inputs when they touched
physical copies of the objects fabricated using a 3-D printing
process. Physical objects were approximately 11.5 cm long,
6.0 cm wide, and 7.5 cm high. Participants were instructed to
freely and bimanually explore physical objects.

Participants
Participants were 30 students at the University of Rochester
who reported normal or corrected-to-normal visual and hap-
tic perception. They provided written informed consent, and
were paid $10 per hour. The study was approved by the Uni-
versity of Rochester Research Subjects Review Board.

Procedure
On each experimental trial, a participant observed two objects
and judged their similarity on a scale of 1 (low similarity) to 7
(high similarity). Within a block of 136 trials, each object was
paired both with itself and with the other objects. Pairs were
presented in random order. Participants performed 4 blocks
of trials.

The experiment included four conditions referred to as the
visual, haptic, cross-modal, and multisensory conditions. In
the visual condition, participants saw an image of one object
followed by an image of a second object. Images were dis-
played for 3.5 seconds.

In the haptic condition, physical objects were placed in a
compartment under the computer monitor. The end of the
compartment closest to a participant was covered with a black
curtain. A participant could reach under the curtain to hap-
tically explore an object. However, a participant could not

view an object. Messages on the computer monitor and au-
ditory signals indicated to a participant when she or he could
pick up and drop objects. On each trial, an experimenter first
placed one object in the compartment. The participant then
haptically explored this object. The experimenter removed
the first object and placed a second object in the compartment.
The participant explored this second object. Each object was
available for haptic exploration for 7 seconds. As is common
in the literature on visual-haptic perception, the haptic input
in the haptic experimental condition was available for longer
than the visual input in the visual condition (Freides, 1974;
Gaissert et al., 2011; Lacey, Peters, & Sathian, 2007; Newell
& Ernst, 2001).

In the cross-modal condition, objects in a pair were pre-
sented in different sensory modalities. For three participants,
the first object was presented visually and the second object
was presented haptically. For four participants, this order was
reversed.

In the multisensory condition, both objects were presented
both visually and haptically. During the 7 seconds in which
an object could be touched, the visual image of the object was
displayed for the final 3.5 seconds.

Visual and cross-modal conditions were run over two one-
hour sessions on two different days, each session compris-
ing two blocks of trials. For haptic and multisensory condi-
tions, an individual block required about an hour to complete.
These conditions were run over four one-hour sessions.

Of the 30 participants in the experiment, 2 participants pro-
vided similarity ratings that were highly inconsistent across
experimental blocks (one participant in the visual condition
and the other in the multisensory condition). A Grubbs test
(Grubbs, 1950) using each participant’s correlations among
ratings in different blocks revealed that these two partic-
ipants’ ratings are statistical outliers (subject 1: g=2.185,
p<0.05; subject 2: g=2.256, p<0.05). These ratings were
discarded from further analyses. The remaining 28 partic-
ipants are divided among the four experimental conditions,
seven participants per condition.

We checked for a difference in ratings between the two
subgroups in the cross-modal condition (one subgroup re-
ceived visual before haptic presentation on each trial, whereas
the other subgroup received the reverse order). A two-tailed
Welch’s t-test (used when two samples have possibly un-
equal variances) did not find a significant effect of the order
of the modalities in which objects were presented (t=0.087,
p<0.935). We, therefore, grouped the data from these sub-
groups.

Although participants performed four blocks of trials, we
discarded data from the first block because participants were
unfamiliar with the objects and with the experimental task
during this block. Results reported below are based on data
from blocks 2-4.

Results
Are object similarity ratings modality-independent? We
carried out several analyses to understand whether partici-
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Figure 1: Stimuli used in the experiment.

pant’s similarity ratings are modality independent. In the
first of these analyses, we looked at the correlations between
the similarity judgments of participants within and across
experimental conditions. First, we averaged each partici-
pant’s ratings for each pair of objects over blocks 2-4 to form
participant-level similarity matrices. Then, we calculated the
correlations of each participant’s matrix with the participants
in the same condition and other conditions. The average
within and across condition correlations are shown in Fig-
ure 2. It is important to note that all of these correlations
are fairly high and, more importantly, across condition corre-
lations are roughly as large as within condition correlations.
For each condition, we also formed a condition-level similar-
ity matrix by averaging the participant-level matrices for the
participants belonging to that condition. Correlations among
these condition-level matrices were extremely high, with the
smallest correlation equal to 0.97. Taken as a whole, our cor-
relational analysis suggest that participants had similar no-
tions of object similarity in all experimental conditions.

In our second analysis, we sought to understand the de-
gree of similarity among participants’ “perceptual spaces” for
different experimental conditions. Multidimensional scaling
(MDS) is widely used to extract the structure of perceptual
spaces from similarity data. MDS maps each object to a point
in an abstract perceptual space such that objects that are simi-
lar are close to each other (Cox & Cox, 2000; Kruskal, 1964;
Shepard, 1962). We ran non-metric MDS with the Man-
hattan distance metric (metric MDS and Euclidean distance
metric produced similar results) on condition-level similar-
ity matrices to find four-dimensional perceptual spaces for
each condition. We assumed that the perceptual space is four-
dimensional because each object is composed of four parts
(and the shared cylindirical body). To quantify how similar
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Figure 2: Average correlations within and across conditions
among participants’ similarity matrices.
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Figure 3: Procrustes distances between 4-D embeddings for
each experimental condition and for the Random condition.

the perceptual spaces for different conditions are, we used
Procrustes analysis to compute distances between two em-
beddings, meaning two sets of assignments of objects to loca-
tions in the abstract space. Since two embeddings that differ
by a translation, rotation, or scaling correspond to the same
spatial configuration, Procrustes analysis first finds the opti-
mal alignment between embeddings and then calculates their
distance.

We computed pairwise Procrustes distances between em-
beddings for the four experimental conditions. To provide
a baseline against which we can compare our results, we
added a fifth case referred to as the Random condition. For
the Random condition, we obtained 100 similarity matrices
by permuting the average similarity ratings of all subjects,
applied MDS, and calculated the Procrustes distances be-
tween these embeddings and the embeddings from other con-
ditions. Figure 3 shows pairwise Procrustes distances based
on these five conditions. The Procrustes distances between
visual, haptic, cross-modal and multisensory embeddings are
extremely small, especially when compared to the distances
for the Random condition. This means that the MDS em-
beddings of objects for all experimental conditions are nearly
identical, suggesting that participants perceived similarities in
a highly similar fashion in all conditions. Critically, the fact
that the cross-modal similarity judgments are nearly indistin-
guishable from the judgments in unimodal and multisensory
conditions supports the existence of multisensory object rep-
resentations that are shared by visual and haptic perceptual
systems.

Are multisensory representations of objects part-based?
Researchers have proposed that people’s object representa-
tions are part-based—objects are represented by their parts
and the spatial relations among these parts (Marr & Nishi-
hara, 1978; Biederman, 1987). Later work by Yildirim and
Jacobs (2013) extended this idea to other modalities, propos-
ing part-based multisensory representations of objects that are

acquired through visual and/or haptic modalities.
To test whether participants in our experiment used part-

based multisensory object representations, we ran several
analyses. Recall that the objects in our experiment were com-
posed of four parts; in other words, one can specify each of
the objects with a four-dimensional representation. Thus, if
our participants used a part-based representation, we would
expect the perceptual spaces associated with these represen-
tations to be four-dimensional. In the first of our analyses, we
used MDS to examine the number of dimensions of the per-
ceptual space that best explains the similarity ratings in each
condition. When applying MDS to find the perceptual spaces,
we varied the number of dimensions from one to six, and
looked at the “stress” values. Stress values provide a measure
of goodness-of-fit, and are widely used to choose a percep-
tual space’s dimensionality. In Figure 4a, we plot the stress
values as a function of the number of dimensions for each ex-
perimental condition and the Random condition. The stress
values for the Random condition are higher than the stress
values for other conditions. For the four experimental condi-
tions, stress values are much lower and, more importantly, the
“elbows” point to a dimensionality of four, as expected from
a part-based representation.

Ashby, Maddox, and Lee (1994) pointed out potential pit-
falls when using MDS on average similarity matrices. First,
averaging favors the dominant perceptual space and may lose
information about the different perceptual spaces that some
individual subjects may use. Second, averaging increases
symmetry which enables the similarity judgments to be fit
well by MDS regardless of the nature of individual subject’s
ratings. To avoid these pitfalls, we used the Bayesian Infor-
mation Criterion (BIC) for multidimensional scaling devel-
oped by Lee and Pope (2003) which does not suffer from
these pitfalls. We reanalyzed our experimental data using
MDS and BIC scores instead of stress values. The results
are shown in Figure 4b. For the Random case, the BIC score
is lowest at a dimensionality of zero, indicating that there is
no structure in the permuted matrices that can be modeled by
MDS. For the experimental conditions, BIC scores are lowest
(or nearly so) at a dimensionality of four. Again, this result is
consistent with the hypothesis of part-based representations.

We now re-examine the objects used in our experiment so
that we can hypothesize about a likely format for part-based
object representations. Our objects are composed of four
parts (plus the shared cylindrical body) which are always at
the same four locations, and there are two possible parts at
each location. Hence, one can represent each of our objects
with four binary digits, where each digit corresponds to one
of the four locations and the value of a digit specifies which
of the two possible parts is present at that location. We refer
to these representations as list-of-parts representations since
each representation is a list of the four parts that make up an
object.

We want to know if list-of-parts representations can ex-
plain our experimental data. To evaluate this, we used a
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Figure 4: MDS stress values (a) and BIC scores (b) as a function of the number of dimensions.

Bayesian nonparametric additive clustering technique due to
Navarro and Griffiths (2008). This technique infers hidden
or latent binary representations of objects from similarity rat-
ings. The technique does not assume a fixed number of di-
mensions for the representations. Rather it infers a poste-
rior probability distribution over the number of dimensions,
along with a distribution over binary representations of ob-
jects. When applied to the condition-level similarity matri-
ces, the technique found that the most probable dimension-
ality is eight. However, the technique inferred two copies
of each dimension, a potential problem noted by Navarro
and Griffiths (2008). Consequently, the technique actually
inferred four-dimensional object representations. Critically,
the inferred representations were the same for all experimen-
tal conditions and, when we discard duplicate dimensions,
the inferred binary representations are exactly the representa-
tions we expected—a four digit binary number for each object
where the value of each digit indicates the part that is present
at each of an object’s four locations. This analysis provides
strong evidence that participants in our experiment employed
representations that are closely related to list-of-parts repre-
sentations.

We also examined correlations of distances between list-
of-parts representations for pairs of objects and participants’
similarity ratings. Because list-of-parts representations are
binary, we used the Manhattan distance metric—also known
as city-block distance or l1 norm—to calculate distances be-
tween representations. The correlations of the distances com-
puted from list-of-parts representations and the experimen-
tal condition-level similarity matrices are extremely high, all
of them being larger than 0.97. These high correlations,
again, strongly suggest that participants used list-of-parts ob-
ject representations (or a closely related representational for-
mat) when judging object similarities.

In summary, our experimental data and analyses provide

compelling evidence that participants’ similarity ratings were
based on modality-independent, part-based object represen-
tations.

Discussion and Future Work
In summary, we investigated two questions concerning vi-
sual and haptic object perception: First, are people’s judg-
ments of perceptual similarity based on modality-specific or
modality-independent (multisensory) object representations?
Our results corroborate earlier findings on the existence of
abstract multisensory representations and provide strong evi-
dence for the Multisensory Hypothesis. Second, what is the
fine-grained nature of these representations? Our analyses
show that participants used a part-based representation that
is closely related to a list-of-parts representation. However,
we do not claim that such simple list-of-parts representations
characterize people’s object representations. First, such rep-
resentations do not specify the spatial relations among parts.
It is clear, however, that people are sensitive to these spatial
relations (e.g., consider a normal face vs. a scrambled face in
which the eyes, nose, and mouth are assigned random posi-
tions). We consider the work reported here as an early step in
understanding the fine-grained structure of object representa-
tions underlying visual and haptic perception. To better un-
derstand the nature of these representations, further research
in more realistic scenarios with more complex objects is nec-
essary. We are currently working on a study to understand
how spatial relations play a role in multisensory object repre-
sentations.

Any hypothesis about object representations is incomplete
without an account of how these representations are ac-
quired. We are currently working on a computational model
that extracts abstract multisensory representations from vi-
sual and/or haptic sensory inputs. Our model combines ab-
stract structural object representations with sensory forward
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models, and employs Bayesian inference to infer optimal ob-
ject representations. Then, using structural similarity mea-
sures, we intend to use these inferred representations to rate
the similarity between pairs of objects, and see how well our
model accounts for participants’ ratings.
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