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Abstract 

Emergent behavior is pervasive in complex systems, and 
often produces surprising phenomenon that are challenging to 
understand and apply usefully, especially with regards to 
inter-level causalities. Here, we study engineering 
undergraduates’ capacity to understand and solve design 
problems concerning inter-level causalities in nanomechanical 
biological systems. To test user understanding and application 
of inter-level causalities in this system, we developed a GUI 
bolstered by an agent-based molecular simulation that 
calculates system performance and renders animations in real-
time as users adjust design inputs. We randomly assigned 
undergraduate engineering students to design-based learning 
groups with support of either animated simulation rendering 
or charts. Both groups improved on a set of pre/post design 
problems. But on assessments of understanding of inter-level 
causal relationships, only the animation group demonstrated 
an understanding. Both groups were then presented 
contrasting animations of continuous and intermittent 
systems, resulting in about half of participants in each group 
demonstrating an understanding of inter-level causal 
behaviors. These findings demonstrate the difficulty in 
understanding inter-level causal relationships in emergent 
systems, the usefulness in interactive software tools in 
overcoming these difficulties, and that understanding of inter-
causal relationships may improve performance in design 
applications. 

Keywords: Emergence, Inter-level Causality, Learning, 
Graphical User Interface, Complex Systems Design, 
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Introduction and Motivation 

Complex systems consist of many components and 

interactions that make them difficult to understand, with 

emergent behavior being cited as particularly troublesome 

(Chi, 2005; Hmelo-Silver, Marathe, & Liu, 2007). Emergent 

behavior, stated succinctly, is the system level behavior that 

occurs as a collection of components interact, and often 

refers to phenomenon with qualitatively distinct global and 

local behaviors (Bar-Yam, 2004). Although understanding 

behaviors at both a component and system level is indicative 

of deep understanding and expertise (Hmelo-Silver, 

Marathe, & Liu, 2007), understanding of causal 

relationships between these levels may also be necessary in 

forming a robust understanding of the system (Chi, Roscoe, 

Slotta, Roy, & Chase, 2012). Here we investigate how 

software tools can facilitate the learning of inter-level 

causalities and how this understanding extends to useful 

reasoning skills.  

The effect of software tools in supporting users’ 

understanding of emergence has been conducted in the 

context of science education, and includes examples such as 

fluid diffusion (Chi et al., 2012) and ecosystems (Jordan, 

Hmelo-Silver, Liu, & Gray, 2013). However, in complex 

systems engineering contexts, it is also necessary to apply 

learned knowledge pragmatically towards an application 

(Ottino, 2004). In particular, we focus on the design of 

nanomechanical myosin protein systems (Egan, Cagan, 

Schunn, & LeDuc, 2013a), because they are a prevalent in 

natural systems (e.g. muscle, cytoskeleton) and biomedical 

technologies (e.g. nanoactuator, contractile material). They 

are also unfamiliar to traditional engineering disciplines, 

thus providing an ideal system for investigating how 

engineers learn and demonstrate understanding of inter-level 

causality.  

Myosin systems consist of individual motor proteins that 

stochastically attach and exert force to move protein 

filaments before stochastically detaching. This behavior is 

illustrated in Figure 1 panels of a graphical rendering of an 

agent-based myosin simulation (Egan et al., 2013a). The 

system is emergent (Huber, Schnauß, Rönicke, Rauch,  

Müller, Fütterer, & Käs, 2013) because local myosin 

cyclical behavior is qualitatively distinct from global 

filament translation behavior. Although individual myosins 

are intermittent and stochastic, the system is frequently 

continuous/predictable as a whole but sometimes also 

intermittent and stochastic because filaments only translate 

during periods when at least one myosin is attached 

(Harada, Sakurada, Aoki, Thomas, & Yanagida, 1990). 

Therefore, average filament velocity is generally faster 
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when there is continuous contact among myosins and the 

filament (Figure 1A), and lower with intermittent filament 

translation (Figure 1B). These continuous and intermittent 

filament translations are representative of different emergent 

behavioral regimes at a systems level, and a system’s 

regime is dependent on the inter-level causal relationships 

of components and the system configuration as a whole. 

In this study, we seek to understand how software tools 

could facilitate inter-level learning of the system, and 

whether understanding aids users in design tasks of 

optimizing myosin systems with a graphical user interface 

(video available at http://youtu.be/-14I3OSusgs) (Adapted 

from Egan, Cagan, Schunn, & LeDuc, 2013b). In this study, 

we have developed and tested three methods of software-

aided learning that could promote understanding of inter-

level causal relationships.  

The first method is through supplying users quantiative 

feedback of system performance via charts, thus allowing 

the user to change myosin design inputs and see measured 

changes in performance. The second method is to allow 

users to recieve animated feedback of the agent-based 

molecular simulation while changing design inputs (video 

available at http://youtu.be/S8Fj67HeWps). The final 

method is to present users contrasting animations of a 

system in either the intermittent or continuous emergent 

behavioral regime, thus providing a clear distinction to the 

user for how systems configured in two different ways 

produce two different global patterns of behavior.  

Our goal in this study is to demonstrate that these 

software tools aid users in understanding and designing 

these systems and to demonstrate that successes in 

understanding inter-level causalities aid in engineering 

design tasks. Our hypotheses are that 1) Learning via charts 

or interactive simulations will improve user design task 

performance, 2) Users exposed to animated renderings of 

agent-based simulation behavior will be able to demonstrate 

understanding of inter-level causal relationships, and 3) 

Users that demonstrate an understanding of inter-level 

causalities will perform better on design tasks. 

Background 

Studies in measuring student understanding of emergence 

have demonstrated that misunderstandings of emergent 

behaviors (e.g. diffusive fluid flow) are robust in 

comparison to misunderstandings of direct behaviors (e.g. 

blood flow in the circulatory system) (Chi, 2005). Students 

who lack understanding of emergent systems often have 

fragmented system understandings, such as being able to 

understand pieces of component behaviors but not how they 

relate across scales to promote a global system behavior. 

Most commonly, this fragmented understanding occurs 

because students try to explain emergent systems as direct 

processes, rather than distributed behaviors (Chi, 2005). 

Such findings are relevant to the myosin system, because (as 

we explain during the tutorial to participants) individual 

myosins are stochastic and propel filaments, but then (as 

participants must discover for themselves) these parts 

interact across levels to promote the varied emergent 

behaviors of continuous/intermittent filament translation.  

Our approach in using an agent-based animation is 

supported by past studies that have had success in 

promoting system understandings of how aquarium systems 

work through agent-based interfaces (Vattam, Goel, 

Rugaber, Hmelo-Silver, Jordan, Gray, & Sinha, 2011) and 

understandings of inter-level causal relationships in 

diffusion (Chi et al., 2012).  

 Medical education has had success in utilizing 

animations for learning and found that successful 

approaches require consideration of cognitive load (Ruiz, 

 
 

Figure 2: Myosin GUI configured to provide feedback via charts output. As users manipulate myosin design inputs 

through interacting with sliders, calculations are performed and output in plots. 

 

 
 

Figure 1: Simulated (A) continuous and (B) intermittent myosin filament translation. Each frame consists of an actin 

filament and myosins anchored on a microscope slide. The filament is shown as translucent when it is not moving, and the 

myosins are shown as white when not attached. Each frame from top to bottom demonstrates the translation of an actin 

filament by attached myosin heads over time. If no myosin head is attached, the filament remains static, resulting in lower 

average filament velocity in B. Red arrows track binding sites for 1 ms virtual time.  Video: http://youtu.be/OvAYgchn0Bo 
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Cook, & Levinson, 2009) to facilitate maximal learning 

(Van Merriënboer & Sweller, 2010). In our approach a 

single animation cannot convey all necessary information 

because emergent myosin system behavior varies with 

system configuration, meaning users must actively change 

the system to learn how different configurations lead to 

different emergent behaviors. However, to reduce cognitive 

load if users are unable to learn inter-level causalities 

through actively designing the system, contrasting 

animations (Alfieri, Nokes-Malach, & Schunn, 2013) have 

been shown as an effective teaching tool that could reduce 

cognitive load by focusing attention on critical features that 

are revealed through critical case contrasts.  

Experimental Methods 

Graphics User Interface 

The graphical user interface (GUI) consists of a set of 

scenes that guide the user through a software tutorial, 

interactive design problems/learning sessions (Figure 2), 

and multiple choice/free response questions. During 

design/learning scenes, users are able vary the values of 

three independent myosin design parameters and one system 

design parameter; the influence of changing these design 

variables on system behavior has previously been 

empirically validated with agent-based simulations (Egan, 

Cagan, Schunn, and LeDuc, 2012). Once users configure a 

design, they evaluate it and receive feedback of how it 

performs with respect to a goal performance output.  

There are also constraints on output performance, and if a 

design violates a constraint it is designated infeasible. Users 

are provided ten evaluations per design task, which is 

similar to past studies allowing for some benchmark 

comparisons (Egan, Cagan, Schunn, and LeDuc, 2014). 

Three difficulties of problems were created by increasing 

the number of output variables and constraints (only one 

output is graded as the goal output, additional constraints on 

secondary output variables inherently reduce the set of 

acceptable possibilities in the larger design space): one-

variable-one-constraint, two-variables-one-constraint, or 

two-variables-two-constraints.  

In this study, two different interactive learning scenes 

were created for users to explore inter-level causality among 

components and system behavior before design tasks. In the 

first configuration, termed ‘Charts’ style learning, there is 

an area for users to manipulate input sliders and then system 

behavior is provided in the form of plotted feedback that 

updates in real-time (center column of Figure 2). There are 

also static myosin images updated as design variables are 

changed. A second configuration of this scene is termed 

‘Animation’ style learning. It is identical to Figure 2 except 

that the plots are removed and the static myosin images are 

replaced with the agent-based simulation rendering from 

Figure 1 in a continuous animated illustration of the 

movement, binding, and releasing of the system 

components. In both groups, information concerning the 

next design task is presented on the right to provide an idea 

of what information is important during a learning session.   

Through one of these two interfaces, a user is expected to 

learn about the system by manipulating inputs and 

recognizing their effects on output performance. In the 

‘Animation’ condition, a user could add more myosins to 

the system and notice that if the filament was originally 

intermittently moving, it would begin moving more often as 

there are more periods of at least one myosin being attached. 

In the ‘Charts’ condition, a user would see the filament 

velocity parameter increase on the y-axis as the number of 

myosins were increased in the system if it was changing 

from intermittent to continuous emergent behavior. 

Procedure 

Thirty-one mechanical engineering undergraduates in a 

senior design class participated for course credit. 

Participants were randomly assigned to either the ‘Charts’ 

or ‘Animation’ condition and groups followed different 

procedures as illustrated by Figure 3, which were developed 

to test the hypotheses outlined at the end of the Introduction. 

 

 

Figure 2: Myosin GUI configured with feedback via charts output.  As users manipulate myosin design inputs with 

slider interfaces, calculations are performed and output in plots. Video: http://youtu.be/QXoIv48ntYk 
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Figure 3: Flow chart of cognitive study protocol with left 

and right tracks representing different learning conditions. 

  

Both groups are initially given the same software tutorial 

and then solve the same three baseline design tasks that 

have three levels of difficulty. In these baseline design tasks, 

myosin variable names are renamed generically to ‘Input 

A,’ ‘Output B,’ etc., which ensures minimal learning during 

this baseline measurement task.  

Then, a baseline assessment of whether users could 

demonstrate inter-level causal reasoning was collected by 

asking questions about how changing design inputs might 

change system behavior. This was conducted by presenting 

users a system configuration clearly in the continuous or 

intermittent behavioral regime to a knowledgeable user, and 

then asking whether the filament velocity of the system 

would increase or stay about the same when a particular 

design input was changed. This question is an assessment of 

their understanding of inter-level causal relations because if 

a system is already behaving continuously, then adding 

more myosins would not improve its average velocity. 

However, if the system was initially behaving 

intermittently, adding more myosins would improve its 

average velocity. 

Users are then provided one of the learning interfaces 

depending on their condition before solving their next set of 

tasks. Users interact with the learning interface for two 

minutes before each task, all baseline and learning design 

tasks were limited to four minutes, and users proceeded 

through all other GUI scenes at their own pace. Afterwards, 

their ability to describe system stochasticity is assessed a 

second time, followed by a third time where users are 

provided the correct quantitative relationship among system 

variables (e.g. filament velocity will/will not raise 

significant when a myosin’s attachment rate increases), and 

then must provide the correct reasoning.  This third 

assessment therefore isolates a user’s ability to explain the 

inter-level causality without first having to assess what 

effect changing an input will have on the behavior of the 

system. For these assessments, users are also presented 

visualizations of the system according to their respective 

learning condition. Finally, users in both groups are 

presented contrasting animations before a final assessment.  

Experimental Results 

Learning Effects on Design Task Performance 

The first hypothesis was: Learning via charts or interactive 

simulations will improve user design task performance. This 

was analyzed by aggregating data from each task separately, 

and then averaging the solution quality of a user’s best 

solution for that task with all other users in their condition. 

Solution quality was determined by first comparing a user’s 

goal output value to the global optimum for a task and 

providing it a relative score between 0 and 1 (all designs 

that did not meet constraints had a score of zero, the global 

optimum has a score of 1). The solution quality was then 

calculated by finding the difference between the user 

average relative objective function and a random solver to 

facilitate absolute evaluation and performance comparison 

across problem types. The average solution quality of users 

is presented in Figure 4 for each task and learning condition. 

 

 
 

Figure 4: Average user solution quality in each learning 

condition for all tasks. 

 

In comparing baseline and post-learning tasks, the 

average solution quality improved post-learning for all 

tasks, and supports the hypothesis. Each software tool 

improved performance about the same. The tools helped 

more as task complexity grew, thus motivating an ever 

increasing need for software tools as systems grow 

increasingly more complex. Interestingly, the charts and 

animations did not appear to aid design performance by 

changing design strategies, at least not with regards to the 

strategies previously shown to improve performance on 

these tasks (e.g., only changing one input at a time, 

searching near their current best design, min/maxing inputs) 

(Egan, Cagan, Schunn, and LeDuc, 2014). Thus, the benefit 
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may occur through the knowledge used in existing strategies 

rather than via changing strategies. 

Recognition of Stochastic System Behavior  

After users had completed all the design tasks, their 

understanding of inter-level causalities was assessed to 

address the second hypothesis: Users exposed to animated 

renderings of agent-based simulation behavior will be able 

to demonstrate understanding of inter-level causal 

relationships. In each assessment phase, users were asked 

two questions of how filament velocity of a system would 

change if reconfigured. In each pairing, users were expected 

to recognize the emergent behavioral regime of the system 

on their own and questions were always paired such that the 

system would change regimes upon alteration in one 

question but not both. 

Users indicated their answer via a multiple choice box 

(either filament velocity increased or about the same) and 

typed their reasoning in a free response box that was only 

analyzed for users that correctly answered the multiple 

choice question. Free response answers were tagged as 

demonstrating understanding of inter-level causality if users 

referred to the stopping/starting behavior of the filament 

being related to having at least one myosin attached. 

Example user responses that were tagged as correct were 

“The increased number of myosins results in more time 

during which at least 1 myosin is attached and therefore the 

filament is being pushed forward,” and “Average filament 

velocity increases because when there are more myosins 

there is less of a chance the filament will not be moving as a 

result of no present myosins.” Some examples of answers 

tagged as incorrect were “There are more myosin firing at 

any given time, giving more total force to the system and 

resulting in higher filament velocity,” and “More myosins 

are in contact with the filament at any given time, which 

increases the velocity.” 

Understanding of inter-level causalities was assessed four 

times (Figure 3). No users indicated a proper understanding 

during the baseline assessment prior to learning sessions. 

The next two assessments occurred after the learning 

sessions (the first being directly after, and the second 

occurring once users were provided the correct quantitative 

relationship via the correct multiple choice answer but still 

had to provide an explanation). The final assessment 

occurred immediately after the contrasting animations were 

presented. The percentage of correct answers was 

aggregated for users in each condition and is presented in 

Figure 5.  

Users in the animation group correctly demonstrated 

understanding of inter-level causality about 33% of the time 

directly after the learning tasks, while no users in the charts 

condition demonstrated understanding at this point, thus 

supporting the hypothesis that the agent-based simulation 

aids in learning inter-level causal relationships. However, 

despite supporting the hypotheses, only a small portion of 

users did demonstrate understanding. After the quantitative 

hint was provided, there was only a slight improvement; one 

user in the charts condition explained the stochastic system 

behavior correctly which suggests that it was not entirely 

implausible for users in that condition to formulate theories 

in line with the surprising stochastic behavior.  

 

 
 

Figure 5: Percentage of correct responses in 

demonstrating an understanding of inter-level causality 

during each assessment phase. 

 

After the contrasting animations were presented to users, 

approximately half of users in each condition correctly 

explained the inter-level causality. This pattern further 

supports the hypothesis that agent-based simulation 

renderings are effective in teaching inter-level causality, and 

are more effective when cognitive load is reduced via 

contrasting animations. Because average user score was 

only about 50%, our findings reinforce prior findings that 

emergent systems are difficult to understand (even for 

engineering students) and misconceptions about these 

systems are robust to learning interventions. 

Does Recognizing Stochasticity Aid Design? 

The final hypothesis tested was: Users that demonstrate an 

understanding of inter-level causalities will perform better 

on design tasks. This was investigated by separating the 

users in the animation condition among those that did and 

did not demonstrate an understanding during the second 

assessment. Group performance was then compared on the 

final design task. Only the final design task was selected 

because the assessment immediately followed it and thus 

was the closest measure of understanding during design. We 

also examined performance on the baseline task to rule out 

third variable differences among participants related to 

design ability (see Figure 6). 

The results show that during the baseline, there was not a 

significant difference in design performance among the two 

groups. This demonstrates that when no users understood 

inter-level causality, design task performance among the 

groups was similar. Afterwards, users that had understood 

stochasticity via inter-level causal relationships performed 

better and found designs very close to the global optimum. 

This finding supports the hypothesis that users who 

demonstrate understanding of inter-level causality perform 

better in design applications related to that understanding.  
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Figure 6: Design performance of users that did or did not 

demonstrate understanding of inter-level causality. 

Conclusion 

This study sought to investigate how different types of 

software tools could aid in user understanding and 

application of inter-level causality in complex emergent 

systems. It was found that learning about the system through 

visual charts and animations feedback improved user ability 

to find high quality designs in optimization problems. 

Animations were then demonstrated to improve user ability 

in describing inter-level causality that contributes to 

surprising stochastic behavior at the systems level. 

Providing users contrasting animations of the system 

configured in two different behavioral regimes resulted in 

users for all study conditions describing inter-level causality 

correctly about 50% of the time. Finally, users that 

demonstrated an understanding of inter-level causality 

immediately following a design task, performed better on it.  

 As a whole, these findings demonstrate the challenges in 

user understanding and reasoning about inter-level causal 

relationships in complex emergent systems, and that 

software tools can promote learning of these relationships. 

Gains in understanding can then promote better performance 

in complex systems design applications, where many 

complex systems operate on the same domain general 

principals as complex nanomechanical biological systems.  
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