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Abstract

Emergent behavior is pervasive in complex systems, and
often produces surprising phenomenon that are challenging to
understand and apply usefully, especially with regards to
inter-level  causalities. Here, we study engineering
undergraduates’ capacity to understand and solve design
problems concerning inter-level causalities in nanomechanical
biological systems. To test user understanding and application
of inter-level causalities in this system, we developed a GUI
bolstered by an agent-based molecular simulation that
calculates system performance and renders animations in real-
time as users adjust design inputs. We randomly assigned
undergraduate engineering students to design-based learning
groups with support of either animated simulation rendering
or charts. Both groups improved on a set of pre/post design
problems. But on assessments of understanding of inter-level
causal relationships, only the animation group demonstrated
an understanding. Both groups were then presented
contrasting animations of continuous and intermittent
systems, resulting in about half of participants in each group
demonstrating an understanding of inter-level causal
behaviors. These findings demonstrate the difficulty in
understanding inter-level causal relationships in emergent
systems, the usefulness in interactive software tools in
overcoming these difficulties, and that understanding of inter-
causal relationships may improve performance in design
applications.
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Introduction and Motivation

Complex systems consist of many components and
interactions that make them difficult to understand, with
emergent behavior being cited as particularly troublesome
(Chi, 2005; Hmelo-Silver, Marathe, & Liu, 2007). Emergent
behavior, stated succinctly, is the system level behavior that
occurs as a collection of components interact, and often
refers to phenomenon with qualitatively distinct global and
local behaviors (Bar-Yam, 2004). Although understanding
behaviors at both a component and system level is indicative

of deep understanding and expertise (Hmelo-Silver,
Marathe, & Liu, 2007), understanding of causal
relationships between these levels may also be necessary in
forming a robust understanding of the system (Chi, Roscoe,
Slotta, Roy, & Chase, 2012). Here we investigate how
software tools can facilitate the learning of inter-level
causalities and how this understanding extends to useful
reasoning skills.

The effect of software tools in supporting users’
understanding of emergence has been conducted in the
context of science education, and includes examples such as
fluid diffusion (Chi et al., 2012) and ecosystems (Jordan,
Hmelo-Silver, Liu, & Gray, 2013). However, in complex
systems engineering contexts, it is also necessary to apply
learned knowledge pragmatically towards an application
(Ottino, 2004). In particular, we focus on the design of
nanomechanical myosin protein systems (Egan, Cagan,
Schunn, & LeDuc, 2013a), because they are a prevalent in
natural systems (e.g. muscle, cytoskeleton) and biomedical
technologies (e.g. nanoactuator, contractile material). They
are also unfamiliar to traditional engineering disciplines,
thus providing an ideal system for investigating how
engineers learn and demonstrate understanding of inter-level
causality.

Myosin systems consist of individual motor proteins that
stochastically attach and exert force to move protein
filaments before stochastically detaching. This behavior is
illustrated in Figure 1 panels of a graphical rendering of an
agent-based myosin simulation (Egan et al., 2013a). The
system is emergent (Huber, Schnauf, Ronicke, Rauch,
Mdller, Futterer, & Kas, 2013) because local myosin
cyclical behavior is qualitatively distinct from global
filament translation behavior. Although individual myosins
are intermittent and stochastic, the system is frequently
continuous/predictable as a whole but sometimes also
intermittent and stochastic because filaments only translate
during periods when at least one myosin is attached
(Harada, Sakurada, Aoki, Thomas, & Yanagida, 1990).
Therefore, average filament velocity is generally faster
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Figure 1: Simulated (A) continuous and (B) intermittent myosin filament translation. Each frame consists of an actin
filament and myosins anchored on a microscope slide. The filament is shown as translucent when it is not moving, and the
myosins are shown as white when not attached. Each frame from top to bottom demonstrates the translation of an actin
filament by attached myosin heads over time. If no myosin head is attached, the filament remains static, resulting in lower
average filament velocity in B. Red arrows track binding sites for 1 ms virtual time. Video: http://youtu.be/OvAYgchn0Bo

when there is continuous contact among myosins and the
filament (Figure 1A), and lower with intermittent filament
translation (Figure 1B). These continuous and intermittent
filament translations are representative of different emergent
behavioral regimes at a systems level, and a system’s
regime is dependent on the inter-level causal relationships
of components and the system configuration as a whole.

In this study, we seek to understand how software tools
could facilitate inter-level learning of the system, and
whether understanding aids users in design tasks of
optimizing myosin systems with a graphical user interface
(video available at http://youtu.be/-14130Susgs) (Adapted
from Egan, Cagan, Schunn, & LeDuc, 2013b). In this study,
we have developed and tested three methods of software-
aided learning that could promote understanding of inter-
level causal relationships.

The first method is through supplying users quantiative
feedback of system performance via charts, thus allowing
the user to change myosin design inputs and see measured
changes in performance. The second method is to allow
users to recieve animated feedback of the agent-based
molecular simulation while changing design inputs (video
available at http://youtu.be/S8Fj67HeWps). The final
method is to present users contrasting animations of a
system in either the intermittent or continuous emergent
behavioral regime, thus providing a clear distinction to the
user for how systems configured in two different ways
produce two different global patterns of behavior.

Our goal in this study is to demonstrate that these
software tools aid users in understanding and designing
these systems and to demonstrate that successes in
understanding inter-level causalities aid in engineering
design tasks. Our hypotheses are that 1) Learning via charts
or interactive simulations will improve user design task
performance, 2) Users exposed to animated renderings of

agent-based simulation behavior will be able to demonstrate
understanding of inter-level causal relationships, and 3)
Users that demonstrate an understanding of inter-level
causalities will perform better on design tasks.

Background

Studies in measuring student understanding of emergence
have demonstrated that misunderstandings of emergent
behaviors (e.g. diffusive fluid flow) are robust in
comparison to misunderstandings of direct behaviors (e.g.
blood flow in the circulatory system) (Chi, 2005). Students
who lack understanding of emergent systems often have
fragmented system understandings, such as being able to
understand pieces of component behaviors but not how they
relate across scales to promote a global system behavior.
Most commonly, this fragmented understanding occurs
because students try to explain emergent systems as direct
processes, rather than distributed behaviors (Chi, 2005).
Such findings are relevant to the myosin system, because (as
we explain during the tutorial to participants) individual
myosins are stochastic and propel filaments, but then (as
participants must discover for themselves) these parts
interact across levels to promote the varied emergent
behaviors of continuous/intermittent filament translation.

Our approach in using an agent-based animation is
supported by past studies that have had success in
promoting system understandings of how aquarium systems
work through agent-based interfaces (Vattam, Goel,
Rugaber, Hmelo-Silver, Jordan, Gray, & Sinha, 2011) and
understandings of inter-level causal relationships in
diffusion (Chi et al., 2012).

Medical education has had success in utilizing
animations for learning and found that successful
approaches require consideration of cognitive load (Ruiz,
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Figure 2: Myosin GUI configured with feedback via charts output. As users manipulate myosin design inputs with
slider interfaces, calculations are performed and output in plots. Video: http://youtu.be/QXolv48ntYk

Cook, & Levinson, 2009) to facilitate maximal learning
(Van Merriénboer & Sweller, 2010). In our approach a
single animation cannot convey all necessary information
because emergent myosin system behavior varies with
system configuration, meaning users must actively change
the system to learn how different configurations lead to
different emergent behaviors. However, to reduce cognitive
load if users are unable to learn inter-level causalities
through actively designing the system, contrasting
animations (Alfieri, Nokes-Malach, & Schunn, 2013) have
been shown as an effective teaching tool that could reduce
cognitive load by focusing attention on critical features that
are revealed through critical case contrasts.

Experimental Methods

Graphics User Interface

The graphical user interface (GUI) consists of a set of
scenes that guide the user through a software tutorial,
interactive design problems/learning sessions (Figure 2),
and multiple choice/free response questions. During
design/learning scenes, users are able vary the values of
three independent myosin design parameters and one system
design parameter; the influence of changing these design
variables on system behavior has previously been
empirically validated with agent-based simulations (Egan,
Cagan, Schunn, and LeDuc, 2012). Once users configure a
design, they evaluate it and receive feedback of how it
performs with respect to a goal performance output.

There are also constraints on output performance, and if a
design violates a constraint it is designated infeasible. Users
are provided ten evaluations per design task, which is
similar to past studies allowing for some benchmark
comparisons (Egan, Cagan, Schunn, and LeDuc, 2014).
Three difficulties of problems were created by increasing
the number of output variables and constraints (only one
output is graded as the goal output, additional constraints on
secondary output variables inherently reduce the set of
acceptable possibilities in the larger design space): one-

variable-one-constraint, two-variables-one-constraint,
two-variables-two-constraints.

In this study, two different interactive learning scenes
were created for users to explore inter-level causality among
components and system behavior before design tasks. In the
first configuration, termed ‘Charts’ style learning, there is
an area for users to manipulate input sliders and then system
behavior is provided in the form of plotted feedback that
updates in real-time (center column of Figure 2). There are
also static myosin images updated as design variables are
changed. A second configuration of this scene is termed
‘Animation’ style learning. It is identical to Figure 2 except
that the plots are removed and the static myosin images are
replaced with the agent-based simulation rendering from
Figure 1 in a continuous animated illustration of the
movement, binding, and releasing of the system
components. In both groups, information concerning the
next design task is presented on the right to provide an idea
of what information is important during a learning session.

Through one of these two interfaces, a user is expected to
learn about the system by manipulating inputs and
recognizing their effects on output performance. In the
‘Animation’ condition, a user could add more myosins to
the system and notice that if the filament was originally
intermittently moving, it would begin moving more often as
there are more periods of at least one myosin being attached.
In the ‘Charts’ condition, a user would see the filament
velocity parameter increase on the y-axis as the humber of
myosins were increased in the system if it was changing
from intermittent to continuous emergent behavior.

or

Procedure

Thirty-one mechanical engineering undergraduates in a
senior design class participated for course credit.
Participants were randomly assigned to either the ‘Charts’
or ‘Animation’ condition and groups followed different
procedures as illustrated by Figure 3, which were developed
to test the hypotheses outlined at the end of the Introduction.
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Figure 3: Flow chart of cognitive study protocol with left
and right tracks representing different learning conditions.

Both groups are initially given the same software tutorial
and then solve the same three baseline design tasks that
have three levels of difficulty. In these baseline design tasks,
myosin variable names are renamed generically to ‘Input
A,” ‘Output B,’ etc., which ensures minimal learning during
this baseline measurement task.

Then, a baseline assessment of whether users could
demonstrate inter-level causal reasoning was collected by
asking questions about how changing design inputs might
change system behavior. This was conducted by presenting
users a system configuration clearly in the continuous or
intermittent behavioral regime to a knowledgeable user, and
then asking whether the filament velocity of the system
would increase or stay about the same when a particular
design input was changed. This question is an assessment of
their understanding of inter-level causal relations because if
a system is already behaving continuously, then adding
more myosins would not improve its average velocity.
However, if the system was initially behaving
intermittently, adding more myosins would improve its
average velocity.

Users are then provided one of the learning interfaces
depending on their condition before solving their next set of
tasks. Users interact with the learning interface for two
minutes before each task, all baseline and learning design
tasks were limited to four minutes, and users proceeded
through all other GUI scenes at their own pace. Afterwards,
their ability to describe system stochasticity is assessed a
second time, followed by a third time where users are
provided the correct quantitative relationship among system
variables (e.g. filament velocity will/will not raise

significant when a myosin’s attachment rate increases), and
then must provide the correct reasoning. This third
assessment therefore isolates a user’s ability to explain the
inter-level causality without first having to assess what
effect changing an input will have on the behavior of the
system. For these assessments, users are also presented
visualizations of the system according to their respective
learning condition. Finally, users in both groups are
presented contrasting animations before a final assessment.

Experimental Results

Learning Effects on Design Task Performance

The first hypothesis was: Learning via charts or interactive
simulations will improve user design task performance. This
was analyzed by aggregating data from each task separately,
and then averaging the solution quality of a user’s best
solution for that task with all other users in their condition.
Solution quality was determined by first comparing a user’s
goal output value to the global optimum for a task and
providing it a relative score between 0 and 1 (all designs
that did not meet constraints had a score of zero, the global
optimum has a score of 1). The solution quality was then
calculated by finding the difference between the user
average relative objective function and a random solver to
facilitate absolute evaluation and performance comparison
across problem types. The average solution quality of users
is presented in Figure 4 for each task and learning condition.
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Figure 4: Average user solution quality in each learning
condition for all tasks.

In comparing baseline and post-learning tasks, the
average solution quality improved post-learning for all
tasks, and supports the hypothesis. Each software tool
improved performance about the same. The tools helped
more as task complexity grew, thus motivating an ever
increasing need for software tools as systems grow
increasingly more complex. Interestingly, the charts and
animations did not appear to aid design performance by
changing design strategies, at least not with regards to the
strategies previously shown to improve performance on
these tasks (e.g., only changing one input at a time,
searching near their current best design, min/maxing inputs)
(Egan, Cagan, Schunn, and LeDuc, 2014). Thus, the benefit
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may occur through the knowledge used in existing strategies
rather than via changing strategies.

Recognition of Stochastic System Behavior

After users had completed all the design tasks, their
understanding of inter-level causalities was assessed to
address the second hypothesis: Users exposed to animated
renderings of agent-based simulation behavior will be able
to demonstrate understanding of inter-level causal
relationships. In each assessment phase, users were asked
two questions of how filament velocity of a system would
change if reconfigured. In each pairing, users were expected
to recognize the emergent behavioral regime of the system
on their own and questions were always paired such that the
system would change regimes upon alteration in one
question but not both.

Users indicated their answer via a multiple choice box
(either filament velocity increased or about the same) and
typed their reasoning in a free response box that was only
analyzed for users that correctly answered the multiple
choice question. Free response answers were tagged as
demonstrating understanding of inter-level causality if users
referred to the stopping/starting behavior of the filament
being related to having at least one myosin attached.
Example user responses that were tagged as correct were
“The increased number of myosins results in more time
during which at least 1 myosin is attached and therefore the
filament is being pushed forward,” and “Average filament
velocity increases because when there are more myosins
there is less of a chance the filament will not be moving as a
result of no present myosins.” Some examples of answers
tagged as incorrect were “There are more myosin firing at
any given time, giving more total force to the system and
resulting in higher filament velocity,” and “More myosins
are in contact with the filament at any given time, which
increases the velocity.”

Understanding of inter-level causalities was assessed four
times (Figure 3). No users indicated a proper understanding
during the baseline assessment prior to learning sessions.
The next two assessments occurred after the learning
sessions (the first being directly after, and the second
occurring once users were provided the correct quantitative
relationship via the correct multiple choice answer but still
had to provide an explanation). The final assessment
occurred immediately after the contrasting animations were
presented. The percentage of correct answers was
aggregated for users in each condition and is presented in
Figure 5.

Users in the animation group correctly demonstrated
understanding of inter-level causality about 33% of the time
directly after the learning tasks, while no users in the charts
condition demonstrated understanding at this point, thus
supporting the hypothesis that the agent-based simulation
aids in learning inter-level causal relationships. However,
despite supporting the hypotheses, only a small portion of
users did demonstrate understanding. After the quantitative
hint was provided, there was only a slight improvement; one

user in the charts condition explained the stochastic system
behavior correctly which suggests that it was not entirely
implausible for users in that condition to formulate theories
in line with the surprising stochastic behavior.
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Figure 5. Percentage of correct responses in

demonstrating an understanding of inter-level causality
during each assessment phase.

After the contrasting animations were presented to users,
approximately half of users in each condition correctly
explained the inter-level causality. This pattern further
supports the hypothesis that agent-based simulation
renderings are effective in teaching inter-level causality, and
are more effective when cognitive load is reduced via
contrasting animations. Because average user score was
only about 50%, our findings reinforce prior findings that
emergent systems are difficult to understand (even for
engineering students) and misconceptions about these
systems are robust to learning interventions.

Does Recognizing Stochasticity Aid Design?

The final hypothesis tested was: Users that demonstrate an
understanding of inter-level causalities will perform better
on design tasks. This was investigated by separating the
users in the animation condition among those that did and
did not demonstrate an understanding during the second
assessment. Group performance was then compared on the
final design task. Only the final design task was selected
because the assessment immediately followed it and thus
was the closest measure of understanding during design. We
also examined performance on the baseline task to rule out
third variable differences among participants related to
design ability (see Figure 6).

The results show that during the baseline, there was not a
significant difference in design performance among the two
groups. This demonstrates that when no users understood
inter-level causality, design task performance among the
groups was similar. Afterwards, users that had understood
stochasticity via inter-level causal relationships performed
better and found designs very close to the global optimum.
This finding supports the hypothesis that users who
demonstrate understanding of inter-level causality perform
better in design applications related to that understanding.
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Conclusion

This study sought to investigate how different types of
software tools could aid in user understanding and
application of inter-level causality in complex emergent
systems. It was found that learning about the system through
visual charts and animations feedback improved user ability
to find high quality designs in optimization problems.
Animations were then demonstrated to improve user ability
in describing inter-level causality that contributes to
surprising stochastic behavior at the systems level.
Providing users contrasting animations of the system
configured in two different behavioral regimes resulted in
users for all study conditions describing inter-level causality
correctly about 50% of the time. Finally, users that
demonstrated an understanding of inter-level causality
immediately following a design task, performed better on it.
As a whole, these findings demonstrate the challenges in
user understanding and reasoning about inter-level causal
relationships in complex emergent systems, and that
software tools can promote learning of these relationships.
Gains in understanding can then promote better performance
in complex systems design applications, where many
complex systems operate on the same domain general
principals as complex nanomechanical biological systems.

Acknowledgments

Partial funding was provided by the National Defense
Science and Engineering Graduate Fellowship and by the
National Science Foundation under grant CMMI-1160840.
Tiffany Ho aided in developing early planning of the study
and Kirstie Pomilio helped administer cognitive studies.

References

Alfieri, L., Nokes-Malach, T., & Schunn, C. (2013).
Learning through case comparisons: A meta-analytic
review. Educational Psychologist, 48(2), 87-113.

Bar-Yam, Y. (2004). A mathematical theory of strong
emergence using multiscale variety. Complexity, 9(6), 15-
24,

Chi, M. (2005). Commonsense conceptions of emergent
processes: why some misconceptions are robust. The
Journal of the Learning Sciences, 14(2), 161-199.

Chi, M., Roscoe, R., Slotta, J., Roy, M., & Chase, C. (2012).
Misconceived causal explanations for emergent processes.
Cogpnitive Science, 36, 1-61.

Egan, P., Cagan, J., Schunn, C., & LeDuc, P. (2013a).
Design of complex biologically based nanoscale systems
using multi-agent simulations and structure-behavior-
function representations. Journal of Mechanical Design,
135, 061005.

Egan, P., Cagan, J., Schunn, C., & LeDuc, P. (2013b). A
modular design tool for visualizing complex multiscale
systems. Paper presented at the Internation Conference on
Engineering Design, Seoul, South Korea.

Egan, P., J. Cagan, C. Schunn, and P. LeDuc. (2012).
Design of complex nano-scale systems using multi-agent
simulations and structure-behavior-function
representations. Paper presented at the ASME
International Conference on Design Theory and
Methodology, Chicago, IL.

Egan, P., J. Cagan, C. Schunn, and P. LeDuc. (2014).
Cognitive-based search strategies for complex bio-
nanotechnology design derived through symbiotic human
and agent-based approaches. Paper presented at the
International Conference on Design Theory and
Methodology, Buffalo, New York.

Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D., &
Yanagida, T. (1990). Mechanochemical coupling in
actomyosin energy transduction studied by in vitro
movement assay. Journal of Molecular Biology, 216, 49-
68.

Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish
swim, rocks sit, and lungs breathe: Expert-novice
understanding of complex systems. Journal of the
Learning Sciences, 16, 307-331.

Huber, F., SchnauB, J., Ronicke, S., Rauch, P., Miller, K.,
Fitterer, C., & Kas, J. (2013). Emergent complexity of
the cytoskeleton: from single filaments to tissue.
Advances in Physics, 62(1), 1-112.

Jordan, R. C., Hmelo-Silver, C., Liu, L., & Gray, S. A.
(2013). Fostering Reasoning About Complex Systems:
Using the Aquarium to Teach Systems Thinking. Applied
Environmental Education & Communication, 12(1), 55-
64.

Ottino, J. M. (2004).
Nature(427), 399.

Ruiz, J., Cook, D., & Levinson, A. (2009). Computer
animations in medical education: a critical literature
review. Medical Education, 43, 838-846.

Van Merriénboer, J. J., & Sweller, J. (2010). Cognitive load
theory in health professional education: design principles
and strategies. Medical education, 44(1), 85-93.

Vattam, S. S., Goel, A. K., Rugaber, S., Hmelo-Silver, C.
E., Jordan, R., Gray, S., & Sinha, S. (2011).
Understanding complex natural systems by articulating
structure-behavior-function models. Educational
Technology and Society, 14(1), 66-81.

Engineering complex systems.

2156



