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Abstract 

When people use mathematics to model real-life situations, their 
modeling is often mediated by semantic alignment (Bassok, 
Chase, & Martin, 1998): The entities in a problem situation 
evoke semantic relations (e.g., tulips and vases evoke the 
functionally asymmetric “contain” relation), which people align 
with analogous mathematical relations (e.g., the non-
commutative division operation, tulips/vases). Here, we applied 
the semantic-alignment framework to understand how people 
use rational numbers as models of discrete and continuous 
entities. A textbook analysis revealed that mathematics 
educators tend to align the discreteness vs. continuity of the 
entities in word problems (e.g., marbles vs. distance) with 
distinct symbolic representations of rational numbers—fractions 
vs. decimals, respectively.  We discuss the importance of the 
ontological distinction between continuous and discrete entities 
to mathematical cognition, the role of symbolic notations, and 
possible implications of our findings for the teaching of rational 
numbers. 

Keywords: Number concepts, continuous and discrete 
quantities, fractions, decimals, semantic alignment 

Introduction 
Word problems are a classic tool that mathematics educators 
use to help children understand abstract mathematical 
concepts and the appropriate conditions of using them when 
solving real-life problems.  Word problems describe simple 
situations involving various entities that can be modeled by 
the target mathematical concepts. For example, the 
mathematical concept of a fraction is often illustrated with a 
word problem describing a pizza that is shared by several 
children. The pizza is sliced into n equal slices, and each 
slice is denoted by the fraction 1/n. Importantly, in order to 
be effective as examples of the target mathematical 
concepts, the situations described in the word problems, or 
“situation models”, have to be analogous to their 

mathematical representations, or “mathematical models” 
(Kintsch & Greeno, 1985). For example, in the above pizza 
problem, the mathematical concept of a fraction requires 
that the pizza slices be equal in size.  

Semantic Alignment and Mathematical Problem 
Solving 
People who have extensive experience with solving word 
problems are highly systematic in selecting mathematical 
models that correspond to the situation models (e.g., 
Bassok, Chase, & Martin, 1998; Bassok, Wu, & Olseth, 
1995; Dixon, 2005; Dixon, Deets & Bangert, 2001; Mochon 
& Sloman, 2004; Sherin, 2001; Waldmann, 2007). But how 
do students and mathematics educators decide that particular 
situations are analogous to particular mathematical models? 
Bassok et al. (1998) have proposed that such modeling 
decisions are guided by semantic alignment. The essence of 
the semantic-alignment process is that the entities in a 
problem situation elicit particular semantic relations 
between them (e.g., tulips and vases are likely to evoke the 
functionally asymmetric “contain” relation), which people 
then align with structurally analogous mathematical 
relations (e.g., the non-commutative division operation, 
tulips/vases). Both children and adults find it easier and 
more natural to solve or construct semantically-aligned 
rather than misaligned word problems (e.g., tulips/vases 
rather than tulips/roses; Martin & Bassok, 2005). For many 
adults the process of semantic alignment is highly automatic 
(Bassok, Pedigo, & Oskarsson, 2008; Fisher, Bassok, & 
Osterhout, 2010). 

In addition to semantic alignments of inferred object 
relations, the entities in word problems lead people to infer 
the continuity vs. discreteness of situation models and of the 
corresponding mathematical models. To illustrate, a word 
problem that describes constant change in the value of a 
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coin evokes a situation model of continuous change, 
whereas a word problem that describes constant change in 
salary evokes a situation model of discrete changes. These 
distinct situation models lead college students to select 
corresponding continuous or discrete visual representations 
of constant change, to produce corresponding continuous 
“swipe” or discrete “tap” gestures when describing the 
problems, and to generate qualitatively distinct 
mathematical solutions (e.g., average vs. repeated addition) 
to otherwise isomorphic word problems (Alibali et al., 1999; 
Bassok & Olseth, 1995). 

Semantic alignments of discreteness and continuity are 
consistent with well-established linguistic analyses and 
research on the development of mathematical cognition.  
Specifically, the linguistic distinction between count and 
mass nouns (e.g., marbles vs. water, respectively; see 
Bloom, 1994; Bloom & Wynn, 1997) demonstrates a 
fundamental ontological distinction that affects how people 
parse the world.  For example, Spelke, Brelinger, Macomber 
and Jacobson (1992) have argued that young babies use this 
distinction to discriminate between objects: Continuity of 
motion indicates that a single object is moving in space, 
whereas discontinuity indicates the existence of more than 
one object. Importantly, this distinction plays a crucial role 
in the development of “number sense” (Dehaene, 1997). 
According to Dahaene and his colleagues, an approximate 
sense of magnitude for mass entities is evolutionarily more 
primitive than exact calculations with discrete objects 
(Feigenson, Dehaene & Spelke, 2004; Dehaene, 1997).  

Counting, or “enumerating” (Gelman & Gallistel, 1978), 
is the first opportunity for children to explicitly align 
entities with numbers. The counting process involves one-
to-one mapping of consecutive integers to distinct objects 
(e.g., stickers, chairs), such that a child increments the 
integer magnitude simultaneously with the act of moving 
through the set of objects, with the last number denoting the 
set cardinality (e.g., 3 stickers, 4 chairs). The use of integers 
in counting discrete objects precedes their use in exact 
quantification of continuous entities (e.g., 2 lbs of sugar, 3 
feet), which requires explicitly parsing continuous entities 
into countable measurement units (Miller, 1984; Mix, 
Huttenlocher, & Levine, 2002a; Nunes, Light, & Mason, 
1993).  

Alignment of Discrete and Continuous Entities with 
Fractions and Decimals 
Whereas prior research has documented semantic 
alignments between situation models and mathematical 
models of word problems, the present study aimed to 
examine whether people treat numbers as mathematical 
models of quantities. Specifically, we examined whether 
people use different symbolic notations of rational numbers 
—fractions and decimals—to represent parts of discrete (or 
countable) and continuous entities (e.g., ½ of the marbles, 
0.5 liter of water, respectively).  

Figure 1 depicts the hypothesized alignments. Fractions 
have a bi-partite structure (a/b), which expresses the value 

of the part (the numerator a) and the whole (the 
denominator b). Decimals represent the one-dimensional 
magnitude of fractions (a/b = c) expressed in the standard 
base-10 metric system.  The fraction format is well suited 
for representing sets and subsets of discrete entities (e.g., 
balls, children) that can be counted and aligned with the 
values of the numerator (a) and the denominator (b) (e.g., 
3/8 of the balls are red). By contrast, the magnitude of 
fractions (c) is a one-dimensional decimal representation. 
The decimal format fails to capture the relation between a 
subset and a set and may imply partition of non-divisible 
entities (0.375 of the balls are red). Thus, whereas discrete 
entities can be readily aligned with fractions, they are poorly 
aligned with decimals. Note that, as is the case with integer 
representations, the fraction format can be readily used to 
represent continuous entities that were discretized—parsed 
into distinct equal-size units—and therefore counted (e.g., 
5/8 of a pizza).  Decimal representations of such discretized 
continuous entities are meaningful, but appear to be less 
intuitive than fractions (e.g., 0.625 of a pizza).  
 

  
Figure 1. Alignment of discrete and continuous entities with 
fractions and decimals. 
 

Whereas fractions seem to be better aligned with sets of 
discrete (or discretized) entities than are decimals, the one-
dimensional format of decimals seems to be best suited to 
model one-dimensional magnitudes of continuous entities. 
This alignment should be especially strong when decimals 
(base-10) are used to model entities that have corresponding 
metric units (0.375 meters, 0.72 liters, $0.33). When 
continuous entities have non-metric units (e.g., imperial 
measures, or measures of time), their magnitude can be 
meaningfully represented by both decimals (0.67 ft) and 
fractions (2/3 of a foot).  This is the case because, as we 
have mentioned earlier, fractions can be adapted to any unit 
base and therefore represent continuous entities that are 
parsed into countable units (e.g., inches, minutes). 

The above analysis suggests that semantic knowledge 
about the discreteness or continuity of the entities in word 
problems will lead people to select either fractions or 
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decimals (respectively) as symbolic mathematical models of 
these entities. Here, we report results from a textbook 
analysis that examined whether math educators who, one 
would assume, aim to help students understand rational 
numbers, choose problems that align fractions with discrete 
entities and align decimals with continuous entities.  
 

Method 

Design and Materials 
We examined the Addison-Wesley Mathematics (1989) 
textbook series from grades kindergarten through 8th grade. 
This particular textbook series was chosen because it is 
representative of the mathematics teaching that most college 
undergraduates who participated in a follow-up study 
(conducted between 2010 and 2012, not reported here) would 
have received in their early education (i.e., during the 1990s).  
The K-8 grade levels were selected because they cover the 
main introduction and use of rational numbers in math 
curricula prior to the start of formal algebra.  We analyzed all 
the problems that involved rational numbers, a total of 874 
problems (504 with fractions, 370 with decimals).  

Problem Coding 
We developed a coding scheme that categorized problems by 
their number type (fraction vs. decimal) and entity type 
(continuous vs. countable).  Problems were classified as 
fraction or decimal based on the number type that appeared in 
the problem text or were called for in the answer. (None of the 
problems included both fractions and decimals.)  Problems 
were classified as continuous or countable based on the 
entities in the problems. Continuous problems involved 
entities that are referred to linguistically as “mass nouns” (e.g., 
those varying continuously in weight, volume, or length).  
Importantly, these continuous entities were treated as wholes 
(e.g., the length of a string) and were not explicitly broken 
down into smaller countable pieces (as in a string that was cut 
into three equal parts).  We also coded the unit type used in 
the continuous problems (base-10, yes or no) in order to assess 
whether the base-10 format of decimals is used more often 
with readily-aligned base-10 units than with non-base-10 
units.  

Countable problems involved either discrete or explicitly 
discretized entities. Discrete entities were sets of individual 
objects that cannot be broken down into natural equal units 
(e.g., marbles, balloons, or grapes). Continuous entities that 
were parsed into equal countable parts (e.g., an apple cut into 
slices, or a rectangle divided into equal squares) were coded as 
discretized.  In addition, the discretized category encompassed 
collective nouns (e.g., people, class), which are collections of 
countable objects (a person, a student). Examples of the coded 
problems appear in Table 1.  

One research assistant coded all the problems using the 
above coding scheme.   In order to assess inter-rater reliability, 
a second researcher coded a random sample of 350 problems 
(i.e., 40% of the total problems).  The second coder was blind 

to the original coder’s judgments.  The two coders agreed on 
336 (96%) of the sampled problems.  A third researcher, who 
was blind to the first two coders’ judgments, then coded the 14 
problems on which the first two coders had differed.  These 
problems were then placed into whichever category it was 
assigned by two of the three coders. 

Results 
Figure 2 presents the distribution of the textbook problems. Of 
the 874 total problems, 504 used fractions and 370 used 
decimals. Continuous entities comprised a large majority of 
the decimal problems (78%). In a complementary way, 
countable entities comprised a majority of the fractions 
problems (57%). A chi-square test of independence between 
number type and continuity 

 
Table 1: Examples of problems with different unit types 

from the textbook analysis 
 

Entity Type Unit Type Example 
Continuous Base-10 measure: 

metric (meter, liter, 
kilogram), currency, 
Celsius  

“There are 10.7 liters of 
water flowing into a 
bucket per minute.  After 
17.1 minutes, how many 
liters of water are in the 
bucket?” 
“Ben bought 4 sacks of 
flour.  Each sack 
weighed 2.3 kg.  How 
many kilograms of flour 
did Ben buy?” 

Non-base-10 measure: 
imperial (inch, 
pound, gallon), 
time (seconds, 
minutes, hours), 
Fahrenheit  

“If a full 1 gallon jug of 
water is poured into a 1/2 
gallon jug, how much 
water is left in the 1 
gallon jug?” 
“A steak weighed 2 1/2 
lbs. After the fat was 
removed it weighed 2 1/4 
lbs. What was the weight 
of the fat?” 

Countable collective nouns 
(people, class of 
students), slices of a 
mass (pizza, pies, 
apples), discrete set 
(marbles, balloons, 
grapes, crayons) 

“Larry had 12 balloons. 
He popped 1/3 of them.  
How many balloons did 
Larry pop?” 
“If 7/12 of the nations 
present voted to send aid 
to flood victims, would 
the vote pass by a 2/3 
majority?” 
“Keiko and Robert each 
got a pizza. Keiko’s was 
cut into sixths.  Robert’s 
was cut into eighths.  
They ate half of their 
pizzas.  How many more 
pieces did Robert eat?” 
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confirmed that the two factors are significantly associated 
(𝜒! (2, N = 874) = 115.7, p < .001).   

Figure 3 shows the distribution of continuous base-10 (n 
= 215) and non-base-10 problems (n = 291) that were 
represented by either decimals (n = 289) or by fractions (n = 
217).  Base-10 problems comprised 70% of the decimal 
problems, whereas the non-base-10 problems comprised 
94% of the fraction problems.  A chi-square test of 
independence between number type and unit type confirmed 
that there was a significant relationship between the two 
factors (𝜒!(4, N = 874) = 354.8, p < .001). 

In summary, the textbook analysis revealed a pattern of 
alignment that is consistent with our entering hypotheses: 
continuous entities were more likely to be represented with 
decimals than with fractions, whereas countable entities 
were more likely to be represented with fractions than 
decimals.  Also, as we predicted, the tendency to align 
continuous entities with decimals rather than with fractions 
was much more pronounced for entities with base-10 units 
(metric unit and currency) than for non-base-10 units 
(imperial units).  Together, these findings reveal an 
alignment between decimals and continuous entities for the 
base-10 scale, and an alignment of fractions with countable 
entities for more idiosyncratic scales. 

Discussion 
The results of the textbook analysis are consistent with our 
entering analysis of alignment between the format of 
rational numbers and the entity type these numbers could 
meaningfully represent. Although the hypothesized 
alignment was not absolute, decimals were typically used to 
represent continuous entities, whereas fractions were more 
likely to represent discrete than continuous entities.  This 
suggests that fractions and decimals have different 
implications for the types of entities that we expect to see 
them paired with. In the word problems generated by 
textbook writers, we also found a strong correspondence 
between unit type of continuous entities (base-10 vs. non-

base-10) and the format of rational numbers (decimals vs. 
fractions).  

As we pointed out in the Introduction, continuity versus 
discreteness is a basic ontological distinction that affects 
children’s understanding of integers through counting of 
discrete entities, and (later on) through measurement of 
continuous entities that have been parsed into discrete units 
(e.g., Mix et al., 2002a, 2002b; Gelman, 1993; Nunes et al., 
1993; Gelman, 2006; Rips, Bloomfield & Asmuth, 2008). 
The distinction between continuity and discreteness is 
preserved throughout the mathematical curriculum. As in 
the initial cases of counting and measurement, discrete 
concepts are always taught before their continuous 
counterparts (e.g., first arithmetic progressions, then linear 
functions). Consistent with this typical instructional 
progression, students learn fractions (K through 3rd grade) 
before they are introduced to decimals (3rd grade).  
Although mathematics educators do not make an explicit 
claim that the transition from fractions to decimals 
corresponds to the transition from countable to continuous 
entities, our findings strongly suggest that this is indeed the 
case. 

The two symbolic notations of rational numbers, together 
with their respective alignments to discrete and continuous 
entities, are differentially suited for different reasoning 
tasks. In a recent study, DeWolf, Bassok, and Holyoak 
(2013) found that fractions allow people to better represent 
bipartite relations between discrete sets than do decimals. 
This difference arises because fractions maintain the 
mapping of distinct countable sets onto the numerator and 
the denominator, whereas decimals obscure this mapping. 
At the same time, decimals afford direct mapping onto a 
mental number line and, therefore, allow for easier 
magnitude assessment than do fractions (DeWolf, Grounds, 
Bassok, & Holyoak, 2014; Iuculano & Butterworth, 2011).  

The present findings are interesting in light of recent 
research on the understanding of magnitudes of rational 
numbers by both children and adults. A popular test of 
knowledge of the magnitudes of rational numbers is a 

Figure 2. Percentage of decimal and fraction problems 
in the textbook analysis that were continuous or 
countable. 

Figure 3. Percentage of continuous decimal and fraction 
problems in the textbook analysis that included either 
base-10 or non-base-10 units. 

2136



number-line estimation task, in which a participant places a 
fraction on a continuous number line, usually ranging from 
0 to 1 (Siegler et al., 2011).  Both adults and children are 
more accurate when performing this task with decimals 
rather than fractions (Iuculano & Butterworth, 2011).  
However, Siegler and his colleagues have shown that ability 
to perform well on this task with fractions is highly 
predictive of later performance in mathematics (Jordan et 
al., 2013; Siegler et al., 2013).  The number-line estimation 
task requires mapping a fraction onto a continuous entity, 
which our results suggest would be a difficult operation.  It 
may be that the process of taking a continuous 
representation, such as a number line, and parsing it into 
meaningful pieces for the purposes of alignment to a 
fraction, can help children gain a better understanding of 
both the magnitude of the fraction and the relationship 
between its numerator and denominator.  

The present textbook analysis suggests that there is a 
correspondence between how educators model discrete and 
continuous quantities with fractions and decimals. In a 
follow-up study (Rapp, Bassok, DeWolf & Holyoak, under 
review), we examined whether college students would 
spontaneously honor this alignment when prompted to 
create or solve word problems involving rational numbers. 
The results revealed a pattern qualitatively similar to that 
observed in the textbook analysis. The performance of 
college students, and the correspondence between their 
performance and the textbook examples, might simply 
indicate that students’ selective use of fractions and 
decimals as models of discrete or continuous entities reflects 
their early exposure to this alignment in the textbook 
examples. Of course, this account would have to explain 
why textbook writers chose such examples. To the extent 
that math educators have attempted, consciously or 
unconsciously, to find the best real-life examples that 
correspond to the target mathematical concepts, the 
observed pattern of alignment may instead reflect a 
cognitively natural correspondence between discrete versus 
continuous entities and their mathematical representations 
with fractions versus decimals.   

More generally, understanding of the natural alignment 
between entity type and rational numbers, and capitalizing 
on it, may be useful in teaching rational numbers.  Given 
that we know students are particularly prone to 
misconceptions with rational numbers (Staflyidou & 
Vosniadou, 2004; Ni & Zhou, 2005; Stigler et al., 2010), 
making use of this natural alignment may help students to 
use their knowledge of entities in the real world to bootstrap 
their knowledge of rational numbers.  Interestingly, despite 
the prevalence of this alignment in textbooks across many 
grade levels, textbooks never actually address it explicitly.  
The alignment seems to be implicit, and is not explicitly 
taught even for adults.  Teaching with this alignment in 
mind, and even explicitly using it, may provide a useful 
stepping-stone for children learning natural numbers.  In 
addition, having students engage in tasks in which they need 
to actively parse a continuous representation, or conversely, 

sum over a discrete representation to align it with a decimal 
value, may provide a useful tool for bolstering 
understanding of the relation between the representations of 
entities and the rational numbers themselves. 
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