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Abstract

When people use mathematics to model real-life situations, their
modeling is often mediated by semantic alignment (Bassok,
Chase, & Martin, 1998): The entities in a problem situation
evoke semantic relations (e.g., tulips and vases evoke the
functionally asymmetric “contain” relation), which people align
with analogous mathematical relations (e.g., the non-
commutative division operation, tulips/vases). Here, we applied
the semantic-alignment framework to understand how people
use rational numbers as models of discrete and continuous
entities. A textbook analysis revealed that mathematics
educators tend to align the discreteness vs. continuity of the
entities in word problems (e.g., marbles vs. distance) with
distinct symbolic representations of rational numbers—fractions
vs. decimals, respectively. We discuss the importance of the
ontological distinction between continuous and discrete entities
to mathematical cognition, the role of symbolic notations, and
possible implications of our findings for the teaching of rational
numbers.
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Introduction

Word problems are a classic tool that mathematics educators
use to help children understand abstract mathematical
concepts and the appropriate conditions of using them when
solving real-life problems. Word problems describe simple
situations involving various entities that can be modeled by
the target mathematical concepts. For example, the
mathematical concept of a fraction is often illustrated with a
word problem describing a pizza that is shared by several
children. The pizza is sliced into n equal slices, and each
slice is denoted by the fraction //n. Importantly, in order to
be effective as examples of the target mathematical
concepts, the situations described in the word problems, or
“situation models”, have to be analogous to their

mathematical representations, or “mathematical models”
(Kintsch & Greeno, 1985). For example, in the above pizza
problem, the mathematical concept of a fraction requires
that the pizza slices be equal in size.

Semantic Alignment and Mathematical Problem
Solving

People who have extensive experience with solving word
problems are highly systematic in selecting mathematical
models that correspond to the situation models (e.g.,
Bassok, Chase, & Martin, 1998; Bassok, Wu, & Olseth,
1995; Dixon, 2005; Dixon, Deets & Bangert, 2001; Mochon
& Sloman, 2004; Sherin, 2001; Waldmann, 2007). But how
do students and mathematics educators decide that particular
situations are analogous to particular mathematical models?
Bassok et al. (1998) have proposed that such modeling
decisions are guided by semantic alignment. The essence of
the semantic-alignment process is that the entities in a
problem situation elicit particular semantic relations
between them (e.g., tulips and vases are likely to evoke the
functionally asymmetric “contain” relation), which people
then align with structurally analogous mathematical
relations (e.g., the non-commutative division operation,
tulips/vases). Both children and adults find it easier and
more natural to solve or construct semantically-aligned
rather than misaligned word problems (e.g., tulips/vases
rather than tulips/roses; Martin & Bassok, 2005). For many
adults the process of semantic alignment is highly automatic
(Bassok, Pedigo, & Oskarsson, 2008; Fisher, Bassok, &
Osterhout, 2010).

In addition to semantic alignments of inferred object
relations, the entities in word problems lead people to infer
the continuity vs. discreteness of situation models and of the
corresponding mathematical models. To illustrate, a word
problem that describes constant change in the value of a
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coin evokes a situation model of continuous change,
whereas a word problem that describes constant change in
salary evokes a situation model of discrete changes. These
distinct situation models lead college students to select
corresponding continuous or discrete visual representations
of constant change, to produce corresponding continuous
“swipe” or discrete “tap” gestures when describing the
problems, and to generate qualitatively  distinct
mathematical solutions (e.g., average vs. repeated addition)
to otherwise isomorphic word problems (Alibali et al., 1999;
Bassok & Olseth, 1995).

Semantic alignments of discreteness and continuity are
consistent with well-established linguistic analyses and
research on the development of mathematical cognition.
Specifically, the linguistic distinction between count and
mass nouns (e.g., marbles vs. water, respectively; see
Bloom, 1994; Bloom & Wynn, 1997) demonstrates a
fundamental ontological distinction that affects how people
parse the world. For example, Spelke, Brelinger, Macomber
and Jacobson (1992) have argued that young babies use this
distinction to discriminate between objects: Continuity of
motion indicates that a single object is moving in space,
whereas discontinuity indicates the existence of more than
one object. Importantly, this distinction plays a crucial role
in the development of “number sense” (Dehaene, 1997).
According to Dahaene and his colleagues, an approximate
sense of magnitude for mass entities is evolutionarily more
primitive than exact calculations with discrete objects
(Feigenson, Dehaene & Spelke, 2004; Dehaene, 1997).

Counting, or “enumerating” (Gelman & Gallistel, 1978),
is the first opportunity for children to explicitly align
entities with numbers. The counting process involves one-
to-one mapping of consecutive integers to distinct objects
(e.g., stickers, chairs), such that a child increments the
integer magnitude simultaneously with the act of moving
through the set of objects, with the last number denoting the
set cardinality (e.g., 3 stickers, 4 chairs). The use of integers
in counting discrete objects precedes their use in exact
quantification of continuous entities (e.g., 2 1bs of sugar, 3
feet), which requires explicitly parsing continuous entities
into countable measurement units (Miller, 1984; Mix,
Huttenlocher, & Levine, 2002a; Nunes, Light, & Mason,
1993).

Alignment of Discrete and Continuous Entities with
Fractions and Decimals

Whereas prior research has documented semantic
alignments between situation models and mathematical
models of word problems, the present study aimed to
examine whether people treat numbers as mathematical
models of quantities. Specifically, we examined whether
people use different symbolic notations of rational numbers
—fractions and decimals—to represent parts of discrete (or
countable) and continuous entities (e.g., %2 of the marbles,
0.5 liter of water, respectively).

Figure 1 depicts the hypothesized alignments. Fractions
have a bi-partite structure (a/b), which expresses the value

of the part (the numerator «¢) and the whole (the
denominator b). Decimals represent the one-dimensional
magnitude of fractions (a/b = c¢) expressed in the standard
base-10 metric system. The fraction format is well suited
for representing sets and subsets of discrete entities (e.g.,
balls, children) that can be counted and aligned with the
values of the numerator (a) and the denominator (b) (e.g.,
3/8 of the balls are red). By contrast, the magnitude of
fractions (c¢) is a one-dimensional decimal representation.
The decimal format fails to capture the relation between a
subset and a set and may imply partition of non-divisible
entities (0.375 of the balls are red). Thus, whereas discrete
entities can be readily aligned with fractions, they are poorly
aligned with decimals. Note that, as is the case with integer
representations, the fraction format can be readily used to
represent continuous entities that were discretized—parsed
into distinct equal-size units—and therefore counted (e.g.,
5/8 of a pizza). Decimal representations of such discretized
continuous entities are meaningful, but appear to be less
intuitive than fractions (e.g., 0.625 of a pizza).

a/b=c
3/8 0.375
8 1
Count Measure
Discrete Continuous
Objects Quantity

Figure 1. Alignment of discrete and continuous entities with
fractions and decimals.

Whereas fractions seem to be better aligned with sets of
discrete (or discretized) entities than are decimals, the one-
dimensional format of decimals seems to be best suited to
model one-dimensional magnitudes of continuous entities.
This alignment should be especially strong when decimals
(base-10) are used to model entities that have corresponding
metric units (0.375 meters, 0.72 liters, $0.33). When
continuous entities have non-metric units (e.g., imperial
measures, or measures of time), their magnitude can be
meaningfully represented by both decimals (0.67 ft) and
fractions (2/3 of a foot). This is the case because, as we
have mentioned earlier, fractions can be adapted to any unit
base and therefore represent continuous entities that are
parsed into countable units (e.g., inches, minutes).

The above analysis suggests that semantic knowledge
about the discreteness or continuity of the entities in word
problems will lead people to select either fractions or
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decimals (respectively) as symbolic mathematical models of
these entities. Here, we report results from a textbook
analysis that examined whether math educators who, one
would assume, aim to help students understand rational
numbers, choose problems that align fractions with discrete
entities and align decimals with continuous entities.

Method

Design and Materials

We examined the Addison-Wesley Mathematics (1989)
textbook series from grades kindergarten through 8" grade.
This particular textbook series was chosen because it is
representative of the mathematics teaching that most college
undergraduates who participated in a follow-up study
(conducted between 2010 and 2012, not reported here) would
have received in their early education (i.e., during the 1990s).
The K-8 grade levels were selected because they cover the
main introduction and use of rational numbers in math
curricula prior to the start of formal algebra. We analyzed all
the problems that involved rational numbers, a total of 874
problems (504 with fractions, 370 with decimals).

Problem Coding

We developed a coding scheme that categorized problems by
their number type (fraction vs. decimal) and entity type
(continuous vs. countable). Problems were classified as
fraction or decimal based on the number type that appeared in
the problem text or were called for in the answer. (None of the
problems included both fractions and decimals.) Problems
were classified as continuous or countable based on the
entities in the problems. Continuous problems involved
entities that are referred to linguistically as “mass nouns” (e.g.,
those varying continuously in weight, volume, or length).
Importantly, these continuous entities were treated as wholes
(e.g., the length of a string) and were not explicitly broken
down into smaller countable pieces (as in a string that was cut
into three equal parts). We also coded the unit type used in
the continuous problems (base-10, yes or no) in order to assess
whether the base-10 format of decimals is used more often
with readily-aligned base-10 units than with non-base-10
units.

Countable problems involved either discrete or explicitly
discretized entities. Discrete entities were sets of individual
objects that cannot be broken down into natural equal units
(e.g., marbles, balloons, or grapes). Continuous entities that
were parsed into equal countable parts (e.g., an apple cut into
slices, or a rectangle divided into equal squares) were coded as
discretized. In addition, the discretized category encompassed
collective nouns (e.g., people, class), which are collections of
countable objects (a person, a student). Examples of the coded
problems appear in Table 1.

One research assistant coded all the problems using the
above coding scheme. In order to assess inter-rater reliability,
a second researcher coded a random sample of 350 problems
(i.e., 40% of the total problems). The second coder was blind

to the original coder’s judgments. The two coders agreed on
336 (96%) of the sampled problems. A third researcher, who
was blind to the first two coders’ judgments, then coded the 14
problems on which the first two coders had differed. These
problems were then placed into whichever category it was
assigned by two of the three coders.

Results

Figure 2 presents the distribution of the textbook problems. Of
the 874 total problems, 504 used fractions and 370 used
decimals. Continuous entities comprised a large majority of
the decimal problems (78%). In a complementary way,
countable entities comprised a majority of the fractions
problems (57%). A chi-square test of independence between
number type and continuity

Table 1: Examples of problems with different unit types
from the textbook analysis

Entity Type Unit Type Example
Continuous  Base-10 measure: “There are 10.7 liters of
metric (meter, liter, water flowing into a
kilogram), currency, bucket per minute. After
Celsius 17.1 minutes, how many
liters of water are in the
bucket?”
“Ben bought 4 sacks of
flour. Each sack
weighed 2.3 kg. How
many kilograms of flour
did Ben buy?”
Non-base-10 measure: “Ifa full 1 gallon jug of
imperial (inch, water is poured into a 1/2
pound, gallon), gallon jug, how much
time (seconds, water is left in the 1
minutes, hours), gallon jug?”
Fahrenheit “A steak weighed 2 1/2
lbs. After the fat was
removed it weighed 2 1/4
Ibs. What was the weight
of the fat?”
Countable collective nouns “Larry had 12 balloons.

(people, class of
students), slices of a
mass (pizza, pies,
apples), discrete set
(marbles, balloons,
grapes, crayons)

He popped 1/3 of them.
How many balloons did
Larry pop?”

“If 7/12 of the nations
present voted to send aid
to flood victims, would
the vote pass by a 2/3
majority?”

“Keiko and Robert each
got a pizza. Keiko’s was
cut into sixths. Robert’s
was cut into eighths.
They ate half of their
pizzas. How many more
pieces did Robert eat?”
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Figure 2. Percentage of decimal and fraction problems
in the textbook analysis that were continuous or
countable.

confirmed that the two factors are significantly associated
(x? 2, N=874)=115.7, p < .001).

Figure 3 shows the distribution of continuous base-10 (n
= 215) and non-base-10 problems (n = 291) that were
represented by either decimals (n = 289) or by fractions (n =
217). Base-10 problems comprised 70% of the decimal
problems, whereas the non-base-10 problems comprised
94% of the fraction problems. A chi-square test of
independence between number type and unit type confirmed
that there was a significant relationship between the two
factors (y%(4, N =874) = 354.8, p <.001).

In summary, the textbook analysis revealed a pattern of
alignment that is consistent with our entering hypotheses:
continuous entities were more likely to be represented with
decimals than with fractions, whereas countable entities
were more likely to be represented with fractions than
decimals. Also, as we predicted, the tendency to align
continuous entities with decimals rather than with fractions
was much more pronounced for entities with base-10 units
(metric unit and currency) than for non-base-10 units
(imperial units).  Together, these findings reveal an
alignment between decimals and continuous entities for the
base-10 scale, and an alignment of fractions with countable
entities for more idiosyncratic scales.

Discussion

The results of the textbook analysis are consistent with our
entering analysis of alignment between the format of
rational numbers and the entity type these numbers could
meaningfully represent. Although the hypothesized
alignment was not absolute, decimals were typically used to
represent continuous entities, whereas fractions were more
likely to represent discrete than continuous entities. This
suggests that fractions and decimals have different
implications for the types of entities that we expect to see
them paired with. In the word problems generated by
textbook writers, we also found a strong correspondence
between unit type of continuous entities (base-10 vs. non-
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Figure 3. Percentage of continuous decimal and fraction
problems in the textbook analysis that included either
base-10 or non-base-10 units.

base-10) and the format of rational numbers (decimals vs.
fractions).

As we pointed out in the Introduction, continuity versus
discreteness is a basic ontological distinction that affects
children’s understanding of integers through counting of
discrete entities, and (later on) through measurement of
continuous entities that have been parsed into discrete units
(e.g., Mix et al., 2002a, 2002b; Gelman, 1993; Nunes et al.,
1993; Gelman, 2006; Rips, Bloomfield & Asmuth, 2008).
The distinction between continuity and discreteness is
preserved throughout the mathematical curriculum. As in
the initial cases of counting and measurement, discrete
concepts are always taught before their continuous
counterparts (e.g., first arithmetic progressions, then linear
functions). Consistent with this typical instructional
progression, students learn fractions (K through 3™ grade)
before they are introduced to decimals (3™ grade).
Although mathematics educators do not make an explicit
claim that the transition from fractions to decimals
corresponds to the transition from countable to continuous
entities, our findings strongly suggest that this is indeed the
case.

The two symbolic notations of rational numbers, together
with their respective alignments to discrete and continuous
entities, are differentially suited for different reasoning
tasks. In a recent study, DeWolf, Bassok, and Holyoak
(2013) found that fractions allow people to better represent
bipartite relations between discrete sets than do decimals.
This difference arises because fractions maintain the
mapping of distinct countable sets onto the numerator and
the denominator, whereas decimals obscure this mapping.
At the same time, decimals afford direct mapping onto a
mental number line and, therefore, allow for easier
magnitude assessment than do fractions (DeWolf, Grounds,
Bassok, & Holyoak, 2014; Tuculano & Butterworth, 2011).

The present findings are interesting in light of recent
research on the understanding of magnitudes of rational
numbers by both children and adults. A popular test of
knowledge of the magnitudes of rational numbers is a
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number-line estimation task, in which a participant places a
fraction on a continuous number line, usually ranging from
0 to 1 (Siegler et al., 2011). Both adults and children are
more accurate when performing this task with decimals
rather than fractions (Iuculano & Butterworth, 2011).
However, Siegler and his colleagues have shown that ability
to perform well on this task with fractions is highly
predictive of later performance in mathematics (Jordan et
al., 2013; Siegler et al., 2013). The number-line estimation
task requires mapping a fraction onto a continuous entity,
which our results suggest would be a difficult operation. It
may be that the process of taking a continuous
representation, such as a number line, and parsing it into
meaningful pieces for the purposes of alignment to a
fraction, can help children gain a better understanding of
both the magnitude of the fraction and the relationship
between its numerator and denominator.

The present textbook analysis suggests that there is a
correspondence between how educators model discrete and
continuous quantities with fractions and decimals. In a
follow-up study (Rapp, Bassok, DeWolf & Holyoak, under
review), we examined whether college students would
spontaneously honor this alignment when prompted to
create or solve word problems involving rational numbers.
The results revealed a pattern qualitatively similar to that
observed in the textbook analysis. The performance of
college students, and the correspondence between their
performance and the textbook examples, might simply
indicate that students’ selective use of fractions and
decimals as models of discrete or continuous entities reflects
their early exposure to this alignment in the textbook
examples. Of course, this account would have to explain
why textbook writers chose such examples. To the extent
that math educators have attempted, consciously or
unconsciously, to find the best real-life examples that
correspond to the target mathematical concepts, the
observed pattern of alignment may instead reflect a
cognitively natural correspondence between discrete versus
continuous entities and their mathematical representations
with fractions versus decimals.

More generally, understanding of the natural alignment
between entity type and rational numbers, and capitalizing
on it, may be useful in teaching rational numbers. Given
that we know students are particularly prone to
misconceptions with rational numbers (Staflyidou &
Vosniadou, 2004; Ni & Zhou, 2005; Stigler et al., 2010),
making use of this natural alignment may help students to
use their knowledge of entities in the real world to bootstrap
their knowledge of rational numbers. Interestingly, despite
the prevalence of this alignment in textbooks across many
grade levels, textbooks never actually address it explicitly.
The alignment seems to be implicit, and is not explicitly
taught even for adults. Teaching with this alignment in
mind, and even explicitly using it, may provide a useful
stepping-stone for children learning natural numbers. In
addition, having students engage in tasks in which they need
to actively parse a continuous representation, or conversely,

sum over a discrete representation to align it with a decimal
value, may provide a wuseful tool for Dbolstering
understanding of the relation between the representations of
entities and the rational numbers themselves.
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