Goal-Driven Autonomy for Cognitive Systems

Matt Paisner (mpaisner@umd.edu)
Michael T. Cox (mcox@cs.umd.edu)
Michael Maynord (maynord@umd.edu)
Don Perlis (perlis@cs.umd.edu)
Computer Science Department, A.V. Williams Bldg.
College Park, MD 20742 USA

Abstract

Complex, dynamic environments present special challenges to
autonomous agents. Specifically, agents have difficulty when
the world does not cooperate with design assumptions. We
present an approach to autonomy that seeks to maximize
robustness rather than optimality on a specific task. Goal-
driven autonomy involves recognizing possibly new
problems, explaining what causes the problems and
generating goals to solve the problems. We present such a
model within the MIDCA cognitive architecture and show
that under certain conditions this model outperforms a less
flexible approach to handling unexpected events.

Keywords: goal generation; anomaly handling; interpretation
and explanation; TF-Tree; cognitive architecture; intelligent
autonomy.

Introduction

Humans are astonishingly versatile, dealing with a wide
range of unanticipated circumstances while still making
headway on high-level goals. Humans can also recognize
new problems and opportunities when they arise and react
appropriately to them. Yet for the most part our machines
cannot; they are like idiot-savants, very good at one narrow
task and useless for anything else, even tasks very similar to
the one they were designed for. This is the so-called
brittleness problem, a major stumbling block for Al. What
we appear to need is the opposite of expert systems:
machines that might not excel at anything, but that can
muddle through a wide range of circumstances and keep a
strategic perspective. Yet more than 50 years of intense
effort has failed to produce such machines. One approach to
the problem of brittleness uses what we call goal-driven
autonomy in a cognitive architecture. Here we describe
some benefits of this approach in dynamic environments.
Goal-Driven Autonomy (GDA) is a unique conception that
gives full independence to autonomous agents (Cox, 2007;
Klenk, Molineaux, & Aha, 2013; Munoz-Avila, Jaidee,
Aha, Carter, 2010). Rather than arbitrary anomaly-detection,
the agent searches for problems in the context of its current
goals and mission. Not all anomalies are problems, nor are
all problems important enough to attend to. Rather than
general assessment of an entire world state, the agent should
abductively explain the causal factors giving rise to the
problem. Given an explanation, a GDA agent may generate
a (possibly new) goal that solves the problem (e.g., by
removing its supporting conditions). In these terms, GDA is

as much about problem recognition as it is problem-solving
(Cox, 2013).

Consider a fire that breaks out at a construction site. This
is a problem in many ways, not the least of which is that
preconditions for actions (e.g., the integrity of building
materials) will become unsatisfied. A standard planning
algorithm might therefore generate a subgoal to extinguish
the fire so that construction can continue. However a
subsequent fire in quick succession might justify an
investigation into a long-term threat to the construction site.
One possible explanation would be the presence of an
arsonist, leading to the goal of having the perpetrator in jail.
Hence a direct reactive approach to fires would be to put
them out; a GDA approach to this same situation would
recognize the underlying problem in terms of its threat to
the future of the enterprise.

This paper will examine the distinction between such
approaches to intelligent reasoning and behavior in a
metacognitive architecture called MIDCA and will report
the results of a simple empirical study to evaluate these
differences. In section 2, we present the MIDCA
architecture containing an implemented instantiation of the
GDA model. In section 3 we evaluate the performance of
systems making use of three distinct goal generation
methods: exogenous goals; statistically generated goals;
goals produced by a knowledge rich explanation system.
Section 4 presents an overview of future work, section 5
surveys related work, and section 6 concludes.

Goal-Driven Autonomy
in a Cognitive Architecture

The Metacognitive, Integrated, Dual-Cycle Architecture
(MIDCA) (Cox, Maynord, Paisner, Perlis, & Oates, 2013)
consists of “action-perception” cycles at both the cognitive
(i.e., object) level and the metacognitive (i.e., meta-) level.
Figure 1 shows the implemented components of the object
level with the meta-level abstracted. The output side of each
cycle consists of intention, planning, and action execution,
whereas the input side consists of perception, interpretation,
and goal evaluation. A cycle selects a goal and commits to
achieving it. The agent then creates a plan to achieve the
goal and subsequently executes the planned actions to make
the domain match the goal state. The agent perceives
changes to the environment resulting from the actions,
interprets the percepts with respect to the plan, and
evaluates the interpretation with respect to the goal. At the

2085

object level, the cycle pursues goals that change the
environment (i.e., ground level). At the meta-level, the cycle
pursues goals that change the object level. That is, the
metacognitive “perception” components introspectively
monitor mental processes and state changes at the cognitive
level. The “action” component consists of a meta-level
controller that mediates reasoning over an abstract
representation of the object level cognition.

Executive Shell
0| goal input

Problem /1 _|

Solving Goals(G)

& Ontology

Plans(my) &
Percepts (p;)

aaaaa

Figure 1: The MIDCA_1.1 object level structure. Note that
execution-time subgoaling (dashes) is not currently implemented.
TFT stands for TF-Tree, and XP stands for eXplanation Pattern.

Metacognitive Integrated Dual-Cycle Architecture
Version 1.1

MIDCA 1.1 is an early version of the architecture whose
components are shown in the schematic of Figure 1. It
implements each phase of the cognitive loop, allowing the
MIDCA agent to notice, analyze and respond to events in
various simple domains.

Performance Domain To evaluate the performance of
MIDCA in goal generation, we place the system in a
modified blocksworld domain. This version of blocksworld
includes both rectangular and triangular blocks, which
compose the materials for simplified housing construction.
The overarching goal in this domain is to build “houses”
consisting of towers of blocks with a roof (triangle) on each.
Specifically, the housing domain cycles through three goal
states in building new houses. Figure 2 shows the three
states and the goals that transition the system between them.

-

on(d,a)
A on(c,a) n on(d,c) n
. n — n . n
oE ADQ 8 |

Figure 2: Three classifiers generate goals for subsequent states.

We use a simple world simulator in which actions,
specified using predicate logic, are given prior to startup in
a domain file. MIDCA’s actions will be simulated, as well
as actions performed by other agents and natural events. For
the purpose of generating interesting anomalies for MIDCA
to deal with, we have added a hidden arsonist, who can set
blocks on fire. Furthermore there are two additional actions

available to MIDCA to deal with fires. The three new
actions are as follows:

« light-on-fire (block) if block not on fire, lights it
« put-out-fire (block) if block on fire, extinguishes it
« apprehend (arsonist) imprisons arsonist

MIDCA 1.1°s task is to build houses while also dealing
appropriately with fire. In the next subsection, we describe
the techniques it uses in this task.

MIDCA_1.1 Reasoning Components MIDCA 1.1 is
implemented by a series of components, centered about a
core memory structure. Each of these components
implements a single phase of the MIDCA cognitive loop
shown in Figure 1. Running MIDCA_1.1 is equivalent to
repeatedly running each of these components in the order
shown in Figure 1, beginning with the perceive component.
Components interact by storing information in memory,
where it can be accessed and used later in the cycle and in
future cycles. The individual implementations are described
below.

Perceive. The perceive phase is implemented very simply.
The perceive component makes a copy of the current world
state (defined in a predicate logic representation) and stores
it in memory. As a result, MIDCA 1.1 always has a perfect,
noise-free view of the current world state, though it has no
direct knowledge of the arsonist’s actions (it only sees that
fires have started, not how). In our simple blocksworld
example, MIDCA_1.1 copies to memory the same predicate
representation of block relationships and attributes that the
world simulator maintains as the current state.

Interpret. The interpret phase has been at the core of our
research efforts. It is implemented as a GDA procedure that
uses both a bottom-up, data-driven track and a top-down,
knowledge rich track (Cox, Maynord, Paisner, Perlis, &
Oates, 2013). MIDCA 1.1 uses both of these processes to
analyze the current world state and determine which, if any,
new goals it should attempt to pursue. The details of this
process are described below. In our example, this is the
phase in which MIDCA_1.1 notices an anomaly in the
blocksworld (e.g., a block on fire) and decides what to do
about it.

Evaluate. In the evaluate phase, the goal generated during
the previous step is evaluated. The system searches through
the world representation stored during the perceive phase,
and checks if the goal predicate exists in the world state. If
so, MIDCA 1.1 notes that goal has been achieved.
Additionally, during evaluate MIDCA_1.1 checks on the
progress of its broader goals and updates the relevant
performance metrics. In blocksworld, MIDCA_1.1 checks if
its current goal, for example on(A, B) has been achieved. It
then checks to see if a new tower has been built and if so
how many blocks in it are on fire. All this data is stored in
memory, and used later to score MIDCA 1.1°s success at
achieving its goals.

Intend. The intend component determines which goals to
pursue. If the evaluate phase reports that the previous goal

2086

has been achieved, MIDCA 1.1 checks to see if a new goal
was generated during the interpret phase. If so, it adopts that
goal. Otherwise, it will do nothing until a new goal is
generated. If the previous goal has not been achieved, it will
also do nothing unless a goal with higher priority is
generated, like a goal to put out a fire. In the latter case
MIDCA 1.1 adopts the high-priority goal and puts the
previous goal on hold. In MIDCA_1.1, goal priorities have
been predetermined so that fire goals will be executed
before construction goals. In blocksworld, the intend
component converts the goal that has been generated into a
task that can be taken as input by the planner. For example,
the goal —onfire(A) would be transformed into put-out-
fire(A).

Plan. For the planner, we use SHOP2 (Nau et al., 2003), a
domain-independent task decomposition planner. If the
intend component specified a new task, SHOP2 generates a
plan to achieve that task given the current world state stored
in memory. Otherwise, it does nothing. The actions and
methods that are used to achieve each task in blocksworld
are specified in a domain file that we supply.

Act. MIDCA chooses the next action from the current plan,
if one exists. Otherwise, it does not perform an action. If an
action is chosen, it is sent to the world simulator, which uses
it to compute the next world state. An example of such an
action might be unstack(A,B) if SHOP2 had generated a
plan containing that step.

Interpretation

The interpret phase of MIDCA has been the subject of much
of our work, and is the focus of the experiments described
below. It is implemented by two GDA processes that
combine to generate new goals based on the features of the
world the agent observes. We call these processes the D-
track, which is a data driven, bottom-up approach, and the
K-track, which is knowledge rich and top-down. A
statistical anomaly detector constitutes the first step of the
D-track, a neural network identifies low-level causal
attributes of detected anomalies, and a goal classifier,
trained using methods from machine learning, formulates
goals. The K-track is implemented as a case-based
explanation process.

The representations for expectations significantly differ
between the two tracks. K-track expectations come from
explicit knowledge structures such as action models used for
planning and ontological conceptual categories used for
interpretation. Predicted effects in the former and attribute
constraints in the latter constitute expectations. By contrast,
D-track expectations are implicit. Here the implied
expectation is that the probabilistic distribution from which
observations are sampled will remain the same. When the
difference between expected and perceived distribution is
statistically significant, an expectation violation is raised.

D-Track Goal Generation The D-track interpretation
procedure uses a novel approach for noting anomalies. We
apply the statistical distance metric called the A-distance to

streams of predicate counts in the perceptual input (Cox,
Oates, Paisner, & Perlis, 2012), yielding a measurement of
how the distributions of predicates differ from a base state.
This enables MIDCA to detect regions in which statistical
distributions of predicates differ from previously observed
input. MIDCA’s implicit assumption is that where change
occurs problems may exist.

When a change is detected, its severity and type can be
determined by reference to a neural network in which nodes
represent categories of normal and anomalous states. This
network is generated dynamically with the growing neural
gas algorithm (Paisner, Perlis, & Cox, 2013) as the D-track
processes perceptual input. This process leverages the
results of analysis with A-distance to generate anomaly
prototypes, each of which represents the typical member of
a set of similar anomalies the system has encountered.
When a new state is tagged as anomalous by A-distance, the
GNG net associates it with one of these groups and outputs
the magnitude, predicate type, and valence of the anomaly.

Goal generation is achieved in MIDCA_1.1 using TF-
Trees (Maynord, Cox, Paisner, & Perlis, 2013), machine-
learning classification structures that combine two
algorithms which work over the predicate representation of
the blocksworld domain. The first of these algorithms is
Tilde (Blockeel, & De Raedt, 1997), which is itself a
generalization of the standard C4.5 decision tree algorithm.
The second algorithm is FOIL (Quinlan, 1990), an
algorithm which, given a set of examples in predicate
representation reflecting some concept, induces a rule
consisting of conjunctions of predicates that identify the
concept. Given a world state, a TF-Tree first uses Tilde to
classify the state into one of a set of scenarios. Each
scenario is then associated with a rule generated by FOIL.
Once that rule is obtained, groundings of the arguments of
the predicates in that rule are permuted until either a
grounding that satisfies the rule is found (in which case a
goal is generated) or until all permutations have been
eliminated as possibilities (in which case no goal is
generated). The structure of a TF-Tree is a tree where in
internal nodes are produced by Tilde and leaf nodes are
rules produced by FOIL. Figure 3 depicts the structure of
the TF-Tree MIDCA 1.1 uses in cycling through the 3
block arrangements.

clear(A).on(A B) table(B)
r

goal_on{X,¥) :-
on{X,Z}, on{¥,Q), en(Q.Z}, X<>Q.

goal_on(X,Y) :-
clear(¥), square(Y), triangle(X).

Figure 3: Depiction of the TF-Tree used in cycling through the 3
block configurations.

For example given the middle state of Figure 2, triangle D
is clear, it is on the table, and the table is a table. Thus we
take the right branch labeled “yes.” Now triangle D is also a
triangle, so again we take the “yes” branch to arrive at the
right-most leaf of the tree. The leaf rule then binds the

2087

variable Y to the clear square C, and the resulting goal is to
have triangle D on square C.

The construction of a TF-Tree requires a training corpus
consisting of world states and associated correct and
incorrect goals. In simple worlds TF-Trees can be
constructed which have perfect or near perfect accuracy
using small training corpora. Corpora have to be constructed
by humans, as labels need to be attached to potential goals
in various world states. For simple worlds corpus
construction does not carry an excessive burden, but that
burden increases with the complexity of the world. Because
a TF-Tree is a static structure trained on the specifics of the
world, when the world changes, even in minor ways, a new
training corpus has to be constructed and a new TF-Tree
trained. However, the corpus to create a simple tree for
reacting to fires (see Figure 4) consisted of only four
examples.

onfire{A) |

0] yes
putout {X) ;- anfire(X)

Figure 4: TF-Tree that generates goals to put out fires

K-Track Goal Generation The K-track GDA procedure
uses the XPLAIN system (Cox & Burstein, 2008). XPLAIN
is built on top of the Meta-AQUA introspective story
understanding system (Cox and Ram 1999) and is used in
MIDCA to detect and explain problems in the input
perceptual representations. The system’s interpretation task
is to “understand” input by building causal explanatory
graphs that link subgraph representations in a way that
minimizes the number of connected components. XPLAIN
uses a multistrategy approach to this problem. Thus, the top-
level goal is to choose a comprehension method (e.g., script
processing, case-based reasoning, or explanation generation)
by which it can understand an input. When an anomalous or
otherwise interesting input is detected, the system builds an
explanation of the event, incorporating it into the preexisting
model of the story. XPLAIN uses case-based knowledge
representations implemented as frames tied together by
explanation-patterns (Cox & Ram, 1999) that represent
general causal structures.

XPLAIN relies on general domain knowledge, a case
library of prior plan schemas and a set of general
explanation patterns that are used to characterize useful
explanations involving that background knowledge. These
knowledge structures are stored in a (currently) separate
memory sub-system and communicated through standard
socket connections to the rest of MIDCA_1.1. XPLAIN
uses an interest-driven, variable depth, interpretation
process that controls the amount of computational resources
applied to the comprehension task. For example an assertion
that triangle-D is picked up generates no interest, because it
represents normal actions that an agent does on a regular
basis. But XPLAIN classifies block-A burning to be a
violent action and, thus according to its interest criterion,
interesting. It explains the action by hypothesizing that the
burning was caused by an arsonist. An abstract explanation

pattern (see Table 1), or XP, retrieved from memory
instantiates this explanation, and the system incorporates it
into the current model of the actions in the input “story” and
passes it as output to MIDCA.

Table 1: The arsonist explanation pattern
(define-frame ARSONIST-XP
(actor (criminal-volitional-agent))
(object (physical-object))
(antecedent (ignition-xp
(actor =actor)
(object =object)
(ante (light-object =1-o0
(actor =actor)
(instrumental-object
(ignition-device))))
(conseq =heat)))
(consequent (forced-by-states
(object =object)
(heat =heat)
(conseq (burns =b
(object =object)))))
(heat (temperature (domain =object)
(co-domain very-hot.0)))
(role (actor (domain =ante))
(co-domain =actor)))
(explains =role)
(pre-xp-nodes (=actor =consequent =object =role))
(internal-nodes nil.0)
(xp-asserted-nodes (=antecedent))
(1linkl (results
(domain =antecedent))
(co-domain =consequent)))
(1link2 (xp-instrumental-scene->actor
(actor =actor)
(action =1-0)
(main-action =b)
(role =role))))

The ARSONIST-XP asserts that the lighting of the block
caused heat that together with oxygen and fuel (the block
itself) caused the block to burn. The arsonist lit the block
because he wanted the block’s burning state that resulted
from the burning. The objective is to counter a vulnerable
antecedent of the XP. In this case the deepest antecedent is
the variable binding =lI-o or the light-object action. This can
be blocked by either removing the actor or removing the
ignition-device. The choice is the actor, and a goal to
apprehend the arsonist is thereby generated.

Evaluation: Autonomous goal formulation

The fires are problems because of their effect on housing
construction and the supposed profits of the housing
industry, and the threats they pose to life and property. Our
approach to understanding fire problems is to ask why the
fires were started and not just how. A scientific explanation
of how the fire started would relate the presence of
sufficient heat, fuel, and oxygen with the combustion of the
blocks. For example, generating the negation of the
presence of the oxygen would result in the goal -oxygen,
which would put out the fire. But this does not address the
reason the fire started in the first place. One might arrive at
multiple answers to this question. Poor safety conditions
might have led to fire, or an arsonist may have lit it. In the
latter case, the arsonist causes the presence of the heat
through a lighting action, which is hidden from the agent.

2088

Given this explanation the agent can nevertheless anticipate
the threat of more fires and generate a goal to remove the
threat by finding the arsonist. Apprehending the arsonist
then removes the potential of fires in the future rather than
just reacting to fires that started in the past.

We tested the effectiveness of three methods for goal
generation under these conditions. The first method was a
simple baseline using predetermined, exogenous goals. The
second method used the statistical, D-Track GDA method
described in Section 2.2.1. The third method combined the
D-Track approach with additional analysis using K-Track
GDA as described in Section 2.2.2. Details appear in Table
2. For each test, MIDCA was run for 1000 time steps
(equivalent to executing 1000 actions). At each step, the
arsonist would have a probability p of starting a fire unless
he had previously been apprehended. The value of p in the
experiments described below was 0.4, allowing for enough
fires to be significant without precluding progress in the
tower construction project.

Table 1: Methods for goal generation

Table 2: Scoring metrics for testing

Towers Total number of 3- and 4-block towers completed

Completed in 1000 cycles

Fire The number of blocks on fire times the number of

Prevalence time steps they were on fire. If 3 blocks burn for 3
time steps and go out simultaneously the score is 9

Overall Awards 1 point per block that is not on fire in a

Score completed tower. A 4-block tower with 2 blocks on

fire scores 2 points

Exogenous Used a predetermined goal list that cycled between

Goals the 3 states constructing towers. Did not deviate
from list in response to fires. Goals were [on(C,A),
on(D,C), on(D,A), on(C,A), ... on(D,A)]

D-Track Generated goals using TF-Trees. Trees were

GDA Goal trained and implemented such that when no fire

Generation was present, they would generate the next goal in
the 3-part cycle, but when a fire was present, they
would instead generate a goal to put it out.

2-Track Generated goals using a combination of TF-Trees

GDA Goal and a K-Track approach using XPLAIN. XPLAIN

Generation contained knowledge about possible arsonists and

suggested a goal to search and apprehend an
arsonist given fire. TF-Trees generated other goals
as in 2 above

We tracked three scoring metrics: the number of towers
completed; the overall prevalence of fires; and a combined
score measuring completion of fire-free towers. Details on
each scoring metric are shown in Table 2. At each time step
in which a tower was completed — e.g. a triangular block
was placed on a stack of rectangular blocks, — all fires were
automatically put out, and the agent started on a new
construction project.

Preliminary empirical results show that GDA approaches
using only the D-Track as well as using both D-Track and
K-Track perform significantly better than a baseline that
does not use GDA. Also, the combined D- and K-Track
implementation outperforms the purely statistical variant by
a large margin. Figure 5 shows the detailed results of
testing.

The agent that used only exogenous goals completed the
most towers, but, because it did not deal with fires in any
way, most of the towers were burning as they were
completed and received very low scores. Certainly, this
baseline behavior does not seem to be sufficient for a fully
autonomous house construction agent. The second agent
used behavior dictated by TF-Trees to fight fires directly. It
did not complete as many towers because it divided its
attention between construction and extinguishing fires, but
the towers it did construct were consequently much less
likely to be on fire. Its total score was 367, 54.2% better
than the baseline agent. Finally, the dual-track GDA agent
analyzed the problem logically using XPLAIN, and thereby
suggested an explanation of the fires as potentially caused
by arson. As such, it generated a goal early in the process to
apprehend the arsonist. This took some time, but afterwards
it was able to devote its full attention to house construction
without devoting time to firefighting. It completed nearly as
many towers as the baseline agent, and did so with almost
no incidence of fire, since no fires started after the arsonist
was apprehended. The dual-track agent achieved a score of
584, 245.4% better than the baseline agent.

180 —— 1600 -
160 — — — 1400 —pp——
140 +— — — & Exogenous 1200 -— = Expgenous
e Goals Goals
e — @ —
100 +— —
ag | s Statistical 800 ~— ——— @ Staristical
Goal 500 — Goal
60 1 | Generation Generation
10 - | 400
GDA Goal GDA Goal
20 4 [Generation 200 Generation
0 0
Towers Fire
Completed Prevalence
600
o0 Exogenous Goals
400
300 — =Statistical Goal
200 —— _ Generation
100 — [.
0 GDA Goal Generstion
Overall Score

Figure 5: Results of testing using 3 methods. Note that the value of
GDA Goal Generation in the Fire Prevalence panel is 2, which is
too small to show clearly in the graph.

It should not be surprising that an agent that is capable of
reacting to the unanticipated problem posed by fire performs
better than one that heedlessly continues on a predetermined

2089

course of action. Perhaps more telling is the large advantage
gained by the dual-track agent, which has the knowledge to
identify and address the true source of the problem, rather
than simply treating its symptoms. Though this example is
too simple to easily generalize, these results at least suggest
the importance of combining a knowledge-rich approach
with low-level data analysis to achieve the best possible
results.

Related Work

Work has been done to expand the capacities of agents by
making use of goal manipulation. (Hanheide et al., 2010)
created a framework for managing goals to be used by a
robot exploring an unknown space which autonomously
classifies rooms into categories. They ran the robot with and
without the framework, and concluded that a framework for
goal management increases the performance of the robot.

Schermerhorn, Benton, Scheutz, Talamadupula, &
Kambhampati (2009) sought to use modification of a robot's
goal structure to confront the challenges of a partially
observable, non-deterministic domain in which prior
knowledge about the domain is limited, knowledge
acquisition is non-monotonic, planning is subject to real
time constraints, and goals and utilities can dynamically
change during execution. Counterfactuals determine actions
that lead to goal opportunities, and when opportunities are
detected, the goal structure can be modified. Other work has
taken advantage of the GDA model which we use in our
work. For example, Munoz-Avila, Jaidee, Aha, and Carter
(2010) merged the GDA framework with case based
reasoning (CBR) and ran a comparison between a GDA
system using CBR, a rule based variant of GDA, and a non-
GDA based agent. The CBR based GDA system
outperformed the others, and functioned by making use of a
case base that mapped goals to expectations and a case base
that mapped mismatches to new goals.

The ARTUE GDA system (Molineaux, Klenk, & Aha,
2010) is a domain independent autonomous agent with the
capacity to dynamically determine which goals to pursue in
unexpected situations. ARTUE uses hierarchical task
networks for planning, takes advantage of explanations, and
manages goals.

Conclusion

A major contribution of this work is the synergy between D-
track and K-track approaches. We have described the use of
data-driven techniques in anomaly detection (A-distance),
neural networks (growing neural gas), and machine learning
(Tilde; FOIL) as well as a predicate logic state
representation and techniques for explanation generation
(Meta-AQUA) and planning (SHOP2) that rely on high
level formalisms. Both high level and low level approaches
to Al have been used with great success in their individual
spheres. We believe that the integration of these approaches
is one of the most promising opportunities in modern Al,
and one of the central focuses of MIDCA.

Acknowledgments

This is supported by ONR Grants N00014-12-1-0430 and
N00014-12-1-0172 and by ARO Grant W911NF-12-1-0471.

References

Blockeel, H., & De Raedt, L. (1997). Lookahead and discretisation
in ILP. Proc. of the 7th intl. workshop on inductive logic
programming (pp. 77-84) Berlin: Springer

Cox, M. T. (2007). Perpetual self-aware cognitive agents. Al
Magazine 28(1), 32-45.

Cox, M. T. (2013). Question-based problem recognition and goal-
driven autonomy. Goal Reasoning: Papers from the ACS
workshop (pp. 10-25). (Tech. Rep. No. CS-TR-5029). College
Park, MD: Univ. Maryland, CS Dept.

Cox, M. T., & Burstein, M. H. (2008). Case-based explanations
and the integrated learning of demonstrations. Kinstliche
Intelligenz 22(2), 35-38.

Cox, M. T., Maynord, M., Paisner, M., Perlis, D., & Oates, T.
(2013). The integration of cognitive and metacognitive
processes with data-driven and knowledge-rich structures. Proc.
of Annual Meeting of the Intl. Association for Computing and
Philosophy

Cox, M. T., Oates, T., Paisner, M., & Perlis, D. (2012). Noting
anomalies in streams of symbolic predicates using A-distance.
Advances in Cognitive Systems 2, 167-184.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy
learning. Artificial Intelligence, 112, 1-55.

Hanheide, M., Hawes, N., Wyatt, J., Gobelbecker, M.,
Brenner, M., Sjod, K., Aydemir, A., Jensfelt, P., Zender,
H. & Kruijff, G. J. (2010). A framework for goal generation
and management. AAAI Workshop on Goal-Directed Autonomy.

Klenk, M., Molineaux, M., & Aha, D. (2013). Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Computational Intelligence, 29(2), 187-206.

Maynord, M., Cox, M. T., Paisner, M., & Perlis, D. (2013). Data-
driven goal generation for integrated cognitive systems. C.
Lebiere & P. S. Rosenbloom (Eds.), Integrated Cognition:
Papers from the 2013 Fall Symposium (pp. 47-54). Menlo Park,
CA: AAAI Press.

Molineaux, M., Klenk, M., Aha, D. (2010). Goal-driven autonomy
in a Navy strategy simulation. Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence. Menlo Park,
CA: AAAI Press.

Munoz-Avila, H., Jaidee, U., Aha, D. W., Carter, E. (2010). Goal-
driven autonomy with case-based reasoning. I. Bichindaritz & S.
Montani (Eds.), Case-Based Reasoning. Research and
Development, 18th International Conference on Case-Based
Reasoning, ICCBR 2010 (pp. 228-241). Berlin: Springer.

Nau, D., Au, T., llghami, O., Kuter, U., Murdock, J., Wu, D., &
Yaman, F. (2003). SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research 20, 379-404

Paisner, M., Perlis, D., & Cox, M. T. (2013). Symbolic anomaly
detection and assessment using growing neural gas. Proceedings
of the 25th IEEE Intl. Conf. on Tools with Artificial Intelligence
(pp. 175-181). Piscataway, NJ: IEEE Press.

Quinlan, J. R. (1990). Learning logical definitions from relations.
Machine Learning 5, 239-266.

Schermerhorn, P., Benton, J., Scheutz, M., Talamadupula, K.
Kambhampati, S. (2009). Finding and exploiting goal
opportunities in real-time during plan execution. Proc. 2009
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (pp.
3912-3917). Piscataway, NJ: IEEE Press.

2090

