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Abstract 

Complex, dynamic environments present special challenges to 
autonomous agents. Specifically, agents have difficulty when 
the world does not cooperate with design assumptions. We 
present an approach to autonomy that seeks to maximize 
robustness rather than optimality on a specific task. Goal-
driven autonomy involves recognizing possibly new 
problems, explaining what causes the problems and 
generating goals to solve the problems. We present such a 
model within the MIDCA cognitive architecture and show 
that under certain conditions this model outperforms a less 
flexible approach to handling unexpected events. 

Keywords: goal generation; anomaly handling; interpretation 
and explanation; TF-Tree; cognitive architecture; intelligent 
autonomy. 

Introduction 

Humans are astonishingly versatile, dealing with a wide 

range of unanticipated circumstances while still making 

headway on high-level goals. Humans can also recognize 

new problems and opportunities when they arise and react 

appropriately to them. Yet for the most part our machines 

cannot; they are like idiot-savants, very good at one narrow 

task and useless for anything else, even tasks very similar to 

the one they were designed for. This is the so-called 

brittleness problem, a major stumbling block for AI. What 

we appear to need is the opposite of expert systems: 

machines that might not excel at anything, but that can 

muddle through a wide range of circumstances and keep a 

strategic perspective. Yet more than 50 years of intense 

effort has failed to produce such machines. One approach to 

the problem of brittleness uses what we call goal-driven 

autonomy in a cognitive architecture. Here we describe 

some benefits of this approach in dynamic environments. 

Goal-Driven Autonomy (GDA) is a unique conception that 

gives full independence to autonomous agents (Cox, 2007; 

Klenk, Molineaux, & Aha, 2013; Munoz-Avila, Jaidee, 

Aha, Carter, 2010). Rather than arbitrary anomaly-detection, 

the agent searches for problems in the context of its current 

goals and mission. Not all anomalies are problems, nor are 

all problems important enough to attend to. Rather than 

general assessment of an entire world state, the agent should 

abductively explain the causal factors giving rise to the 

problem. Given an explanation, a GDA agent may generate 

a (possibly new) goal that solves the problem (e.g., by 

removing its supporting conditions). In these terms, GDA is 

as much about problem recognition as it is problem-solving 

(Cox, 2013).  

Consider a fire that breaks out at a construction site. This 

is a problem in many ways, not the least of which is that 

preconditions for actions (e.g., the integrity of building 

materials) will become unsatisfied. A standard planning 

algorithm might therefore generate a subgoal to extinguish 

the fire so that construction can continue. However a 

subsequent fire in quick succession might justify an 

investigation into a long-term threat to the construction site. 

One possible explanation would be the presence of an 

arsonist, leading to the goal of having the perpetrator in jail. 

Hence a direct reactive approach to fires would be to put 

them out; a GDA approach to this same situation would 

recognize the underlying problem in terms of its threat to 

the future of the enterprise.  

This paper will examine the distinction between such 

approaches to intelligent reasoning and behavior in a 

metacognitive architecture called MIDCA and will report 

the results of a simple empirical study to evaluate these 

differences. In section 2, we present the MIDCA 

architecture containing an implemented instantiation of the 

GDA model. In section 3 we evaluate the performance of 

systems making use of three distinct goal generation 

methods: exogenous goals; statistically generated goals; 

goals produced by a knowledge rich explanation system. 

Section 4 presents an overview of future work, section 5 

surveys related work, and section 6 concludes. 

Goal-Driven Autonomy  

in a Cognitive Architecture 

The Metacognitive, Integrated, Dual-Cycle Architecture 

(MIDCA) (Cox, Maynord, Paisner, Perlis, & Oates, 2013) 

consists of “action-perception” cycles at both the cognitive 

(i.e., object) level and the metacognitive (i.e., meta-) level. 

Figure 1 shows the implemented components of the object 

level with the meta-level abstracted. The output side of each 

cycle consists of intention, planning, and action execution, 

whereas the input side consists of perception, interpretation, 

and goal evaluation. A cycle selects a goal and commits to 

achieving it. The agent then creates a plan to achieve the 

goal and subsequently executes the planned actions to make 

the domain match the goal state. The agent perceives 

changes to the environment resulting from the actions, 

interprets the percepts with respect to the plan, and 

evaluates the interpretation with respect to the goal. At the 
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object level, the cycle pursues goals that change the 

environment (i.e., ground level). At the meta-level, the cycle 

pursues goals that change the object level. That is, the 

metacognitive “perception” components introspectively 

monitor mental processes and state changes at the cognitive 

level. The “action” component consists of a meta-level 

controller that mediates reasoning over an abstract 

representation of the object level cognition. 
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Figure 1: The MIDCA_1.1 object level structure. Note that 

execution-time subgoaling (dashes) is not currently implemented. 

TFT stands for TF-Tree, and XP stands for eXplanation Pattern. 

Metacognitive Integrated Dual-Cycle Architecture 

Version 1.1 

MIDCA_1.1 is an early version of the architecture whose 

components are shown in the schematic of Figure 1. It 

implements each phase of the cognitive loop, allowing the 

MIDCA agent to notice, analyze and respond to events in 

various simple domains.  

 

Performance Domain To evaluate the performance of 

MIDCA in goal generation, we place the system in a 

modified blocksworld domain. This version of blocksworld 

includes both rectangular and triangular blocks, which 

compose the materials for simplified housing construction. 

The overarching goal in this domain is to build “houses” 

consisting of towers of blocks with a roof (triangle) on each. 

Specifically, the housing domain cycles through three goal 

states in building new houses. Figure 2 shows the three 

states and the goals that transition the system between them. 

 
Figure 2: Three classifiers generate goals for subsequent states. 

We use a simple world simulator in which actions, 

specified using predicate logic, are given prior to startup in 

a domain file. MIDCA’s actions will be simulated, as well 

as actions performed by other agents and natural events. For 

the purpose of generating interesting anomalies for MIDCA 

to deal with, we have added a hidden arsonist, who can set 

blocks on fire. Furthermore there are two additional actions 

available to MIDCA to deal with fires. The three new 

actions are as follows: 

• light-on-fire (block)  if block not on fire, lights it 

• put-out-fire (block)  if block on fire, extinguishes it  

• apprehend (arsonist) imprisons arsonist 

MIDCA_1.1’s task is to build houses while also dealing 

appropriately with fire. In the next subsection, we describe 

the techniques it uses in this task. 

 

MIDCA_1.1 Reasoning Components MIDCA_1.1 is 

implemented by a series of components, centered about a 

core memory structure. Each of these components 

implements a single phase of the MIDCA cognitive loop 

shown in Figure 1. Running MIDCA_1.1 is equivalent to 

repeatedly running each of these components in the order 

shown in Figure 1, beginning with the perceive component. 

Components interact by storing information in memory, 

where it can be accessed and used later in the cycle and in 

future cycles. The individual implementations are described 

below. 

Perceive. The perceive phase is implemented very simply. 

The perceive component makes a copy of the current world 

state (defined in a predicate logic representation) and stores 

it in memory. As a result, MIDCA_1.1 always has a perfect, 

noise-free view of the current world state, though it has no 

direct knowledge of the arsonist’s actions (it only sees that 

fires have started, not how). In our simple blocksworld 

example, MIDCA_1.1 copies to memory the same predicate 

representation of block relationships and attributes that the 

world simulator maintains as the current state. 

Interpret. The interpret phase has been at the core of our 

research efforts. It is implemented as a GDA procedure that 

uses both a bottom-up, data-driven track and a top-down, 

knowledge rich track (Cox, Maynord, Paisner, Perlis, & 

Oates, 2013). MIDCA_1.1 uses both of these processes to 

analyze the current world state and determine which, if any, 

new goals it should attempt to pursue. The details of this 

process are described below. In our example, this is the 

phase in which MIDCA_1.1 notices an anomaly in the 

blocksworld (e.g., a block on fire) and decides what to do 

about it.  

Evaluate. In the evaluate phase, the goal generated during 

the previous step is evaluated. The system searches through 

the world representation stored during the perceive phase, 

and checks if the goal predicate exists in the world state. If 

so, MIDCA_1.1 notes that goal has been achieved. 

Additionally, during evaluate MIDCA_1.1 checks on the 

progress of its broader goals and updates the relevant 

performance metrics. In blocksworld, MIDCA_1.1 checks if 

its current goal, for example on(A, B) has been achieved. It 

then checks to see if a new tower has been built and if so 

how many blocks in it are on fire. All this data is stored in 

memory, and used later to score MIDCA_1.1’s success at 

achieving its goals. 

Intend. The intend component determines which goals to 

pursue. If the evaluate phase reports that the previous goal 
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has been achieved, MIDCA_1.1 checks to see if a new goal 

was generated during the interpret phase. If so, it adopts that 

goal. Otherwise, it will do nothing until a new goal is 

generated. If the previous goal has not been achieved, it will 

also do nothing unless a goal with higher priority is 

generated, like a goal to put out a fire. In the latter case 

MIDCA_1.1 adopts the high-priority goal and puts the 

previous goal on hold. In MIDCA_1.1, goal priorities have 

been predetermined so that fire goals will be executed 

before construction goals. In blocksworld, the intend 

component converts the goal that has been generated into a 

task that can be taken as input by the planner. For example, 

the goal onfire(A) would be transformed into put-out-

fire(A). 

Plan. For the planner, we use SHOP2 (Nau et al., 2003), a 

domain-independent task decomposition planner. If the 

intend component specified a new task, SHOP2 generates a 

plan to achieve that task given the current world state stored 

in memory. Otherwise, it does nothing. The actions and 

methods that are used to achieve each task in blocksworld 

are specified in a domain file that we supply. 

Act. MIDCA chooses the next action from the current plan, 

if one exists. Otherwise, it does not perform an action. If an 

action is chosen, it is sent to the world simulator, which uses 

it to compute the next world state. An example of such an 

action might be unstack(A,B) if SHOP2 had generated a 

plan containing that step.  

Interpretation 

The interpret phase of MIDCA has been the subject of much 

of our work, and is the focus of the experiments described 

below. It is implemented by two GDA processes that 

combine to generate new goals based on the features of the 

world the agent observes. We call these processes the D-

track, which is a data driven, bottom-up approach, and the 

K-track, which is knowledge rich and top-down. A 

statistical anomaly detector constitutes the first step of the 

D-track, a neural network identifies low-level causal 

attributes of detected anomalies, and a goal classifier, 

trained using methods from machine learning, formulates 

goals. The K-track is implemented as a case-based 

explanation process.  

The representations for expectations significantly differ 

between the two tracks. K-track expectations come from 

explicit knowledge structures such as action models used for 

planning and ontological conceptual categories used for 

interpretation. Predicted effects in the former and attribute 

constraints in the latter constitute expectations. By contrast, 

D-track expectations are implicit. Here the implied 

expectation is that the probabilistic distribution from which 

observations are sampled will remain the same. When the 

difference between expected and perceived distribution is 

statistically significant, an expectation violation is raised. 

 

D-Track Goal Generation The D-track interpretation 

procedure uses a novel approach for noting anomalies. We 

apply the statistical distance metric called the A-distance to 

streams of predicate counts in the perceptual input (Cox, 

Oates, Paisner, & Perlis, 2012), yielding a measurement of 

how the distributions of predicates differ from a base state. 

This enables MIDCA to detect regions in which statistical 

distributions of predicates differ from previously observed 

input. MIDCA’s implicit assumption is that where change 

occurs problems may exist.  

When a change is detected, its severity and type can be 

determined by reference to a neural network in which nodes 

represent categories of normal and anomalous states. This 

network is generated dynamically with the growing neural 

gas algorithm (Paisner, Perlis, & Cox, 2013) as the D-track 

processes perceptual input. This process leverages the 

results of analysis with A-distance to generate anomaly 

prototypes, each of which represents the typical member of 

a set of similar anomalies the system has encountered. 

When a new state is tagged as anomalous by A-distance, the 

GNG net associates it with one of these groups and outputs 

the magnitude, predicate type, and valence of the anomaly. 

Goal generation is achieved in MIDCA_1.1 using TF-

Trees (Maynord, Cox, Paisner, & Perlis, 2013), machine-

learning classification structures that combine two 

algorithms which work over the predicate representation of 

the blocksworld domain. The first of these algorithms is 

Tilde (Blockeel, & De Raedt, 1997), which is itself a 

generalization of the standard C4.5 decision tree algorithm. 

The second algorithm is FOIL (Quinlan, 1990), an 

algorithm which, given a set of examples in predicate 

representation reflecting some concept, induces a rule 

consisting of conjunctions of predicates that identify the 

concept. Given a world state, a TF-Tree first uses Tilde to 

classify the state into one of a set of scenarios. Each 

scenario is then associated with a rule generated by FOIL. 

Once that rule is obtained, groundings of the arguments of 

the predicates in that rule are permuted until either a 

grounding that satisfies the rule is found (in which case a 

goal is generated) or until all permutations have been 

eliminated as possibilities (in which case no goal is 

generated). The structure of a TF-Tree is a tree where in 

internal nodes are produced by Tilde and leaf nodes are 

rules produced by FOIL. Figure 3 depicts the structure of 

the TF-Tree MIDCA_1.1 uses in cycling through the 3 

block arrangements.  

 
Figure 3: Depiction of the TF-Tree used in cycling through the 3 

block configurations. 

For example given the middle state of Figure 2, triangle D 

is clear, it is on the table, and the table is a table. Thus we 

take the right branch labeled “yes.” Now triangle D is also a 

triangle, so again we take the “yes” branch to arrive at the 

right-most leaf of the tree. The leaf rule then binds the 
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variable Y to the clear square C, and the resulting goal is to 

have triangle D on square C. 

The construction of a TF-Tree requires a training corpus 

consisting of world states and associated correct and 

incorrect goals. In simple worlds TF-Trees can be 

constructed which have perfect or near perfect accuracy 

using small training corpora. Corpora have to be constructed 

by humans, as labels need to be attached to potential goals 

in various world states. For simple worlds corpus 

construction does not carry an excessive burden, but that 

burden increases with the complexity of the world. Because 

a TF-Tree is a static structure trained on the specifics of the 

world, when the world changes, even in minor ways, a new 

training corpus has to be constructed and a new TF-Tree 

trained. However, the corpus to create a simple tree for 

reacting to fires (see Figure 4) consisted of only four 

examples. 

 
Figure 4: TF-Tree that generates goals to put out fires 

K-Track Goal Generation The K-track GDA procedure 

uses the XPLAIN system (Cox & Burstein, 2008). XPLAIN 

is built on top of the Meta-AQUA introspective story 

understanding system (Cox and Ram 1999) and is used in 

MIDCA to detect and explain problems in the input 

perceptual representations. The system’s interpretation task 

is to “understand” input by building causal explanatory 

graphs that link subgraph representations in a way that 

minimizes the number of connected components. XPLAIN 

uses a multistrategy approach to this problem. Thus, the top-

level goal is to choose a comprehension method (e.g., script 

processing, case-based reasoning, or explanation generation) 

by which it can understand an input. When an anomalous or 

otherwise interesting input is detected, the system builds an 

explanation of the event, incorporating it into the preexisting 

model of the story. XPLAIN uses case-based knowledge 

representations implemented as frames tied together by 

explanation-patterns (Cox & Ram, 1999) that represent 

general causal structures.  

XPLAIN relies on general domain knowledge, a case 

library of prior plan schemas and a set of general 

explanation patterns that are used to characterize useful 

explanations involving that background knowledge. These 

knowledge structures are stored in a (currently) separate 

memory sub-system and communicated through standard 

socket connections to the rest of MIDCA_1.1. XPLAIN 

uses an interest-driven, variable depth, interpretation 

process that controls the amount of computational resources 

applied to the comprehension task. For example an assertion 

that triangle-D is picked up generates no interest, because it 

represents normal actions that an agent does on a regular 

basis. But XPLAIN classifies block-A burning to be a 

violent action and, thus according to its interest criterion, 

interesting. It explains the action by hypothesizing that the 

burning was caused by an arsonist. An abstract explanation 

pattern (see Table 1), or XP, retrieved from memory 

instantiates this explanation, and the system incorporates it 

into the current model of the actions in the input “story” and 

passes it as output to MIDCA. 

Table 1: The arsonist explanation pattern 
(define-frame ARSONIST-XP 

(actor (criminal-volitional-agent)) 

(object (physical-object)) 

(antecedent (ignition-xp 

               (actor =actor) 

               (object =object) 

               (ante (light-object =l-o 

                       (actor =actor) 

                         (instrumental-object  

                          (ignition-device)))) 

               (conseq =heat))) 

(consequent (forced-by-states 

               (object =object) 

               (heat =heat) 

               (conseq (burns =b 

                         (object =object))))) 

(heat (temperature (domain =object) 

                   (co-domain very-hot.0))) 

(role (actor (domain =ante)) 

             (co-domain =actor))) 

(explains =role) 

  (pre-xp-nodes(=actor =consequent =object =role)) 

(internal-nodes nil.0) 

(xp-asserted-nodes (=antecedent)) 

(link1 (results 

         (domain =antecedent)) 

         (co-domain =consequent))) 

(link2 (xp-instrumental-scene->actor 

         (actor =actor) 

         (action =l-o) 

         (main-action =b) 

         (role =role)))) 

The ARSONIST-XP asserts that the lighting of the block 

caused heat that together with oxygen and fuel (the block 

itself) caused the block to burn. The arsonist lit the block 

because he wanted the block’s burning state that resulted 

from the burning. The objective is to counter a vulnerable 

antecedent of the XP. In this case the deepest antecedent is 

the variable binding =l-o or the light-object action. This can 

be blocked by either removing the actor or removing the 

ignition-device. The choice is the actor, and a goal to 

apprehend the arsonist is thereby generated. 

Evaluation: Autonomous goal formulation 

The fires are problems because of their effect on housing 

construction and the supposed profits of the housing 

industry, and the threats they pose to life and property. Our 

approach to understanding fire problems is to ask why the 

fires were started and not just how. A scientific explanation 

of how the fire started would relate the presence of 

sufficient heat, fuel, and oxygen with the combustion of the 

blocks. For example, generating the negation of the 

presence of the oxygen would result in the goal ¬oxygen, 

which would put out the fire. But this does not address the 

reason the fire started in the first place. One might arrive at 

multiple answers to this question. Poor safety conditions 

might have led to fire, or an arsonist may have lit it. In the 

latter case, the arsonist causes the presence of the heat 

through a lighting action, which is hidden from the agent. 
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Given this explanation the agent can nevertheless anticipate 

the threat of more fires and generate a goal to remove the 

threat by finding the arsonist. Apprehending the arsonist 

then removes the potential of fires in the future rather than 

just reacting to fires that started in the past. 

We tested the effectiveness of three methods for goal 

generation under these conditions. The first method was a 

simple baseline using predetermined, exogenous goals. The 

second method used the statistical, D-Track GDA method 

described in Section 2.2.1. The third method combined the 

D-Track approach with additional analysis using K-Track 

GDA as described in Section 2.2.2. Details appear in Table 

2. For each test, MIDCA was run for 1000 time steps 

(equivalent to executing 1000 actions). At each step, the 

arsonist would have a probability p of starting a fire unless 

he had previously been apprehended. The value of p in the 

experiments described below was 0.4, allowing for enough 

fires to be significant without precluding progress in the 

tower construction project. 

Table 1: Methods for goal generation 

 

We tracked three scoring metrics: the number of towers 

completed; the overall prevalence of fires; and a combined 

score measuring completion of fire-free towers. Details on 

each scoring metric are shown in Table 2. At each time step 

in which a tower was completed – e.g. a triangular block 

was placed on a stack of rectangular blocks, – all fires were 

automatically put out, and the agent started on a new 

construction project. 

Preliminary empirical results show that GDA approaches 

using only the D-Track as well as using both D-Track and 

K-Track perform significantly better than a baseline that 

does not use GDA. Also, the combined D- and K-Track 

implementation outperforms the purely statistical variant by 

a large margin. Figure 5 shows the detailed results of 

testing.  

Table 2: Scoring metrics for testing 

Towers 

Completed 

Total number of 3- and 4-block towers completed 

in 1000 cycles 

Fire  

Prevalence 

The number of blocks on fire times the number of 

time steps they were on fire. If 3 blocks burn for 3 

time steps and go out simultaneously the score is 9 

Overall  

Score 

Awards 1 point per block that is not on fire in a 

completed tower. A 4-block tower with 2 blocks on 

fire scores 2 points 

 

The agent that used only exogenous goals completed the 

most towers, but, because it did not deal with fires in any 

way, most of the towers were burning as they were 

completed and received very low scores. Certainly, this 

baseline behavior does not seem to be sufficient for a fully 

autonomous house construction agent. The second agent 

used behavior dictated by TF-Trees to fight fires directly. It 

did not complete as many towers because it divided its 

attention between construction and extinguishing fires, but 

the towers it did construct were consequently much less 

likely to be on fire. Its total score was 367, 54.2% better 

than the baseline agent. Finally, the dual-track GDA agent 

analyzed the problem logically using XPLAIN, and thereby 

suggested an explanation of the fires as potentially caused 

by arson. As such, it generated a goal early in the process to 

apprehend the arsonist. This took some time, but afterwards 

it was able to devote its full attention to house construction 

without devoting time to firefighting. It completed nearly as 

many towers as the baseline agent, and did so with almost 

no incidence of fire, since no fires started after the arsonist 

was apprehended. The dual-track agent achieved a score of 

584, 245.4% better than the baseline agent. 

 
Figure 5: Results of testing using 3 methods. Note that the value of 

GDA Goal Generation in the Fire Prevalence panel is 2, which is 

too small to show clearly in the graph. 

It should not be surprising that an agent that is capable of 

reacting to the unanticipated problem posed by fire performs 

better than one that heedlessly continues on a predetermined 

Exogenous  

Goals 

Used a predetermined goal list that cycled between 

the 3 states constructing towers. Did not deviate 

from list in response to fires. Goals were [on(C,A), 

on(D,C), on(D,A), on(C,A), … on(D,A)] 

D-Track  

GDA Goal 

Generation 

Generated goals using TF-Trees. Trees were 

trained and implemented such that when no fire 

was present, they would generate the next goal in 

the 3-part cycle, but when a fire was present, they 

would instead generate a goal to put it out. 

2-Track 

GDA Goal 

Generation 

Generated goals using a combination of TF-Trees 

and a K-Track approach using XPLAIN. XPLAIN 

contained knowledge about possible arsonists and 

suggested a goal to search and apprehend an 

arsonist given fire. TF-Trees generated other goals 

as in 2 above 
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course of action. Perhaps more telling is the large advantage 

gained by the dual-track agent, which has the knowledge to 

identify and address the true source of the problem, rather 

than simply treating its symptoms. Though this example is 

too simple to easily generalize, these results at least suggest 

the importance of combining a knowledge-rich approach 

with low-level data analysis to achieve the best possible 

results.  

Related Work 

Work has been done to expand the capacities of agents by 

making use of goal manipulation. (Hanheide et al., 2010) 

created a framework for managing goals to be used by a 

robot exploring an unknown space which autonomously 

classifies rooms into categories. They ran the robot with and 

without the framework, and concluded that a framework for 

goal management increases the performance of the robot.  

Schermerhorn, Benton, Scheutz, Talamadupula, & 

Kambhampati (2009) sought to use modification of a robot's 

goal structure to confront the challenges of a partially 

observable, non-deterministic domain in which prior 

knowledge about the domain is limited, knowledge 

acquisition is non-monotonic, planning is subject to real 

time constraints, and goals and utilities can dynamically 

change during execution. Counterfactuals determine actions 

that lead to goal opportunities, and when opportunities are 

detected, the goal structure can be modified. Other work has 

taken advantage of the GDA model which we use in our 

work. For example, Munoz-Avila, Jaidee, Aha, and Carter 

(2010) merged the GDA framework with case based 

reasoning (CBR) and ran a comparison between a GDA 

system using CBR, a rule based variant of GDA, and a non-

GDA based agent. The CBR based GDA system 

outperformed the others, and functioned by making use of a 

case base that mapped goals to expectations and a case base 

that mapped mismatches to new goals.  

The ARTUE GDA system (Molineaux, Klenk, & Aha, 

2010) is a domain independent autonomous agent with the 

capacity to dynamically determine which goals to pursue in 

unexpected situations. ARTUE uses hierarchical task 

networks for planning, takes advantage of explanations, and 

manages goals.  

Conclusion 

A major contribution of this work is the synergy between D-

track and K-track approaches. We have described the use of 

data-driven techniques in anomaly detection (A-distance), 

neural networks (growing neural gas), and machine learning 

(Tilde; FOIL) as well as a predicate logic state 

representation and techniques for explanation generation 

(Meta-AQUA) and planning (SHOP2) that rely on high 

level formalisms. Both high level and low level approaches 

to AI have been used with great success in their individual 

spheres. We believe that the integration of these approaches 

is one of the most promising opportunities in modern AI, 

and one of the central focuses of MIDCA.  
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