
Goal-Driven Autonomy for Cognitive Systems

Matt Paisner (mpaisner@umd.edu)

Michael T. Cox (mcox@cs.umd.edu)

Michael Maynord (maynord@umd.edu)

Don Perlis (perlis@cs.umd.edu)
Computer Science Department, A.V. Williams Bldg.

College Park, MD 20742 USA

Abstract

Complex, dynamic environments present special challenges to
autonomous agents. Specifically, agents have difficulty when
the world does not cooperate with design assumptions. We
present an approach to autonomy that seeks to maximize
robustness rather than optimality on a specific task. Goal-
driven autonomy involves recognizing possibly new
problems, explaining what causes the problems and
generating goals to solve the problems. We present such a
model within the MIDCA cognitive architecture and show
that under certain conditions this model outperforms a less
flexible approach to handling unexpected events.

Keywords: goal generation; anomaly handling; interpretation
and explanation; TF-Tree; cognitive architecture; intelligent
autonomy.

Introduction

Humans are astonishingly versatile, dealing with a wide

range of unanticipated circumstances while still making

headway on high-level goals. Humans can also recognize

new problems and opportunities when they arise and react

appropriately to them. Yet for the most part our machines

cannot; they are like idiot-savants, very good at one narrow

task and useless for anything else, even tasks very similar to

the one they were designed for. This is the so-called

brittleness problem, a major stumbling block for AI. What

we appear to need is the opposite of expert systems:

machines that might not excel at anything, but that can

muddle through a wide range of circumstances and keep a

strategic perspective. Yet more than 50 years of intense

effort has failed to produce such machines. One approach to

the problem of brittleness uses what we call goal-driven

autonomy in a cognitive architecture. Here we describe

some benefits of this approach in dynamic environments.

Goal-Driven Autonomy (GDA) is a unique conception that

gives full independence to autonomous agents (Cox, 2007;

Klenk, Molineaux, & Aha, 2013; Munoz-Avila, Jaidee,

Aha, Carter, 2010). Rather than arbitrary anomaly-detection,

the agent searches for problems in the context of its current

goals and mission. Not all anomalies are problems, nor are

all problems important enough to attend to. Rather than

general assessment of an entire world state, the agent should

abductively explain the causal factors giving rise to the

problem. Given an explanation, a GDA agent may generate

a (possibly new) goal that solves the problem (e.g., by

removing its supporting conditions). In these terms, GDA is

as much about problem recognition as it is problem-solving

(Cox, 2013).

Consider a fire that breaks out at a construction site. This

is a problem in many ways, not the least of which is that

preconditions for actions (e.g., the integrity of building

materials) will become unsatisfied. A standard planning

algorithm might therefore generate a subgoal to extinguish

the fire so that construction can continue. However a

subsequent fire in quick succession might justify an

investigation into a long-term threat to the construction site.

One possible explanation would be the presence of an

arsonist, leading to the goal of having the perpetrator in jail.

Hence a direct reactive approach to fires would be to put

them out; a GDA approach to this same situation would

recognize the underlying problem in terms of its threat to

the future of the enterprise.

This paper will examine the distinction between such

approaches to intelligent reasoning and behavior in a

metacognitive architecture called MIDCA and will report

the results of a simple empirical study to evaluate these

differences. In section 2, we present the MIDCA

architecture containing an implemented instantiation of the

GDA model. In section 3 we evaluate the performance of

systems making use of three distinct goal generation

methods: exogenous goals; statistically generated goals;

goals produced by a knowledge rich explanation system.

Section 4 presents an overview of future work, section 5

surveys related work, and section 6 concludes.

Goal-Driven Autonomy

in a Cognitive Architecture

The Metacognitive, Integrated, Dual-Cycle Architecture

(MIDCA) (Cox, Maynord, Paisner, Perlis, & Oates, 2013)

consists of “action-perception” cycles at both the cognitive

(i.e., object) level and the metacognitive (i.e., meta-) level.

Figure 1 shows the implemented components of the object

level with the meta-level abstracted. The output side of each

cycle consists of intention, planning, and action execution,

whereas the input side consists of perception, interpretation,

and goal evaluation. A cycle selects a goal and commits to

achieving it. The agent then creates a plan to achieve the

goal and subsequently executes the planned actions to make

the domain match the goal state. The agent perceives

changes to the environment resulting from the actions,

interprets the percepts with respect to the plan, and

evaluates the interpretation with respect to the goal. At the

2085

object level, the cycle pursues goals that change the

environment (i.e., ground level). At the meta-level, the cycle

pursues goals that change the object level. That is, the

metacognitive “perception” components introspectively

monitor mental processes and state changes at the cognitive

level. The “action” component consists of a meta-level

controller that mediates reasoning over an abstract

representation of the object level cognition.

Goal Gen

percepts

Detect

anomaly

Memory

Goals()

Semantic Memory

& Ontology

Plans() &

Percepts ()

Problem

Solving

Comprehension

goal input

goal

insertion

SHOP2 Interpret

Goals

Actions Percepts

EvaluateIntend

Act Perceive

Executive Shell

| XP

World =Ψ

subgoal

Recognize

Explain

Goal Gen

problem

XP

percepts

Figure 1: The MIDCA_1.1 object level structure. Note that

execution-time subgoaling (dashes) is not currently implemented.

TFT stands for TF-Tree, and XP stands for eXplanation Pattern.

Metacognitive Integrated Dual-Cycle Architecture

Version 1.1

MIDCA_1.1 is an early version of the architecture whose

components are shown in the schematic of Figure 1. It

implements each phase of the cognitive loop, allowing the

MIDCA agent to notice, analyze and respond to events in

various simple domains.

Performance Domain To evaluate the performance of

MIDCA in goal generation, we place the system in a

modified blocksworld domain. This version of blocksworld

includes both rectangular and triangular blocks, which

compose the materials for simplified housing construction.

The overarching goal in this domain is to build “houses”

consisting of towers of blocks with a roof (triangle) on each.

Specifically, the housing domain cycles through three goal

states in building new houses. Figure 2 shows the three

states and the goals that transition the system between them.

Figure 2: Three classifiers generate goals for subsequent states.

We use a simple world simulator in which actions,

specified using predicate logic, are given prior to startup in

a domain file. MIDCA’s actions will be simulated, as well

as actions performed by other agents and natural events. For

the purpose of generating interesting anomalies for MIDCA

to deal with, we have added a hidden arsonist, who can set

blocks on fire. Furthermore there are two additional actions

available to MIDCA to deal with fires. The three new

actions are as follows:

• light-on-fire (block) if block not on fire, lights it

• put-out-fire (block) if block on fire, extinguishes it

• apprehend (arsonist) imprisons arsonist

MIDCA_1.1’s task is to build houses while also dealing

appropriately with fire. In the next subsection, we describe

the techniques it uses in this task.

MIDCA_1.1 Reasoning Components MIDCA_1.1 is

implemented by a series of components, centered about a

core memory structure. Each of these components

implements a single phase of the MIDCA cognitive loop

shown in Figure 1. Running MIDCA_1.1 is equivalent to

repeatedly running each of these components in the order

shown in Figure 1, beginning with the perceive component.

Components interact by storing information in memory,

where it can be accessed and used later in the cycle and in

future cycles. The individual implementations are described

below.

Perceive. The perceive phase is implemented very simply.

The perceive component makes a copy of the current world

state (defined in a predicate logic representation) and stores

it in memory. As a result, MIDCA_1.1 always has a perfect,

noise-free view of the current world state, though it has no

direct knowledge of the arsonist’s actions (it only sees that

fires have started, not how). In our simple blocksworld

example, MIDCA_1.1 copies to memory the same predicate

representation of block relationships and attributes that the

world simulator maintains as the current state.

Interpret. The interpret phase has been at the core of our

research efforts. It is implemented as a GDA procedure that

uses both a bottom-up, data-driven track and a top-down,

knowledge rich track (Cox, Maynord, Paisner, Perlis, &

Oates, 2013). MIDCA_1.1 uses both of these processes to

analyze the current world state and determine which, if any,

new goals it should attempt to pursue. The details of this

process are described below. In our example, this is the

phase in which MIDCA_1.1 notices an anomaly in the

blocksworld (e.g., a block on fire) and decides what to do

about it.

Evaluate. In the evaluate phase, the goal generated during

the previous step is evaluated. The system searches through

the world representation stored during the perceive phase,

and checks if the goal predicate exists in the world state. If

so, MIDCA_1.1 notes that goal has been achieved.

Additionally, during evaluate MIDCA_1.1 checks on the

progress of its broader goals and updates the relevant

performance metrics. In blocksworld, MIDCA_1.1 checks if

its current goal, for example on(A, B) has been achieved. It

then checks to see if a new tower has been built and if so

how many blocks in it are on fire. All this data is stored in

memory, and used later to score MIDCA_1.1’s success at

achieving its goals.

Intend. The intend component determines which goals to

pursue. If the evaluate phase reports that the previous goal

2086

has been achieved, MIDCA_1.1 checks to see if a new goal

was generated during the interpret phase. If so, it adopts that

goal. Otherwise, it will do nothing until a new goal is

generated. If the previous goal has not been achieved, it will

also do nothing unless a goal with higher priority is

generated, like a goal to put out a fire. In the latter case

MIDCA_1.1 adopts the high-priority goal and puts the

previous goal on hold. In MIDCA_1.1, goal priorities have

been predetermined so that fire goals will be executed

before construction goals. In blocksworld, the intend

component converts the goal that has been generated into a

task that can be taken as input by the planner. For example,

the goal onfire(A) would be transformed into put-out-

fire(A).

Plan. For the planner, we use SHOP2 (Nau et al., 2003), a

domain-independent task decomposition planner. If the

intend component specified a new task, SHOP2 generates a

plan to achieve that task given the current world state stored

in memory. Otherwise, it does nothing. The actions and

methods that are used to achieve each task in blocksworld

are specified in a domain file that we supply.

Act. MIDCA chooses the next action from the current plan,

if one exists. Otherwise, it does not perform an action. If an

action is chosen, it is sent to the world simulator, which uses

it to compute the next world state. An example of such an

action might be unstack(A,B) if SHOP2 had generated a

plan containing that step.

Interpretation

The interpret phase of MIDCA has been the subject of much

of our work, and is the focus of the experiments described

below. It is implemented by two GDA processes that

combine to generate new goals based on the features of the

world the agent observes. We call these processes the D-

track, which is a data driven, bottom-up approach, and the

K-track, which is knowledge rich and top-down. A

statistical anomaly detector constitutes the first step of the

D-track, a neural network identifies low-level causal

attributes of detected anomalies, and a goal classifier,

trained using methods from machine learning, formulates

goals. The K-track is implemented as a case-based

explanation process.

The representations for expectations significantly differ

between the two tracks. K-track expectations come from

explicit knowledge structures such as action models used for

planning and ontological conceptual categories used for

interpretation. Predicted effects in the former and attribute

constraints in the latter constitute expectations. By contrast,

D-track expectations are implicit. Here the implied

expectation is that the probabilistic distribution from which

observations are sampled will remain the same. When the

difference between expected and perceived distribution is

statistically significant, an expectation violation is raised.

D-Track Goal Generation The D-track interpretation

procedure uses a novel approach for noting anomalies. We

apply the statistical distance metric called the A-distance to

streams of predicate counts in the perceptual input (Cox,

Oates, Paisner, & Perlis, 2012), yielding a measurement of

how the distributions of predicates differ from a base state.

This enables MIDCA to detect regions in which statistical

distributions of predicates differ from previously observed

input. MIDCA’s implicit assumption is that where change

occurs problems may exist.

When a change is detected, its severity and type can be

determined by reference to a neural network in which nodes

represent categories of normal and anomalous states. This

network is generated dynamically with the growing neural

gas algorithm (Paisner, Perlis, & Cox, 2013) as the D-track

processes perceptual input. This process leverages the

results of analysis with A-distance to generate anomaly

prototypes, each of which represents the typical member of

a set of similar anomalies the system has encountered.

When a new state is tagged as anomalous by A-distance, the

GNG net associates it with one of these groups and outputs

the magnitude, predicate type, and valence of the anomaly.

Goal generation is achieved in MIDCA_1.1 using TF-

Trees (Maynord, Cox, Paisner, & Perlis, 2013), machine-

learning classification structures that combine two

algorithms which work over the predicate representation of

the blocksworld domain. The first of these algorithms is

Tilde (Blockeel, & De Raedt, 1997), which is itself a

generalization of the standard C4.5 decision tree algorithm.

The second algorithm is FOIL (Quinlan, 1990), an

algorithm which, given a set of examples in predicate

representation reflecting some concept, induces a rule

consisting of conjunctions of predicates that identify the

concept. Given a world state, a TF-Tree first uses Tilde to

classify the state into one of a set of scenarios. Each

scenario is then associated with a rule generated by FOIL.

Once that rule is obtained, groundings of the arguments of

the predicates in that rule are permuted until either a

grounding that satisfies the rule is found (in which case a

goal is generated) or until all permutations have been

eliminated as possibilities (in which case no goal is

generated). The structure of a TF-Tree is a tree where in

internal nodes are produced by Tilde and leaf nodes are

rules produced by FOIL. Figure 3 depicts the structure of

the TF-Tree MIDCA_1.1 uses in cycling through the 3

block arrangements.

Figure 3: Depiction of the TF-Tree used in cycling through the 3

block configurations.

For example given the middle state of Figure 2, triangle D

is clear, it is on the table, and the table is a table. Thus we

take the right branch labeled “yes.” Now triangle D is also a

triangle, so again we take the “yes” branch to arrive at the

right-most leaf of the tree. The leaf rule then binds the

2087

variable Y to the clear square C, and the resulting goal is to

have triangle D on square C.

The construction of a TF-Tree requires a training corpus

consisting of world states and associated correct and

incorrect goals. In simple worlds TF-Trees can be

constructed which have perfect or near perfect accuracy

using small training corpora. Corpora have to be constructed

by humans, as labels need to be attached to potential goals

in various world states. For simple worlds corpus

construction does not carry an excessive burden, but that

burden increases with the complexity of the world. Because

a TF-Tree is a static structure trained on the specifics of the

world, when the world changes, even in minor ways, a new

training corpus has to be constructed and a new TF-Tree

trained. However, the corpus to create a simple tree for

reacting to fires (see Figure 4) consisted of only four

examples.

Figure 4: TF-Tree that generates goals to put out fires

K-Track Goal Generation The K-track GDA procedure

uses the XPLAIN system (Cox & Burstein, 2008). XPLAIN

is built on top of the Meta-AQUA introspective story

understanding system (Cox and Ram 1999) and is used in

MIDCA to detect and explain problems in the input

perceptual representations. The system’s interpretation task

is to “understand” input by building causal explanatory

graphs that link subgraph representations in a way that

minimizes the number of connected components. XPLAIN

uses a multistrategy approach to this problem. Thus, the top-

level goal is to choose a comprehension method (e.g., script

processing, case-based reasoning, or explanation generation)

by which it can understand an input. When an anomalous or

otherwise interesting input is detected, the system builds an

explanation of the event, incorporating it into the preexisting

model of the story. XPLAIN uses case-based knowledge

representations implemented as frames tied together by

explanation-patterns (Cox & Ram, 1999) that represent

general causal structures.

XPLAIN relies on general domain knowledge, a case

library of prior plan schemas and a set of general

explanation patterns that are used to characterize useful

explanations involving that background knowledge. These

knowledge structures are stored in a (currently) separate

memory sub-system and communicated through standard

socket connections to the rest of MIDCA_1.1. XPLAIN

uses an interest-driven, variable depth, interpretation

process that controls the amount of computational resources

applied to the comprehension task. For example an assertion

that triangle-D is picked up generates no interest, because it

represents normal actions that an agent does on a regular

basis. But XPLAIN classifies block-A burning to be a

violent action and, thus according to its interest criterion,

interesting. It explains the action by hypothesizing that the

burning was caused by an arsonist. An abstract explanation

pattern (see Table 1), or XP, retrieved from memory

instantiates this explanation, and the system incorporates it

into the current model of the actions in the input “story” and

passes it as output to MIDCA.

Table 1: The arsonist explanation pattern
(define-frame ARSONIST-XP

(actor (criminal-volitional-agent))

(object (physical-object))

(antecedent (ignition-xp

 (actor =actor)

 (object =object)

 (ante (light-object =l-o

 (actor =actor)

 (instrumental-object

 (ignition-device))))

 (conseq =heat)))

(consequent (forced-by-states

 (object =object)

 (heat =heat)

 (conseq (burns =b

 (object =object)))))

(heat (temperature (domain =object)

 (co-domain very-hot.0)))

(role (actor (domain =ante))

 (co-domain =actor)))

(explains =role)

 (pre-xp-nodes(=actor =consequent =object =role))

(internal-nodes nil.0)

(xp-asserted-nodes (=antecedent))

(link1 (results

 (domain =antecedent))

 (co-domain =consequent)))

(link2 (xp-instrumental-scene->actor

 (actor =actor)

 (action =l-o)

 (main-action =b)

 (role =role))))

The ARSONIST-XP asserts that the lighting of the block

caused heat that together with oxygen and fuel (the block

itself) caused the block to burn. The arsonist lit the block

because he wanted the block’s burning state that resulted

from the burning. The objective is to counter a vulnerable

antecedent of the XP. In this case the deepest antecedent is

the variable binding =l-o or the light-object action. This can

be blocked by either removing the actor or removing the

ignition-device. The choice is the actor, and a goal to

apprehend the arsonist is thereby generated.

Evaluation: Autonomous goal formulation

The fires are problems because of their effect on housing

construction and the supposed profits of the housing

industry, and the threats they pose to life and property. Our

approach to understanding fire problems is to ask why the

fires were started and not just how. A scientific explanation

of how the fire started would relate the presence of

sufficient heat, fuel, and oxygen with the combustion of the

blocks. For example, generating the negation of the

presence of the oxygen would result in the goal ¬oxygen,

which would put out the fire. But this does not address the

reason the fire started in the first place. One might arrive at

multiple answers to this question. Poor safety conditions

might have led to fire, or an arsonist may have lit it. In the

latter case, the arsonist causes the presence of the heat

through a lighting action, which is hidden from the agent.

2088

Given this explanation the agent can nevertheless anticipate

the threat of more fires and generate a goal to remove the

threat by finding the arsonist. Apprehending the arsonist

then removes the potential of fires in the future rather than

just reacting to fires that started in the past.

We tested the effectiveness of three methods for goal

generation under these conditions. The first method was a

simple baseline using predetermined, exogenous goals. The

second method used the statistical, D-Track GDA method

described in Section 2.2.1. The third method combined the

D-Track approach with additional analysis using K-Track

GDA as described in Section 2.2.2. Details appear in Table

2. For each test, MIDCA was run for 1000 time steps

(equivalent to executing 1000 actions). At each step, the

arsonist would have a probability p of starting a fire unless

he had previously been apprehended. The value of p in the

experiments described below was 0.4, allowing for enough

fires to be significant without precluding progress in the

tower construction project.

Table 1: Methods for goal generation

We tracked three scoring metrics: the number of towers

completed; the overall prevalence of fires; and a combined

score measuring completion of fire-free towers. Details on

each scoring metric are shown in Table 2. At each time step

in which a tower was completed – e.g. a triangular block

was placed on a stack of rectangular blocks, – all fires were

automatically put out, and the agent started on a new

construction project.

Preliminary empirical results show that GDA approaches

using only the D-Track as well as using both D-Track and

K-Track perform significantly better than a baseline that

does not use GDA. Also, the combined D- and K-Track

implementation outperforms the purely statistical variant by

a large margin. Figure 5 shows the detailed results of

testing.

Table 2: Scoring metrics for testing

Towers

Completed

Total number of 3- and 4-block towers completed

in 1000 cycles

Fire

Prevalence

The number of blocks on fire times the number of

time steps they were on fire. If 3 blocks burn for 3

time steps and go out simultaneously the score is 9

Overall

Score

Awards 1 point per block that is not on fire in a

completed tower. A 4-block tower with 2 blocks on

fire scores 2 points

The agent that used only exogenous goals completed the

most towers, but, because it did not deal with fires in any

way, most of the towers were burning as they were

completed and received very low scores. Certainly, this

baseline behavior does not seem to be sufficient for a fully

autonomous house construction agent. The second agent

used behavior dictated by TF-Trees to fight fires directly. It

did not complete as many towers because it divided its

attention between construction and extinguishing fires, but

the towers it did construct were consequently much less

likely to be on fire. Its total score was 367, 54.2% better

than the baseline agent. Finally, the dual-track GDA agent

analyzed the problem logically using XPLAIN, and thereby

suggested an explanation of the fires as potentially caused

by arson. As such, it generated a goal early in the process to

apprehend the arsonist. This took some time, but afterwards

it was able to devote its full attention to house construction

without devoting time to firefighting. It completed nearly as

many towers as the baseline agent, and did so with almost

no incidence of fire, since no fires started after the arsonist

was apprehended. The dual-track agent achieved a score of

584, 245.4% better than the baseline agent.

Figure 5: Results of testing using 3 methods. Note that the value of

GDA Goal Generation in the Fire Prevalence panel is 2, which is

too small to show clearly in the graph.

It should not be surprising that an agent that is capable of

reacting to the unanticipated problem posed by fire performs

better than one that heedlessly continues on a predetermined

Exogenous

Goals

Used a predetermined goal list that cycled between

the 3 states constructing towers. Did not deviate

from list in response to fires. Goals were [on(C,A),

on(D,C), on(D,A), on(C,A), … on(D,A)]

D-Track

GDA Goal

Generation

Generated goals using TF-Trees. Trees were

trained and implemented such that when no fire

was present, they would generate the next goal in

the 3-part cycle, but when a fire was present, they

would instead generate a goal to put it out.

2-Track

GDA Goal

Generation

Generated goals using a combination of TF-Trees

and a K-Track approach using XPLAIN. XPLAIN

contained knowledge about possible arsonists and

suggested a goal to search and apprehend an

arsonist given fire. TF-Trees generated other goals

as in 2 above

2089

course of action. Perhaps more telling is the large advantage

gained by the dual-track agent, which has the knowledge to

identify and address the true source of the problem, rather

than simply treating its symptoms. Though this example is

too simple to easily generalize, these results at least suggest

the importance of combining a knowledge-rich approach

with low-level data analysis to achieve the best possible

results.

Related Work

Work has been done to expand the capacities of agents by

making use of goal manipulation. (Hanheide et al., 2010)

created a framework for managing goals to be used by a

robot exploring an unknown space which autonomously

classifies rooms into categories. They ran the robot with and

without the framework, and concluded that a framework for

goal management increases the performance of the robot.

Schermerhorn, Benton, Scheutz, Talamadupula, &

Kambhampati (2009) sought to use modification of a robot's

goal structure to confront the challenges of a partially

observable, non-deterministic domain in which prior

knowledge about the domain is limited, knowledge

acquisition is non-monotonic, planning is subject to real

time constraints, and goals and utilities can dynamically

change during execution. Counterfactuals determine actions

that lead to goal opportunities, and when opportunities are

detected, the goal structure can be modified. Other work has

taken advantage of the GDA model which we use in our

work. For example, Munoz-Avila, Jaidee, Aha, and Carter

(2010) merged the GDA framework with case based

reasoning (CBR) and ran a comparison between a GDA

system using CBR, a rule based variant of GDA, and a non-

GDA based agent. The CBR based GDA system

outperformed the others, and functioned by making use of a

case base that mapped goals to expectations and a case base

that mapped mismatches to new goals.

The ARTUE GDA system (Molineaux, Klenk, & Aha,

2010) is a domain independent autonomous agent with the

capacity to dynamically determine which goals to pursue in

unexpected situations. ARTUE uses hierarchical task

networks for planning, takes advantage of explanations, and

manages goals.

Conclusion

A major contribution of this work is the synergy between D-

track and K-track approaches. We have described the use of

data-driven techniques in anomaly detection (A-distance),

neural networks (growing neural gas), and machine learning

(Tilde; FOIL) as well as a predicate logic state

representation and techniques for explanation generation

(Meta-AQUA) and planning (SHOP2) that rely on high

level formalisms. Both high level and low level approaches

to AI have been used with great success in their individual

spheres. We believe that the integration of these approaches

is one of the most promising opportunities in modern AI,

and one of the central focuses of MIDCA.

Acknowledgments

This is supported by ONR Grants N00014-12-1-0430 and

N00014-12-1-0172 and by ARO Grant W911NF-12-1-0471.

References

Blockeel, H., & De Raedt, L. (1997). Lookahead and discretisation

in ILP. Proc. of the 7th intl. workshop on inductive logic

programming (pp. 77–84) Berlin: Springer

Cox, M. T. (2007). Perpetual self-aware cognitive agents. AI

Magazine 28(1), 32-45.

Cox, M. T. (2013). Question-based problem recognition and goal-

driven autonomy. Goal Reasoning: Papers from the ACS

workshop (pp. 10-25). (Tech. Rep. No. CS-TR-5029). College

Park, MD: Univ. Maryland, CS Dept.

Cox, M. T., & Burstein, M. H. (2008). Case-based explanations

and the integrated learning of demonstrations. Künstliche

Intelligenz 22(2), 35-38.

Cox, M. T., Maynord, M., Paisner, M., Perlis, D., & Oates, T.

(2013). The integration of cognitive and metacognitive

processes with data-driven and knowledge-rich structures. Proc.

of Annual Meeting of the Intl. Association for Computing and

Philosophy.

Cox, M. T., Oates, T., Paisner, M., & Perlis, D. (2012). Noting

anomalies in streams of symbolic predicates using A-distance.

Advances in Cognitive Systems 2, 167-184.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy

learning. Artificial Intelligence, 112, 1-55.

Hanheide, M., Hawes, N., Wyatt, J., Göbelbecker, M.,

Brenner, M., Sjöö, K., Aydemir, A., Jensfelt, P., Zender,

H. & Kruijff, G. J. (2010). A framework for goal generation

and management. AAAI Workshop on Goal-Directed Autonomy.

Klenk, M., Molineaux, M., & Aha, D. (2013). Goal-driven

autonomy for responding to unexpected events in strategy

simulations. Computational Intelligence, 29(2), 187–206.

Maynord, M., Cox, M. T., Paisner, M., & Perlis, D. (2013). Data-

driven goal generation for integrated cognitive systems. C.

Lebiere & P. S. Rosenbloom (Eds.), Integrated Cognition:

Papers from the 2013 Fall Symposium (pp. 47-54). Menlo Park,

CA: AAAI Press.

Molineaux, M., Klenk, M., Aha, D. (2010). Goal-driven autonomy

in a Navy strategy simulation. Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence. Menlo Park,

CA: AAAI Press.

Munoz-Avila, H., Jaidee, U., Aha, D. W., Carter, E. (2010). Goal-

driven autonomy with case-based reasoning. I. Bichindaritz & S.

Montani (Eds.), Case-Based Reasoning. Research and

Development, 18th International Conference on Case-Based

Reasoning, ICCBR 2010 (pp. 228-241). Berlin: Springer.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu, D., &

Yaman, F. (2003). SHOP2: An HTN planning system. Journal

of Artificial Intelligence Research 20, 379–404

Paisner, M., Perlis, D., & Cox, M. T. (2013). Symbolic anomaly

detection and assessment using growing neural gas. Proceedings

of the 25th IEEE Intl. Conf. on Tools with Artificial Intelligence

(pp. 175-181). Piscataway, NJ: IEEE Press.

Quinlan, J. R. (1990). Learning logical definitions from relations.

Machine Learning 5, 239-266.

Schermerhorn, P., Benton, J., Scheutz, M., Talamadupula, K.,

Kambhampati, S. (2009). Finding and exploiting goal

opportunities in real-time during plan execution. Proc. 2009

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (pp.

3912-3917). Piscataway, NJ: IEEE Press.

2090

