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Abstract 

The key difference between the cognitive abilities of humans 
and other animals may be the ability to reason relationally; 
models of relational reasoning are one way to demonstrate 
this proposed difference. The present work uses the DORA 
model to simulate a task designed to assess the theory of mind 
capabilities of 4- and 5-year-old children and apes. In the 
original experiment, the apes and children successfully 
completed a number of control tasks in which they used cues 
from an experimenter to reason about the hiding location of a 
reward. However, only the children succeeded on the critical 
manipulation in which it was necessary to infer what the 
experimenter knew. The simulations presented herein 
demonstrate that the apes’ performances across all tasks can 
be accounted for by simple rule use. Conversely, the 4-year-
olds succeeded via relational inference and learning; 5-year-
olds alone had the requisite relational structures predicated 
beforehand.  

Keywords: relational reasoning; cognitive development; 
computational models; comparative cognition. 

Introduction 

There is a long tradition in behavioral research of comparing 

the cognitive achievements of humans and non-human 

animals in order to assess the similarities and differences in 

their thinking and reasoning. Interestingly, many of the 

cognitive capabilities once thought to be the most “human” 

(e.g., transitive inference, language, relational thinking, 

hierarchical reasoning, mental state attribution) are claimed 

to have been observed in various animal species (see e.g., 

Bergman, Beehner, Cheney, & Seyfarth, 2003; Cook & 

Wasserman, 2007; Dally, Emery, & Clayton, 2006; Gentner, 

Fenn, & Margoliash, 2006; Lazareva et al., 2004). However, 

despite the striking similarities in the abilities of human and 

non-human animals, human cognition remains singular in 

the animal kingdom. Specifically, human cognition appears 

to possess a flexibility not observed in other animals (see 

below). The differences between humans’ and nonhuman 

animals’ cognition raise two very important questions. First, 

what are the cognitive processes that allow for the behavioral 

flexibility observed in human reasoning but not in that of 

other species? Second, to what extent are the mechanisms 

underlying these processes shared across species? 

In an attempt to address the first question, Penn, Holyoak, 

and Povinelli (2008) suggest that the cognitive process that 

lies at the heart of the observed differences between human 

and nonhuman animals is relational reasoning. Relational 

reasoning, in short, is reasoning about some object based on 

the role that it plays rather than its physical features alone. 

Penn et al. argue that this ability underlies the flexibility and 

structural sensitivity required for many uniquely human 

capabilities (e.g., language production, art, science, and 

mathematics; see also, Medin, Goldstone, & Gentner, 1993). 

In order to reason relationally, a system must be able to 

represent relations as explicit entities that can be 

dynamically bound to arguments (i.e., they must be 

predicated; Doumas & Hummel, 2005). Penn et al. (2008) 

argue that it is this precise capacity that differentiates human 

and non-human cognition, and they make a strong argument 

that, thus far, there is insufficient evidence to conclude that 

any non-human species possess this ability. 

The current research attempts to address the second 

question within the context of a non-verbal false belief task 

(i.e., that of Call & Tomasello, 1999). A series of computer 

simulations utilizing the DORA model of human relational 

learning (Doumas, Hummel, & Sandhofer, 2008) was 

conducted in order to demonstrate that the capacity for 

relational reasoning can explain the differences in task 

performance between apes and human children, as well as the 

developmental trends observed in 4- and 5-year-old children. 

Methods 

The following sections describe the non-verbal false belief 

tasks that were given to children and apes, a brief 

description of the LISA/DORA models of relational 

reasoning (for a more thorough explanation, see Doumas et 

al., 2008), and how the DORA model was used to simulate 

the behavioral data collected by Call and Tomasello (1999). 

Task Description 

Theory of mind tasks can be understood as relational in 

nature because they require a subject to reason about the 

mental contents of another, which involves using a higher-

order relational structure to cast a belief state on some 

proposition (Penn & Povinelli, 2007).
 1

 Theory of mind is a 

hotly debated topic within the comparative literature (see 

                                                           
1 For example, knows(communicator, contains(box, reward)). 

Words in italics represent predicated relational concepts (i.e., 

abstracted relations that are independent of the objects to which 

they are bound). The objects within the parentheses denote the 

actors fulfilling these roles. In this example: box (actor; the object 

doing the containing) contains (predicated relational concept) 

reward (patient; the object being contained). Knows is another 

predicated relational concept that is taking the contains(box, 

reward) predicate as the patient (the thing that is known about), 

thereby forming a higher-order relational structure.  
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Penn & Povenilli, 2007, for a discussion). Call and 

Tomasello (1999) demonstrated that 4- and 5-year-old 

children are capable of reasoning about the false beliefs of 

an observer (a type of theory of mind task) and attempted to 

test whether chimpanzees (Pan troglodytes) and orangutans 

(Pongo pygmaeus) also possess this ability. 

The original experiment was separated into four control 

tasks and one false belief task. In all five tasks, the hider 

would put a reward in one of two boxes, out of view of the 

participant and in full view of the communicator. The 

communicator would then place a marker on the box that 

she saw the reward go into and the participant had to choose 

the box that contained the reward.
 2

 Each control task 

evaluated participants’ abilities to perform an individual 

component of the false belief task. Task 1 addressed the 

question of whether the participant was able to choose the 

marked box in order to obtain a reward. In Task 2, the 

communicator marked the location of the reward, then the 

hider moved the reward from one box to the other in full 

view of the participant; this task assessed the participant’s 

ability to track the movement of the reward when it was 

visibly displaced. In Task 3, the communicator marked the 

location of the reward, and then the hider moved the boxes 

(one of which contained the reward) rather than the reward 

itself. In Task 4, the hider moved the reward from one box to 

the other in full view of the participant (as in Task 2) but out 

of the sight of the communicator before the communicator 

marked a box; to choose the box containing the reward, the 

participant had to ignore the communicator’s mark when the 

communicator was known to be wrong (i.e., the participant 

had seen the reward being placed in the other box).  

In the fifth and final manipulation of the task (i.e., the 

false belief task), understanding what the communicator did 

and did not know became essential for selecting the box 

containing the reward. Specifically, the hider switched the 

locations of the boxes in full view of the participant (as in 

Task 3) but out of the sight of the communicator before the 

communicator marked a box (as in Task 4). Of critical 

importance, when the communicator marked the box in 

which she had seen the reward hidden, it was the wrong one 

because she did not know that the boxes had been moved. 

Thus, Task 5 addressed whether the participant understood 

that the communicator had been fooled. Tasks 1 - 4 do not 

require the participant to reason about the mental contents of 

another while Task 5 requires the participant to recognize 

that the communicator holds a false belief. All of the apes 

performed below chance on these false belief trials (Task 5), 

despite the fact that they performed well above chance on 

the component tasks (Tasks 1 - 4). Thus, although the apes 

demonstrated that they were capable of choosing the 

unmarked box when they themselves had seen the reward 

                                                           
2 The marker was removed after a few seconds when the 

children were performing the task. In contrast, the marker 

remained on the box for the apes because performing the task with 

the marker removed proved too difficult for all but one of the apes, 

possibly due to working memory constraints (Read, 2008). 

Otherwise, the tasks were the same for the children and the apes. 

moved before the communicator marked the box she 

believed the reward to be in (Task 4), they failed to choose 

the unmarked box when they had seen the boxes moved 

before the communicator marked one (Task 5). 

Model Description 

Although there are many models of relational reasoning 

(e.g., Falkenhainer, Forbus, & Gentner, 1989; Holyoak & 

Thagard, 1989), of particular interest to the proposed study 

are LISA (Learning and Inference with Schemas and 

Analogies), developed by Hummel and Holyoak (1997, 

2003) and DORA (Discovery of Relations by Analogy), 

developed by Doumas et al. (2008). Collectively, LISA and 

DORA account for over 90 phenomena from the human 

cognitive development literature (e.g., Doumas et al., 2008; 

Hummel & Holyoak 1997, 2003). DORA was developed 

from LISA in response to the criticism that the LISA model 

was not able to account for where the structured 

representations it uses might originate (Munakata & 

O’Reilly, 2003; O’Reilly & Busby, 2002; O’Reilly, Bubsy, 

& Soto, 2003). DORA solves this particular problem by 

offering a neurally plausible instantiation of how structured 

representations can be learned from unstructured examples 

observed in the environment and thus provides an account 

of how children (and adults) acquire the representations that 

allow them to reason relationally. 

 

 
 

Figure 1. The proposition “box contains reward” is 

represented at the various levels of localist units. 

These representations are distributed in the sense that 

units in the layer above conjunctively code for units 

in the lower layers. 

 

Nature of Representations Representations within 

LISA/DORA exist as a hierarchy of distributed and localist 

units in a layered connectionist architecture (see Figure 1). 

On the bottom layer of the representational structure are 

semantic units coding for the features of objects and roles 

(or predicates) in a distributed fashion. In LISA/DORA, 

semantic units are shared between predicates and objects for 

two important reasons. First, it is important for the meaning 

of some property of an object and the explicit predicate of 

that property to mean the same thing (Doumas et al., 2008). 

That is, without a shared pool of semantic units, ‘blue’ as a 

feature of the ocean would be unlike ‘blue’ as a predicate, 
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which can be cast upon any object (Doumas et al., 2008). 

Localist predicate-object (or PO) units in the layer above the 

semantic units act as tokens for individual predicates and 

objects. Above the PO units, localist role-binding (RB) units 

link predicate and object units into role-filler pairs. 

Proposition (P) units in the top layer link sets of RB units 

together to form whole propositions.  

 

 
 

Figure 2. Relational learning in DORA; a new PO unit 

is recruited that codes for the featural overlap between 

two objects. This new PO unit becomes an explicit 

representation of these features. 

 

Flow of Control In LISA/DORA, propositions are divided 

into two mutually exclusive sets as they enter working 

memory. The first set, the driver (analogous to what the 

model is “attending to” at any given time; see Figure 2a) 

controls the sequence of firing events. The patterns of 

activation imposed on the semantic units by tokens in the 

driver allow LISA/DORA to retrieve propositions from long 

term memory into the second set, the recipient (analogous to 

active memory; Cowan, 2001; see Figure 2a), thereby making 

them available for mapping to propositions in the driver. 

Activation in the model then flows from the driver into the 

shared pool of semantic units, which, in turn, causes token 

units in the recipient to become active (Doumas et al., 2008). 

When a proposition becomes active in the driver, role-

filler bindings must be represented dynamically on the units 

that maintain role-filler independence (see, e.g., Hummel & 

Holyoak, 1997). Unlike LISA (in which binding 

information is carried via synchrony of firing), DORA 

carries binding information via systematic asynchrony of 

firing. Specifically, roles and the arguments to which they 

are bound fire in direct sequence as asynchronous couplets. 

The result is a pattern in which bound role-filler pairs fire in 

direct sequence and out of synchrony with other bound role-

filler pairs. Carrying binding information by when units fire 

allows identity information to be carried independently by 

which units fire. Thus, DORA solves the dynamic binding 

problem while processing structured symbolic representations 

in a fundamentally connectionist architecture. The result is a 

model with representations that include the strengths of both 

symbolic systems (i.e., structure sensitivity) and connectionist 

systems (i.e., distributed representations), while suffering 

the limitations of neither (see, e.g., Doumas & Hummel, 

2005, 2010; Hummel & Holyoak, 1997, 2003). 

 

Mapping and Relational Learning Generally speaking, 

mapping (i.e., the process of comparison) creates 

opportunities for DORA to predicate new properties. 

Mappings between units in the driver and the recipient 

indicate that these units have some properties in common. 

DORA’s mapping algorithm is the same as LISA’s; when 

units are active in both the driver and recipient 

simultaneously, the model attempts to map them by learning 

connections between them. Therefore, as units in the driver 

become active (i.e., as DORA ‘thinks’ about them), they 

will activate structurally and semantically similar units in 

the recipient through any shared semantic feature units. As a 

consequence, DORA maps structurally and semantically 

similar propositions across the driver and the recipient. 

In DORA, learning is a function of the ability to compare 

(see Doumas et al., 2008 for details). DORA begins with 

simple feature vector representations of objects (i.e., a PO 

unit connected to semantic units). As DORA goes through 

the process of comparing two objects, and they become co-

active, the corresponding features of those objects also fire 

in unison. Any semantic units that the two objects have in 

common become highlighted by virtue of receiving twice 

the activation that unshared units receive (see Figure 2a). 

DORA then recruits a new PO unit and learns connections 

between said unit and the active semantic units in proportion 

to their activation via a Hebbian learning rule (i.e., stronger 

connections to more active units; see Figure 2b). This 

process generates an explicit representation of all of the 

properties shared between the two objects, including those 

which may be irrelevant. For example, if a red apple is 

compared to a red fire engine, the explicit representation of 

‘red’ learning by the model will also carry with it any other 

features shared by the compared objects (e.g., both objects 

also might also contain the feature ‘shiny’). Consequently, 

additional examples of ‘red’ are needed in order to rid the 

representation of extraneous features. As DORA compares 

multiple instances of ‘red' objects extraneous features wash 

out, leaving only the essential features of the concept (see 

Figure 2c). Doumas et al., (2008) demonstrated how this 

process, applied over a range of examples, allows DORA to 

learn explicit structured representations of object properties 

and relational roles that can be linked together to create 

complex relational structures (see Figure 2d). 

 

Simulations 
The goal of the simulations presented herein is to explain 

the behavioral data of Call and Tomasello (1999) by 

demonstrating that the types of relational structures that are 

available to the reasoner (in this case, the ape or child) 

influences his/her performance on theory of mind tasks. We 

accomplish this by manipulating the types of knowledge 
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structures that are available to the model and comparing its 

performance to the behavior observed in the original 

experiment. More specifically, simple knowledge structures 

may be able to account for nonhuman primate data while 

more complex (i.e., abstract/relational) knowledge 

structures may be required to account for the performance of 

4- and 5-year old children. That is not to say that humans do 

not use simpler knowledge structures, but that false belief 

tasks require these complex structures. The purpose of the 

present simulation is not to demonstrate how relational 

representations are acquired; therefore, these structures are 

built-in from the onset of the simulation. However, 

importantly, all of the structures we use in the simulation 

can be easily learned via DORA’s predicate learning 

routines. For a detailed account of how these structures are 

learned see Doumas et al. (2008). 

 

Simulation 1: Apes To simulate the apes’ performance on 

the non-verbal false belief task, we assumed that, instead of 

reasoning based upon the actions of an observer, the apes in 

the study were using selection criteria based on 

combinations of visual features present in the experimental 

context. Specifically, if the reward is seen in a particular 

location, choose that location; otherwise, choose the box 

with the marker on it. Each task was coded with box1 and 

box2 objects (represented by PO units); the features of these 

objects included generic features of boxes, whether they had 

a mark, and whether the reward was seen being put into 

them. Two objects representing selection criteria were created 

and then placed in the driver while the representations of the 

boxes were loaded into the recipient. The model was then 

allowed to generate mappings between the selection criteria 

in the driver and the boxes in the recipient. Whichever 

selection criterion DORA mapped to in the driver was taken 

as DORA’s “choice” of the box to investigate for the 

reward. Note that mapping in this manner utilizes only the 

featural (as opposed to relational) aspects of the task and 

can therefore be entirely accounted for by associative 

learning mechanisms. There were four possible mappings 

DORA could make. A success was counted when the proper 

selection criterion was placed in correspondence with the 

proper object; the other three mappings were considered 

misses. A total of ten trials per manipulation were simulated.  

 

 

Figure 3. The comparison of the apes’ performance to 

that of the model used in Simulation 1. 

The results of Simulation 1 are depicted in Figure 3. The 

model was 100% accurate on all of the control task 

simulations (Tasks 1 - 4). In comparison, the apes’ scored 

87% correct on the task in which they had to choose the 

marked box (Task 1), 95% correct on the task in which they 

witnessed the hider move the reward after the communicator 

had marked the boxes (Task 2), 92% correct on the task in 

which they witnessed the hider switch the locations of the 

boxes before the communicator marked one (Task 3), and 

93% correct on the task in which they had seen the location 

of the reward and had to ignore the communicator’s 

(incorrect) mark (Task 4).
 3

 Similarly, the model performed 

at 0% on the false belief manipulation (Task 5), while the 

apes performed at 10.7%. Thus, DORA’s performance 

closely resembled the behavioral data collected from all five 

of Call and Tomasello’s (1999) tasks. For these simulations, 

we assumed that the model had perfect attention and 

focused only on the boxes and the task criteria. The small 

differences that were observed between the model’s 

behavior and the behavioral data could be fit by adding 

noise into the simulations. 

 

Simulation 2: 4-Year-Old Children Both the children and 

the apes had little difficulty selecting the location of the 

reward if they had seen where it had gone, and neither group 

had difficulty using the marker as a cue for the location of 

the reward. Simple rule use can easily account for this 

pattern of behavior, so we assumed that the 4-year-old 

children were initially reasoning about the task in much the 

same way as the apes did. However, unlike the apes, 

children would likely be building and refining more 

complex representational structures for the task across 

manipulations and trials. 

Therefore, Simulation 2 focused specifically on how the 

performance of the 4-year-old children changed during the 

course of the false belief task. This simulation was 

conducted by first placing the proposition hasMark(box) + 

select(box) in the driver and hasMark(box1) and 

noMark(box2) in the recipient.
4
 Each trial consisted of first 

allowing DORA to map the representations in the driver to 

the hasMark(box1) and noMark(box2) in the recipient, and 

then use relational inference to select a box. If the model 

inferred the representation select(box2), it was recorded as a 

hit and all other inferences were counted as misses.
5
 

Fourteen blocks of four trials each were run for a total of 56 

trials. The 4-year-old children and the model both 

performed below chance on the false belief task and 

                                                           
3 Due to the unavailability of the experimental data, percentages 

from tasks 2, 3, and 4 have been estimated from the figures and t-

statistics reported by Call and Tomasello (1999). 
4 Here, “+” denotes binding simple representational structures into 

propositions (i.e., multi-place predicates). See Doumas et al. (2008) 

for further discussion of how propositions are encoded and used for 

reasoning in DORA.  
5 The box1 and box2 objects differed only in regard to whether 

they carried semantic units for being marked or having the reward. 

Therefore, counter-balancing which box had the ‘reward’ semantic 

unit was unnecessary.  
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exhibited gradual improvement across trials. The 4-year-

olds’ average performance across all four trials was about 

38% correct and the model’s was about 41% correct.  

According to the changes in DORA’s representations 

across trials, this increase in accuracy is due to the fact that 

the mark always predicted the presence of the reward; thus 

DORA’s representation of the task initially had the features 

‘mark’ and ‘reward’ bound to the same PO unit. In regard to 

the children, this translates to their representations of these 

features being conflated. Therefore, 4-year-old children 

would have had to update their conflated representations 

and generalize a new rule before they could succeed on the 

false belief task. Likewise, DORA’s representation was 

refined over successive trials (see the above section titled 

Relational Learning for a description of how DORA 

accounts for this error and its resolution). 

 

Simulation 3: 5-Year-Old Children Seventy-nine percent 

of the 5-year-old children in Call and Tomasello’s (1999) 

study were successful on their first attempt at the false belief 

manipulation; we therefore focused on their performance in 

the first trial and assumed that, by this age, children have 

built a representation of the rules “If knows(x), then 

accurate(x),” and “If notKnows(x), then inaccurate(x).” On 

all trials in which the notKnows(x) + inaccurate(x) 

proposition was placed into the driver and 

notKnows(communicator) was placed into the recipient, the 

model was able to infer that, because the communicator did 

not know the location of the reward, the communicator’s 

mark was inaccurate and, therefore, selecting the marked 

box was not the correct choice. It is worth noting that the 

model had perfect attention and task execution, whereas 

some portion of the children’s errors may be attributable to 

loss of attention and lack of inhibitory control. Together, 

attention and inhibition are likely explanations for the 

discrepancy between the model’s perfect performance and 

children’s slightly less than perfect performance. Our goal in 

these simulations was not to adjust parameters unnecessarily 

(e.g., by adding noise) to more closely fit the data. Instead 

we were concerned with qualitative fits and making the 

fewest additional assumptions possible. As such, we did not 

include properties like reduced attention or noise, but rather 

sought to simulate general trends using slight variations in 

the types of knowledge representations available to the 

model. Specifically, we were able to simulate the behavior 

of the apes using only holistic feature properties, whereas 

structured representations were required to simulate the 

behavior of the children. While these structures can be 

learned from holistic feature vectors (see Doumas et al., 

2008), Penn et al., (2008) argue that it is precisely the 

capacity to learn and manipulate these structures that 

differentiates human and non-human cognition.  

Conclusion 

Call and Tomasello (1999) concluded that the apes were not 

capable of utilizing the mental contents of the observer to 

reason successfully on the false belief task. However, the 

authors provide an alternative explanation, speculating that 

the task may have been too difficult for the apes, as success 

would have involved coordinating many different small 

pieces of evidence. This interpretation does not preclude apes 

from possessing theory of mind per se; however, there has yet 

to be a definitive demonstration of theory of mind capabilities 

in apes (see Penn & Povenelli, 2007 for further discussion).  

In support of Call and Tomasello’s conclusion, their 

results were simulated without any information from the 

observer or the hider. Therefore, it is unlikely that the 

observer’s behavior had any impact on the apes’ reasoning. 

DORA’s ability to account for these behavioral data without 

the structured representations typically thought of as being 

necessary for relational reasoning suggests that apes 

succeeded on the control tasks by using simple associative 

learning alone; namely, retrieving memories of receiving 

rewards and the associated perceptual features of the task 

configuration, then mapping those features onto the test 

configurations. This claim is further substantiated by the 

apes’ failure on the false belief task, in which using 

relational inference was necessary for reasoning about the 

mental contents of another.  

The results from the simulations of 4- and 5-year-olds 

provide evidence that children are using relational 

knowledge (in addition to associative learning mechanisms) 

to reason about the task. The difference between the 

performances of 4- and 5-year-olds seems to be whether 

they possess the particular relational representation required 

to reason about false beliefs (i.e., notKnows(x)). Although 

these simulations do not provide conclusive evidence that 

apes lack theory of mind capabilities, they support the 

notion of relational reasoning being critical to both the 

observed differences in apes’ and humans’ performance on 

false belief tasks and in human and nonhuman animal 

cognition in general. 
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