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Abstract

The key difference between the cognitive abilities of humans
and other animals may be the ability to reason relationally;
models of relational reasoning are one way to demonstrate
this proposed difference. The present work uses the DORA
model to simulate a task designed to assess the theory of mind
capabilities of 4- and 5-year-old children and apes. In the
original experiment, the apes and children successfully
completed a number of control tasks in which they used cues
from an experimenter to reason about the hiding location of a
reward. However, only the children succeeded on the critical
manipulation in which it was necessary to infer what the
experimenter knew. The simulations presented herein
demonstrate that the apes’ performances across all tasks can
be accounted for by simple rule use. Conversely, the 4-year-
olds succeeded via relational inference and learning; 5-year-
olds alone had the requisite relational structures predicated
beforehand.

Keywords: relational reasoning; cognitive development;
computational models; comparative cognition.

Introduction

There is a long tradition in behavioral research of comparing
the cognitive achievements of humans and non-human
animals in order to assess the similarities and differences in
their thinking and reasoning. Interestingly, many of the
cognitive capabilities once thought to be the most “human”
(e.g., transitive inference, language, relational thinking,
hierarchical reasoning, mental state attribution) are claimed
to have been observed in various animal species (see e.g.,
Bergman, Beehner, Cheney, & Seyfarth, 2003; Cook &
Wasserman, 2007; Dally, Emery, & Clayton, 2006; Gentner,
Fenn, & Margoliash, 2006; Lazareva et al., 2004). However,
despite the striking similarities in the abilities of human and
non-human animals, human cognition remains singular in
the animal kingdom. Specifically, human cognition appears
to possess a flexibility not observed in other animals (see
below). The differences between humans’ and nonhuman
animals’ cognition raise two very important questions. First,
what are the cognitive processes that allow for the behavioral
flexibility observed in human reasoning but not in that of
other species? Second, to what extent are the mechanisms
underlying these processes shared across species?

In an attempt to address the first question, Penn, Holyoak,
and Povinelli (2008) suggest that the cognitive process that
lies at the heart of the observed differences between human
and nonhuman animals is relational reasoning. Relational
reasoning, in short, is reasoning about some object based on
the role that it plays rather than its physical features alone.

Penn et al. argue that this ability underlies the flexibility and
structural sensitivity required for many uniquely human
capabilities (e.g., language production, art, science, and
mathematics; see also, Medin, Goldstone, & Gentner, 1993).
In order to reason relationally, a system must be able to
represent relations as explicit entities that can be
dynamically bound to arguments (i.e., they must be
predicated; Doumas & Hummel, 2005). Penn et al. (2008)
argue that it is this precise capacity that differentiates human
and non-human cognition, and they make a strong argument
that, thus far, there is insufficient evidence to conclude that
any non-human species possess this ability.

The current research attempts to address the second
question within the context of a non-verbal false belief task
(i.e., that of Call & Tomasello, 1999). A series of computer
simulations utilizing the DORA model of human relational
learning (Doumas, Hummel, & Sandhofer, 2008) was
conducted in order to demonstrate that the capacity for
relational reasoning can explain the differences in task
performance between apes and human children, as well as the
developmental trends observed in 4- and 5-year-old children.

Methods

The following sections describe the non-verbal false belief
tasks that were given to children and apes, a brief
description of the LISA/DORA models of relational
reasoning (for a more thorough explanation, see Doumas et
al., 2008), and how the DORA model was used to simulate
the behavioral data collected by Call and Tomasello (1999).

Task Description

Theory of mind tasks can be understood as relational in
nature because they require a subject to reason about the
mental contents of another, which involves using a higher-
order relational structure to cast a belief state on some
proposition (Penn & Povinelli, 2007). ! Theory of mind is a
hotly debated topic within the comparative literature (see

! For example, knows(communicator, contains(box, reward)).
Words in italics represent predicated relational concepts (i.e.,
abstracted relations that are independent of the objects to which
they are bound). The objects within the parentheses denote the
actors fulfilling these roles. In this example: box (actor; the object
doing the containing) contains (predicated relational concept)
reward (patient; the object being contained). Knows is another
predicated relational concept that is taking the contains(box,
reward) predicate as the patient (the thing that is known about),
thereby forming a higher-order relational structure.
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Penn & Povenilli, 2007, for a discussion). Call and
Tomasello (1999) demonstrated that 4- and 5-year-old
children are capable of reasoning about the false beliefs of
an observer (a type of theory of mind task) and attempted to
test whether chimpanzees (Pan troglodytes) and orangutans
(Pongo pygmaeus) also possess this ability.

The original experiment was separated into four control
tasks and one false belief task. In all five tasks, the hider
would put a reward in one of two boxes, out of view of the
participant and in full view of the communicator. The
communicator would then place a marker on the box that
she saw the reward go into and the participant had to choose
the box that contained the reward. > Each control task
evaluated participants’ abilities to perform an individual
component of the false belief task. Task 1 addressed the
question of whether the participant was able to choose the
marked box in order to obtain a reward. In Task 2, the
communicator marked the location of the reward, then the
hider moved the reward from one box to the other in full
view of the participant; this task assessed the participant’s
ability to track the movement of the reward when it was
visibly displaced. In Task 3, the communicator marked the
location of the reward, and then the hider moved the boxes
(one of which contained the reward) rather than the reward
itself. In Task 4, the hider moved the reward from one box to
the other in full view of the participant (as in Task 2) but out
of the sight of the communicator before the communicator
marked a box; to choose the box containing the reward, the
participant had to ignore the communicator’s mark when the
communicator was known to be wrong (i.e., the participant
had seen the reward being placed in the other box).

In the fifth and final manipulation of the task (i.e., the
false belief task), understanding what the communicator did
and did not know became essential for selecting the box
containing the reward. Specifically, the hider switched the
locations of the boxes in full view of the participant (as in
Task 3) but out of the sight of the communicator before the
communicator marked a box (as in Task 4). Of critical
importance, when the communicator marked the box in
which she had seen the reward hidden, it was the wrong one
because she did not know that the boxes had been moved.
Thus, Task 5 addressed whether the participant understood
that the communicator had been fooled. Tasks 1 - 4 do not
require the participant to reason about the mental contents of
another while Task 5 requires the participant to recognize
that the communicator holds a false belief. All of the apes
performed below chance on these false belief trials (Task 5),
despite the fact that they performed well above chance on
the component tasks (Tasks 1 - 4). Thus, although the apes
demonstrated that they were capable of choosing the
unmarked box when they themselves had seen the reward

2 The marker was removed after a few seconds when the
children were performing the task. In contrast, the marker
remained on the box for the apes because performing the task with
the marker removed proved too difficult for all but one of the apes,
possibly due to working memory constraints (Read, 2008).
Otherwise, the tasks were the same for the children and the apes.

moved before the communicator marked the box she
believed the reward to be in (Task 4), they failed to choose
the unmarked box when they had seen the boxes moved
before the communicator marked one (Task 5).

Model Description

Although there are many models of relational reasoning
(e.g., Falkenhainer, Forbus, & Gentner, 1989; Holyoak &
Thagard, 1989), of particular interest to the proposed study
are LISA (Learning and Inference with Schemas and
Analogies), developed by Hummel and Holyoak (1997,
2003) and DORA (Discovery of Relations by Analogy),
developed by Doumas et al. (2008). Collectively, LISA and
DORA account for over 90 phenomena from the human
cognitive development literature (e.g., Doumas et al., 2008;
Hummel & Holyoak 1997, 2003). DORA was developed
from LISA in response to the criticism that the LISA model
was not able to account for where the structured
representations it uses might originate (Munakata &
O’Reilly, 2003; O’Reilly & Busby, 2002; O’Reilly, Bubsy,
& Soto, 2003). DORA solves this particular problem by
offering a neurally plausible instantiation of how structured
representations can be learned from unstructured examples
observed in the environment and thus provides an account
of how children (and adults) acquire the representations that
allow them to reason relationally.

RB units

contained(reward) |

| container(box) |

PO units

semantic units

Figure 1. The proposition “box contains reward” is
represented at the various levels of localist units.
These representations are distributed in the sense that
units in the layer above conjunctively code for units
in the lower layers.

Nature of Representations Representations within
LISA/DORA exist as a hierarchy of distributed and localist
units in a layered connectionist architecture (see Figure 1).
On the bottom layer of the representational structure are
semantic units coding for the features of objects and roles
(or predicates) in a distributed fashion. In LISA/DORA,
semantic units are shared between predicates and objects for
two important reasons. First, it is important for the meaning
of some property of an object and the explicit predicate of
that property to mean the same thing (Doumas et al., 2008).
That is, without a shared pool of semantic units, ‘blue’ as a
feature of the ocean would be unlike ‘blue’ as a predicate,
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which can be cast upon any object (Doumas et al., 2008).
Localist predicate-object (or PO) units in the layer above the
semantic units act as tokens for individual predicates and
objects. Above the PO units, localist role-binding (RB) units
link predicate and object units into role-filler pairs.
Proposition (P) units in the top layer link sets of RB units
together to form whole propositions.

(@)

box1

A

driver

recipient

\hasMark”

hasMark(boxA)

Figure 2. Relational learning in DORA; a new PO unit
is recruited that codes for the featural overlap between
two objects. This new PO unit becomes an explicit
representation of these features.

Flow of Control In LISA/DORA, propositions are divided
into two mutually exclusive sets as they enter working
memory. The first set, the driver (analogous to what the
model is “attending to” at any given time; see Figure 2a)
controls the sequence of firing events. The patterns of
activation imposed on the semantic units by tokens in the
driver allow LISA/DORA to retrieve propositions from long
term memory into the second set, the recipient (analogous to
active memory; Cowan, 2001; see Figure 2a), thereby making
them available for mapping to propositions in the driver.
Activation in the model then flows from the driver into the
shared pool of semantic units, which, in turn, causes token
units in the recipient to become active (Doumas et al., 2008).

When a proposition becomes active in the driver, role-
filler bindings must be represented dynamically on the units
that maintain role-filler independence (see, e.g., Hummel &
Holyoak, 1997). Unlike LISA (in which binding
information is carried via synchrony of firing), DORA
carries binding information via systematic asynchrony of
firing. Specifically, roles and the arguments to which they
are bound fire in direct sequence as asynchronous couplets.
The result is a pattern in which bound role-filler pairs fire in
direct sequence and out of synchrony with other bound role-
filler pairs. Carrying binding information by when units fire
allows identity information to be carried independently by
which units fire. Thus, DORA solves the dynamic binding
problem while processing structured symbolic representations
in a fundamentally connectionist architecture. The result is a

model with representations that include the strengths of both
symbolic systems (i.e., structure sensitivity) and connectionist
systems (i.e., distributed representations), while suffering
the limitations of neither (see, e.g., Doumas & Hummel,
2005, 2010; Hummel & Holyoak, 1997, 2003).

Mapping and Relational Learning Generally speaking,
mapping (i.e., the process of comparison) creates
opportunities for DORA to predicate new properties.
Mappings between units in the driver and the recipient
indicate that these units have some properties in common.
DORA'’s mapping algorithm is the same as LISA’s; when
units are active in both the driver and recipient
simultaneously, the model attempts to map them by learning
connections between them. Therefore, as units in the driver
become active (i.e., as DORA ‘thinks’ about them), they
will activate structurally and semantically similar units in
the recipient through any shared semantic feature units. As a
consequence, DORA maps structurally and semantically
similar propositions across the driver and the recipient.

In DORA, learning is a function of the ability to compare
(see Doumas et al., 2008 for details). DORA begins with
simple feature vector representations of objects (i.e., a PO
unit connected to semantic units). As DORA goes through
the process of comparing two objects, and they become co-
active, the corresponding features of those objects also fire
in unison. Any semantic units that the two objects have in
common become highlighted by virtue of receiving twice
the activation that unshared units receive (see Figure 2a).
DORA then recruits a new PO unit and learns connections
between said unit and the active semantic units in proportion
to their activation via a Hebbian learning rule (i.e., stronger
connections to more active units; see Figure 2b). This
process generates an explicit representation of all of the
properties shared between the two objects, including those
which may be irrelevant. For example, if a red apple is
compared to a red fire engine, the explicit representation of
‘red’ learning by the model will also carry with it any other
features shared by the compared objects (e.g., both objects
also might also contain the feature ‘shiny’). Consequently,
additional examples of ‘red’ are needed in order to rid the
representation of extraneous features. As DORA compares
multiple instances of ‘red' objects extraneous features wash
out, leaving only the essential features of the concept (see
Figure 2c). Doumas et al., (2008) demonstrated how this
process, applied over a range of examples, allows DORA to
learn explicit structured representations of object properties
and relational roles that can be linked together to create
complex relational structures (see Figure 2d).

Simulations

The goal of the simulations presented herein is to explain
the behavioral data of Call and Tomasello (1999) by
demonstrating that the types of relational structures that are
available to the reasoner (in this case, the ape or child)
influences his/her performance on theory of mind tasks. We
accomplish this by manipulating the types of knowledge
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structures that are available to the model and comparing its
performance to the behavior observed in the original
experiment. More specifically, simple knowledge structures
may be able to account for nonhuman primate data while
more complex (i.e.,, abstract/relational) knowledge
structures may be required to account for the performance of
4- and 5-year old children. That is not to say that humans do
not use simpler knowledge structures, but that false belief
tasks require these complex structures. The purpose of the
present simulation is not to demonstrate how relational
representations are acquired; therefore, these structures are
built-in from the onset of the simulation. However,
importantly, all of the structures we use in the simulation
can be easily learned via DORA’s predicate learning
routines. For a detailed account of how these structures are
learned see Doumas et al. (2008).

Simulation 1: Apes To simulate the apes’ performance on
the non-verbal false belief task, we assumed that, instead of
reasoning based upon the actions of an observer, the apes in
the study were wusing selection criteria based on
combinations of visual features present in the experimental
context. Specifically, if the reward is seen in a particular
location, choose that location; otherwise, choose the box
with the marker on it. Each task was coded with box1 and
box2 objects (represented by PO units); the features of these
objects included generic features of boxes, whether they had
a mark, and whether the reward was seen being put into
them. Two objects representing selection criteria were created
and then placed in the driver while the representations of the
boxes were loaded into the recipient. The model was then
allowed to generate mappings between the selection criteria
in the driver and the boxes in the recipient. Whichever
selection criterion DORA mapped to in the driver was taken
as DORA’s “choice” of the box to investigate for the
reward. Note that mapping in this manner utilizes only the
featural (as opposed to relational) aspects of the task and
can therefore be entirely accounted for by associative
learning mechanisms. There were four possible mappings
DORA could make. A success was counted when the proper
selection criterion was placed in correspondence with the
proper object; the other three mappings were considered
misses. A total of ten trials per manipulation were simulated.

100 T @ Apes
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Figure 3. The comparison of the apes’ performance to
that of the model used in Simulation 1.

The results of Simulation 1 are depicted in Figure 3. The
model was 100% accurate on all of the control task
simulations (Tasks 1 - 4). In comparison, the apes’ scored
87% correct on the task in which they had to choose the
marked box (Task 1), 95% correct on the task in which they
witnessed the hider move the reward after the communicator
had marked the boxes (Task 2), 92% correct on the task in
which they witnessed the hider switch the locations of the
boxes before the communicator marked one (Task 3), and
93% correct on the task in which they had seen the location
of the reward and had to ignore the communicator’s
(incorrect) mark (Task 4). ® Similarly, the model performed
at 0% on the false belief manipulation (Task 5), while the
apes performed at 10.7%. Thus, DORA’s performance
closely resembled the behavioral data collected from all five
of Call and Tomasello’s (1999) tasks. For these simulations,
we assumed that the model had perfect attention and
focused only on the boxes and the task criteria. The small
differences that were observed between the model’s
behavior and the behavioral data could be fit by adding
noise into the simulations.

Simulation 2: 4-Year-Old Children Both the children and
the apes had little difficulty selecting the location of the
reward if they had seen where it had gone, and neither group
had difficulty using the marker as a cue for the location of
the reward. Simple rule use can easily account for this
pattern of behavior, so we assumed that the 4-year-old
children were initially reasoning about the task in much the
same way as the apes did. However, unlike the apes,
children would likely be building and refining more
complex representational structures for the task across
manipulations and trials.

Therefore, Simulation 2 focused specifically on how the
performance of the 4-year-old children changed during the
course of the false belief task. This simulation was
conducted by first placing the proposition hasMark(box) +
select(box) in the driver and hasMark(boxl) and
noMark(box2) in the recipient. Each trial consisted of first
allowing DORA to map the representations in the driver to
the hasMark(box1) and noMark(box2) in the recipient, and
then use relational inference to select a box. If the model
inferred the representation select(box?2), it was recorded as a
hit and all other inferences were counted as misses.’
Fourteen blocks of four trials each were run for a total of 56
trials. The 4-year-old children and the model both
performed below chance on the false belief task and

® Due to the unavailability of the experimental data, percentages
from tasks 2, 3, and 4 have been estimated from the figures and t-
statistics reported by Call and Tomasello (1999).

* Here, “+” denotes binding simple representational structures into
propositions (i.e., multi-place predicates). See Doumas et al. (2008)
for further discussion of how propositions are encoded and used for
reasoning in DORA.

® The box1 and box2 objects differed only in regard to whether
they carried semantic units for being marked or having the reward.
Therefore, counter-balancing which box had the ‘reward” semantic
unit was unnecessary.
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exhibited gradual improvement across trials. The 4-year-
olds’ average performance across all four trials was about
38% correct and the model’s was about 41% correct.

According to the changes in DORA’s representations
across trials, this increase in accuracy is due to the fact that
the mark always predicted the presence of the reward; thus
DORA'’s representation of the task initially had the features
‘mark’ and ‘reward’ bound to the same PO unit. In regard to
the children, this translates to their representations of these
features being conflated. Therefore, 4-year-old children
would have had to update their conflated representations
and generalize a new rule before they could succeed on the
false belief task. Likewise, DORA’s representation was
refined over successive trials (see the above section titled
Relational Learning for a description of how DORA
accounts for this error and its resolution).

Simulation 3: 5-Year-Old Children Seventy-nine percent
of the 5-year-old children in Call and Tomasello’s (1999)
study were successful on their first attempt at the false belief
manipulation; we therefore focused on their performance in
the first trial and assumed that, by this age, children have
built a representation of the rules “If knows(x), then
accurate(x),” and “If notKnows(x), then inaccurate(x).” On
all trials in which the notKnows(x) + inaccurate(x)
proposition  was placed into the driver and
notKnows(communicator) was placed into the recipient, the
model was able to infer that, because the communicator did
not know the location of the reward, the communicator’s
mark was inaccurate and, therefore, selecting the marked
box was not the correct choice. It is worth noting that the
model had perfect attention and task execution, whereas
some portion of the children’s errors may be attributable to
loss of attention and lack of inhibitory control. Together,
attention and inhibition are likely explanations for the
discrepancy between the model’s perfect performance and
children’s slightly less than perfect performance. Our goal in
these simulations was not to adjust parameters unnecessarily
(e.g., by adding noise) to more closely fit the data. Instead
we were concerned with qualitative fits and making the
fewest additional assumptions possible. As such, we did not
include properties like reduced attention or noise, but rather
sought to simulate general trends using slight variations in
the types of knowledge representations available to the
model. Specifically, we were able to simulate the behavior
of the apes using only holistic feature properties, whereas
structured representations were required to simulate the
behavior of the children. While these structures can be
learned from holistic feature vectors (see Doumas et al.,
2008), Penn et al., (2008) argue that it is precisely the
capacity to learn and manipulate these structures that
differentiates human and non-human cognition.

Conclusion

Call and Tomasello (1999) concluded that the apes were not
capable of utilizing the mental contents of the observer to
reason successfully on the false belief task. However, the

authors provide an alternative explanation, speculating that
the task may have been too difficult for the apes, as success
would have involved coordinating many different small
pieces of evidence. This interpretation does not preclude apes
from possessing theory of mind per se; however, there has yet
to be a definitive demonstration of theory of mind capabilities
in apes (see Penn & Povenelli, 2007 for further discussion).

In support of Call and Tomasello’s conclusion, their
results were simulated without any information from the
observer or the hider. Therefore, it is unlikely that the
observer’s behavior had any impact on the apes’ reasoning.
DORA’s ability to account for these behavioral data without
the structured representations typically thought of as being
necessary for relational reasoning suggests that apes
succeeded on the control tasks by using simple associative
learning alone; namely, retrieving memories of receiving
rewards and the associated perceptual features of the task
configuration, then mapping those features onto the test
configurations. This claim is further substantiated by the
apes’ failure on the false belief task, in which using
relational inference was necessary for reasoning about the
mental contents of another.

The results from the simulations of 4- and 5-year-olds
provide evidence that children are using relational
knowledge (in addition to associative learning mechanisms)
to reason about the task. The difference between the
performances of 4- and 5-year-olds seems to be whether
they possess the particular relational representation required
to reason about false beliefs (i.e., notKnows(x)). Although
these simulations do not provide conclusive evidence that
apes lack theory of mind capabilities, they support the
notion of relational reasoning being critical to both the
observed differences in apes’ and humans’ performance on
false belief tasks and in human and nonhuman animal
cognition in general.
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