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Abstract

External representations are more effective when spatial di-
mensions are used to represent numeric variables. However,
this principle may result in suboptimal representations when
the number of numeric variables to be represented is large. To
test this possibility, participants studied a set of graphs repre-
senting a parametrized function under different parameter val-
ues. The graphs were displayed either using a grid organiza-
tion, with parameter values represented by spatial dimensions
(horizontal and vertical position of the graphs), or juxtaposed
in a single area, with parameter values represented by non-spa-
tial dimensions (color and texture). Juxtaposed organization
led to better learning. However, this advantage was eliminated
when the graphs were presented successively rather than sim-
ultaneously. The results suggest that juxtaposed organization
can improve comprehension of complex data by facilitating
comparison between parts of the data. Such organization may
be preferable even if it precludes use of spatial dimensions for
some numeric variables.

Keywords: external representations; graphs; human factors;
mathematics; education.

Background

External representations of information, such as pictures, di-
agrams, and graphs, play an important role in human thought,
serving as tools to facilitate learning, problem solving, and
communication. The effectiveness of external representa-
tions depends in large part on the degree to which they respect
cognitive constraints on their design. A well-studied class of
constraints known relates to the selection of representational
dimensions — that is, the choice of which features or dimen-
sions of the external representation will represent which fea-
tures or dimensions of the information to be represented. For
example, in a network diagram, degree of connectivity be-
tween nodes could be represented by either spatial proximity
or thickness of the lines connecting them (Tversky, Corter,
Yu, Mason, & Nickerson, 2012), while in a graph of experi-
mental results, different data points could be represented by
either bars or points on lines, and so on.

One general cognitive constraint on the selection of repre-
sentational dimensions is congruence: external representa-
tions are more effective when dimensions of the information
are represented by similarly structured dimensions of the rep-
resentation (Hegarty, 2011; Tversky, Morrison, &
Betrancourt, 2002; Zhang, 1996). For example, in diagrams,
categorical variables are best represented by categorical vis-
ual dimensions such as inclusion in containing shapes, while
continuous variables are best represented by continuous vis-
ual dimensions such as proximity (Tversky et al., 2012). Ra-
tio scale variables, including most numeric variables, are best
represented by visual dimensions that also possess a ratio

scale (Zhang, 1996). Spatial dimensions, e.g. horizontal or
vertical position, fall into this category, while many non-spa-
tial dimensions, e.g. line color and line texture, do not. Asan
example, it is preferable to represent numeric variables by
position on the x-axis of a graph, a spatial dimension, than by
the graph legend, typically corresponding to a non-spatial di-
mension such as line color or texture (Shah & Carpenter,
1995).

The constraints just discussed apply primarily to the selec-

tion of representational dimensions for individual dimensions
of the represented information. If the information to be rep-
resented involves multiple dimensions, additional constraints
may arise when these dimensions are considered together.
Consequently, a selection of representational dimensions
might be optimal from the perspective of each dimension
considered separately, but suboptimal when considered as a
whole. Thus, a complete understanding of cognitive con-
straints on the selection of representational dimensions must
include an understanding of constraints that apply specifi-
cally to the selection of multiple dimensions. This type of
constraint has received comparatively little attention in re-
search to date.
To make this issue more concrete, consider Figures 1A and
1B. These figures present a number of graph lines illustrative
of the binomial distribution. The binomial distribution gives
the probabilities of the different possible outcomes of a se-
guence of independent binomial trials, here termed “repeti-
tions,” where an outcome is defined as a certain proportion of
repetitions resulting in “successes.” The probability mass
function over possible outcomes is determined by two param-
eters, the number of repetitions n and the probability of suc-
cess on a single repetition p. Figures 1A and 1B each show
9 graph lines for the probability mass functions correspond-
ing to 9 different combinations of values of n and p. In both
figures, the different possible outcomes are represented by
the x-axis and the corresponding probabilities by the y-axis.
However, the figures differ in their selection of visual dimen-
sions to represent the parameters n and p. In Figure 1A, the
graph lines are contained in separate graphs, which are ar-
ranged in a grid, and the parameters are represented by spatial
dimensions: each vertical position in the grid represents a dif-
ferent number of repetitions n, and each horizontal position a
different probability of success p. In Figure 1B, the graph
lines are contained in a common plot area, and the parameters
are represented by non-spatial dimensions: each line texture
represents a different number of repetitions n, and each line
color a different number of repetitions p.

The graphs shown in Figures 1A and 1B all involve the
same four variables: the proportions of repetitions resulting
in success, the probabilities of each such proportion, and the
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Figure 1. Training interface. (A) Simultaneous/grid version, (B) Simultaneous/juxtaposed version,
(C) Successive/grid version, (D) Successive/juxtaposed version.



parameters n and p. Because all of these variables are nu-
meric, the general constraints discussed above imply that
they are most suitably represented by spatial dimensions.
Thus, if the selection of representational dimensions is con-
sidered separately for each variable, the approach employed
in Figure 1A, where the parameters are represented by spatial
dimensions, should be superior to that of Figure 1B, where
the parameters are represented by non-spatial dimensions.

However, consideration of the selections of representa-
tional dimensions for all the variables taken together suggests
a possible drawback of the approach in Figure 1A, namely,
each spatial dimension represents more than one variable. In
particular, vertical position represents both the number of
repetitions n and the probabilities associated with the differ-
ent proportions of successes, while horizontal position repre-
sents both the probability of success p and the proportion of
repetitions resulting in success. “Overloading” a single di-
mension by using it to represent multiple variables is poten-
tially confusing even if that dimension is a good choice to
represent each variable individually.

At this point, it is important to highlight that while the
above example may appear highly specific, the issue just
mentioned is not idiosyncratic to this example, but instead
quite general. Whenever data involving k numeric variables
are represented using fewer than k spatial dimensions — for
example, when data involving at least 3 numeric variables are
represented using 2-dimensional graphs — using spatial di-
mensions to represent all of the numeric variables will neces-
sarily result in overloading at least one spatial dimension. In
such cases, the danger of overloading a single spatial dimen-
sion with multiple variables can be avoided by using non-
spatial dimensions to represent some of the variables. This
approach is illustrated in Figure 1B, in which different values
of the parameters of the binomial distribution are represented
by different line colors and textures, rather than by different
horizontal and vertical positions.

Besides avoiding confusion due to overloading spatial di-
mensions, the approach illustrated in Figure 1B has an addi-
tional potential advantage: By juxtaposing all of the graph
lines in a common plot area, it facilitates comparison between
them. Comparison has been proposed as a basic cognitive
mechanism capable of increasing the salience of both simi-
larities and differences between the things compared
(Gentner, 2010; Kurtz, Boukrina, & Gentner, 2013). Draw-
ing comparisons between examples can improve learning of
categories and concepts by drawing attention to the critical
dimensions on which the examples vary. Thus, even if over-
loading of spatial dimensions is not an issue, using non-spa-
tial dimensions to represent some variables might still be ad-
vantageous by virtue of allowing more data to be juxtaposed
in a common space, and thereby facilitating comparisons be-
tween different parts of the data.

So far, we have only considered static representations in
which all the information available is presented simultane-
ously, as in Figures 1A and 1B. However, it is not obvious

1 The experiment can be accessed at https://perceptscon-
cepts.psych.indiana.edu/experiments/dwb/STOE_01/demo.html.

that simultaneously presenting all available information is the
best approach. If the information is complex, as is often the
case for datasets involving large numbers of variables, sim-
ultaneous presentation could create excessive cognitive load
(Mayer & Moreno, 2003), making it difficult to process the
information. Presenting parts of the information successively
could alleviate this difficulty by encouraging users of the rep-
resentation to focus on one part at a time. This approach is
illustrated in Figures 1C and 1D. The information in these
Figures is spatially organized in the same way as in Figures
1A and 1B, respectively. However, only one of the 9 graph
lines is available at any given moment.

The effects of simultaneous or successive presentation
mode might interact with those of different approaches to
spatial organization. Specifically, if juxtaposed spatial or-
ganizations, such as the one employed in Figure 1B, are ad-
vantageous by virtue of facilitating comparisons, this ad-
vantage should be reduced or eliminated if different parts of
the represented information are presented successively rather
than simultaneously, as in Figure 1D. The reason is that suc-
cessive presentation interferes with comparison, while simul-
taneous presentation facilitates it (Loess & Duncan, 1952).
On the other hand, if juxtaposed organizations (Figure 1B)
are advantageous by virtue of avoiding confusion due to over-
loading spatial dimensions with multiple variables, then this
advantage should apply regardless of whether simultaneous
or successive presentation is employed.

The experiment described below was designed to address
three related questions resulting from the above discussion.
(1) If the number of numeric variables to be represented ex-
ceeds the number of spatial dimensions available to represent
them, is it preferable to represent all of the variables by spa-
tial dimensions, or instead to represent some of the variables
by non-spatial dimensions? (2) If the latter approach is more
effective, is the reason due to facilitating comparison or to
avoiding confusion caused by overloading spatial dimensions
with multiple variables? (3) Is either simultaneous or succes-
sive presentation preferable to the other?

Method

Participants learned about how properties of the binomial dis-
tribution depend on the values of its parameters by using an
interactive tutorial, which presented example graphs of the
binomial distribution for different combinations of parameter
values. The examples were presented either simultaneously
or successively, and were either organized in a grid or juxta-
posed in a common space, as described in the Introduction.
After completing the tutorial, participants were tested on their
understanding by answering recall and comprehension ques-
tions without being able to refer to the tutorial examples. Ac-
curacy on the test served as a measure of the effectiveness of
the representation used during the tutorial®.
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Participants

Participants were N=164 Indiana University undergraduate
students who participated in partial fulfillment of a course re-
quirement. Participants were assigned randomly to one of the
four factorial combinations of presentation mode — simulta-
neous or successive — and spatial organization — grid or jux-
taposed. 42 participants were assigned to the simultane-
ous/grid condition, 40 to the simultaneous/juxtaposed condi-
tion, 40 to the successive/grid condition, and 42 to the suc-
cessive/juxtaposed condition.

Materials

Example graphs representing the probability mass function
for the binomial distribution under different values of its pa-
rameters were created for use in the tutorial. The values used
for the number of repetitions n were 20, 40, and 100, while
those used for the probability of success p were 25%, 50%,
and 75%. For each combination of parameter values, a graph
line for the probability mass function was created in the fol-
lowing manner. First, for each number k in 0, 1, ..., n, the
probability that exactly k out of n binomial trials would result
in successes was calculated assuming probability of success
p. Second, the numbers of successes k were converted into
proportions of successes k/n by dividing by n. Third, the val-
ues k/n were divided into a fixed number of bins (21) and the
total probability mass within each bin was calculated. Fi-
nally, the binned data were plotted by interpolating a smooth
graph line using the splines function in R.

For the simultaneous/grid condition, nine separate example
graphs were created, i.e. one graph for each of the nine graph
lines described above. The nine graphs were laid out in a grid
as illustrated in Figure 1A. The rows and columns of the grid
corresponded to different values of the parameters n and p
respectively, with positions higher and to the right in the grid
corresponding to larger values of the parameters. For the suc-
cessive/grid condition, the nine graphs were positioned in a
grid in the same manner as in the simultaneous/grid condi-
tion, but only one graph was visible at a time, while the others
were hidden (Figure 1C).

For the simultaneous/juxtaposed condition, a single exam-
ple graph was created, containing all nine of the graph lines
created as described above (Figure 1B). The size of this sin-
gle graph was approximately equal to the size of the grid con-
taining all nine graphs in the grid conditions. The graph lines
corresponding to different values of the parameter n were dif-
ferentiated by line texture (arbitrarily chosen degree of dash
spacing), while the graph lines corresponding to different val-
ues of the parameter p were differentiated by color. For the
successive/juxtaposed condition, all nine graph lines were
displayed in the same graph space just as in the simultane-
ous/juxtaposed condition, but only one graph line was visible
at a time, while the others were hidden (Figure 1D). Because
the graph lines were not shown simultaneously, they were all
shown with the same texture and color (solid black).

In all four conditions, the example graphs were embedded
in a tutorial interface consisting of the example graphs and
two sliders (Figure 1). One of the sliders was used to select

a value for the number of repetitions parameter n, while the
other was used to select a value for the probability of success
parameter p. In the simultaneous/grid condition (Figure 1A),
selecting values for the two parameters using the sliders
caused the example graph corresponding to the selected val-
ues to be highlighted, and the other 8 example graphs to be
faded. Similarly, in the simultaneous/juxtaposed condition
(Figure 1B), the sliders caused the graph line corresponding
to the selected parameter values to be highlighted and the
other graph lines to be faded. In the two successive condi-
tions, the sliders caused the example graph or graph line cor-
responding to the selected values to be displayed, and the
other example graphs or graph lines hidden.

Procedure

The experiment was administered by computer using a web-
based interface. Participants first read a passage explaining
the binomial distribution and its parameters in the context of
an example involving coin flips. They were then presented
with the tutorial interface corresponding to their experimental
condition, as described under Materials. Participants were
given a series of tasks intended to lead them to explore the
entire space of example graphs/graph lines. Each task re-
quired the sliders in the tutorial interface to be set in such a
way that the selected graph (or graph line) satisfied some re-
quirement, such as maximizing or minimizing the height of
the peak. The tasks were designed so that if all of them were
performed correctly, each of the 9 example graphs would be
selected at least once (and in most cases, twice) in the course
of performing the tasks. Participants were free to manipulate
the sliders as long as they wished before submitting a re-
sponse for each task. The tasks were performed one at a time
in a fixed order. If an incorrect response was submitted, par-
ticipants were given feedback and allowed two chances to
correct the response, after which the correct response was
shown.

After the tutorial was complete, a series of 16 multiple
choice test questions was shown. There were two types of
test questions: recall and comprehension, each accounting for
half of the questions. The recall questions required partici-
pants to identify the parameter values that would produce a
given graph, or to select the graph that would result from
given parameter values. The comprehension questions tested
whether participants were aware of qualitative relations be-
tween the values of the parameters n and p and characteristics
of the probability mass function, such as the fact that the
value of n does not affect the horizontal location of the peak
of the graph line, but does affect how flat or sharp the peak
is. Each test question had 4 possible responses, of which only
one was correct. The questions were presented one at a time,
in a (different) random order for each participant, and no
feedback was given. Participants could not refer to the tuto-
rial interface during the test.
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Results

Tutorial Behavior

Although we were primarily interested in the effects of ex-
perimental condition on test performance, several measures
of participants’ behavior during the tutorial were also ana-
lyzed for possible effects of condition. In particular, for each
participant, the following measures were calculated: tutorial
accuracy, defined as the percent of tutorial tasks answered
correctly on the first try, completion time, defined as the av-
erage time from beginning to end of one tutorial task, and
positions visited, defined as the average number of slider set-
tings viewed in the course of performing one tutorial trial (a
given slider setting could be counted more than once if it was
revisited after the sliders were changed to a different setting).

Average tutorial accuracy was 71.3%. Tutorial accuracy
showed no effect of presentation mode (simultaneous or suc-
cessive), spatial organization (grid or juxtaposed), or their in-
teraction, ps>.25. Average completion time was 27.8 sec-
onds. Completion time showed no effect of either experi-
mental factor or their interaction, ps>.50. Average number
of positions visited was 4.63. In contrast to the other two
measures, positions visited showed effects of both presenta-
tion mode, F(1,160)=27.92, p~.000, and spatial organization,
F(1,160)=8.57, p=.004, though not of their interaction,
p=.115. Participants visited more positions per task in the
successive condition (5.14) than in the simultaneous condi-
tion (4.12), and more in the juxtaposed condition (4.92) than
in the grid condition (4.34). However, number of positions
visited was uncorrelated with accuracy on the test, r(162)=-
.080, p=.310, suggesting that effects of experimental condi-
tion on positions visited are unlikely to explain any effects of
experimental condition on test accuracy.

Test Performance

On average, participants answered 61.2% of the test ques-
tions correctly, with 25.0% representing chance performance.
Test accuracy scores were submitted to a mixed ANOVA
with presentation mode (simultaneous or successive) and
spatial organization (grid or juxtaposed) as between-subjects
factors and question type (recall or comprehension) as a
within-subjects factor. The effect of question type was highly
significant, F(1,160)=549.09, p=~.000, indicating that accu-
racy was higher for recall questions (85.5%) than for compre-
hension questions (36.9%). However, accuracy was signifi-
cantly higher than chance for both recall and comprehension
questions, t(163)=31.8, p~.000 for recall and t(163)=8.39,
p~.000 for comprehension. Question type did not interact
with any other factor, ps>.35.

The main effect of spatial organization was also signifi-
cant, F(1,160)=5.61, p=.019, indicating that test accuracy
was higher in the juxtaposed condition (64.3%) than in the
grid condition (58.2%). While the main effect of presentation
mode was not significant, F(1,160)=0.51, p=.474, presenta-
tion mode did show a significant interaction with spatial or-
ganization, F(1,160)=8.76, p=.004. Average test accuracies

by presentation mode and spatial organization are displayed
in Figure 2. As shown in the figure, accuracy was highest in
the simultaneous/juxtaposed condition (67.2%) and lowest in
the simultaneous/grid condition (53.6%), with the other two
successive conditions intermediate (successive/juxtaposed:
61.5%, successive/grid: 63.0%). Post-hoc t-tests indicated
that when the presentation mode was simultaneous, the two
spatial organization conditions (juxtaposed and grid) differed
significantly, t(71.6)=3.57, p=.001, but when the presentation
mode was successive, the two spatial organization conditions
did not differ t(79.7)=.449, p=.655.
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Figure 2. Test accuracy by presentation mode and
spatial organization. Error bars indicate standard errors.

Discussion

Studying function graphs juxtaposed in a common space,
with different values of function parameters represented by
different line colors and textures, led to better learning of the
properties of the function than studying the same graphs laid
out in a grid, with different parameter values represented by
different horizontal and vertical positions in the grid. This
result is surprising from the point of view of cognitive con-
straints on the selection of representational dimensions,
which would suggest that numeric variables such as the func-
tion parameters are more effectively represented by spatial
dimensions, as in the grid organization, than by non-spatial
dimensions, as in the juxtaposed organization. This result
supports the general point that representations of multivariate
data may be well designed with respect to each individual
variable in the data, but still poorly designed when considered
as a whole. Thus, it is important to understand not only how
to select representational dimensions for individual variables,
but also how multiple selections of representational dimen-
sions may interact with each other.

A possible drawback of the grid organization, mentioned
in the Introduction, is that its representation of multiple vari-
ables by each spatial dimension could cause confusion. How-
ever, if this drawback was the reason for the advantage of
juxtaposed over grid organization, then that advantage should
have been observed in both the successive and simultaneous
presentation modes. To the contrary, the advantage was ob-
served only in the simultaneous presentation mode. This
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finding argues in favor of a different explanation, also men-
tioned in the Introduction, for the advantage of the juxtaposed
organization — namely that that juxtaposing graph lines in a
single graph facilitates making comparisons among them,
and these comparisons in turn improve learning. We hypoth-
esize that in general, representations will be more effective
when representational dimensions for multiple variables are
selected in such a way as to facilitate comparisons, and that
the facilitative effects of such selection may outweigh the
benefits of choosing the best representational dimension for
each variable individually, as was the case in the present
study. However, further research is needed to test the validity
of this hypothesized principle over a wider range of cases.

Our analysis of tutorial behavior permits the elimination of
several alternative explanations for the observed advantage
of juxtaposed over grid organization. In particular, this ad-
vantage is unlikely to result from juxtaposed organization fa-
cilitating performance of the tutorial tasks, nor, conversely,
from its creating “desirable difficulties” (Bjork, 1994) by in-
hibiting performance of those tasks, because no effect of con-
dition on tutorial accuracy was found. Nor does the ad-
vantage result from participants spending more time studying
in the juxtaposed condition, because condition had no effect
on time to complete the tutorial tasks. Participants in the jux-
taposed condition apparently engaged in more exploration of
the parameter space during the tutorial, as measured by num-
ber of positions visited per tutorial task, but this difference is
also unlikely to explain the advantage of the juxtaposed con-
dition, as number of positions visited actually showed a (non-
significant) negative correlation with test performance.

If facilitating comparison improves learning, then one
might expect an advantage for simultaneous over successive
presentation, on the grounds that the former facilitates com-
parison (Loess & Duncan, 1952). The absence of such an
advantage implies that — if our account for the advantage of
juxtaposed organization is correct — successive presentation
may offer some compensatory advantage. One possibility is
that successive presentation reduces cognitive load by reduc-
ing the total amount of information presented at any given
moment. If this explanation is correct, successive presenta-
tion might be positively beneficial for data more complex, but
inferior to simultaneous presentation for data less complex,
than the data used in the present study. This prediction could
be tested in future research.

However, in the context of the present finding showing no
net advantage for either simultaneous or successive presenta-
tion, it is worth noting that simultaneous presentation is a less
technologically demanding approach than successive presen-
tation. Simultaneous presentation can easily be implemented
through static media, such as print, while successive presen-
tation requires some form of dynamic media, such as the in-
teractive interface employed in the present study. If, as this
consideration suggests, simultaneous presentation requires
less effort to implement than successive presentation, and
neither presentation mode is more effective than the other,
then simultaneous presentation may be preferable for effi-
ciency reasons. This conclusion dovetails with the findings

of studies comparing the instructional effectiveness of anima-
tions and static diagrams, which have often found no ad-
vantage of the former or even an advantage of the latter
(Mayer, Hegarty, Mayer, & Campbell, 2005; Tversky et al.,
2002; but see Hoffler & Leutner, 2007).
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