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Abstract 

External representations are more effective when spatial di-
mensions are used to represent numeric variables.  However, 
this principle may result in suboptimal representations when 
the number of numeric variables to be represented is large.  To 
test this possibility, participants studied a set of graphs repre-
senting a parametrized function under different parameter val-
ues.  The graphs were displayed either using a grid organiza-
tion, with parameter values represented by spatial dimensions 
(horizontal and vertical position of the graphs), or juxtaposed 
in a single area, with parameter values represented by non-spa-
tial dimensions (color and texture).  Juxtaposed organization 
led to better learning.  However, this advantage was eliminated 
when the graphs were presented successively rather than sim-
ultaneously.  The results suggest that juxtaposed organization 
can improve comprehension of complex data by facilitating 
comparison between parts of the data.  Such organization may 
be preferable even if it precludes use of spatial dimensions for 
some numeric variables. 
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Background 

External representations of information, such as pictures, di-

agrams, and graphs, play an important role in human thought, 

serving as tools to facilitate learning, problem solving, and 

communication.  The effectiveness of external representa-

tions depends in large part on the degree to which they respect 

cognitive constraints on their design.  A well-studied class of 

constraints known relates to the selection of representational 

dimensions – that is, the choice of which features or dimen-

sions of the external representation will represent which fea-

tures or dimensions of the information to be represented.  For 

example, in a network diagram, degree of connectivity be-

tween nodes could be represented by either spatial proximity 

or thickness of the lines connecting them (Tversky, Corter, 

Yu, Mason, & Nickerson, 2012), while in a graph of experi-

mental results, different data points could be represented by 

either bars or points on lines, and so on. 

One general cognitive constraint on the selection of repre-

sentational dimensions is congruence: external representa-

tions are more effective when dimensions of the information 

are represented by similarly structured dimensions of the rep-

resentation (Hegarty, 2011; Tversky, Morrison, & 

Betrancourt, 2002; Zhang, 1996).  For example, in diagrams, 

categorical variables are best represented by categorical vis-

ual dimensions such as inclusion in containing shapes, while 

continuous variables are best represented by continuous vis-

ual dimensions such as proximity (Tversky et al., 2012).  Ra-

tio scale variables, including most numeric variables, are best 

represented by visual dimensions that also possess a ratio 

scale (Zhang, 1996).  Spatial dimensions, e.g. horizontal or 

vertical position, fall into this category, while many non-spa-

tial dimensions, e.g. line color and line texture, do not.  As an 

example, it is preferable to represent numeric variables by 

position on the x-axis of a graph, a spatial dimension, than by 

the graph legend, typically corresponding to a non-spatial di-

mension such as line color or texture (Shah & Carpenter, 

1995).  

The constraints just discussed apply primarily to the selec-

tion of representational dimensions for individual dimensions 

of the represented information.  If the information to be rep-

resented involves multiple dimensions, additional constraints 

may arise when these dimensions are considered together.  

Consequently, a selection of representational dimensions 

might be optimal from the perspective of each dimension 

considered separately, but suboptimal when considered as a 

whole.  Thus, a complete understanding of cognitive con-

straints on the selection of representational dimensions must 

include an understanding of constraints that apply specifi-

cally to the selection of multiple dimensions.  This type of 

constraint has received comparatively little attention in re-

search to date. 

To make this issue more concrete, consider Figures 1A and 

1B.  These figures present a number of graph lines illustrative 

of the binomial distribution.  The binomial distribution gives 

the probabilities of the different possible outcomes of a se-

quence of independent binomial trials, here termed “repeti-

tions,” where an outcome is defined as a certain proportion of 

repetitions resulting in “successes.”  The probability mass 

function over possible outcomes is determined by two param-

eters, the number of repetitions n and the probability of suc-

cess on a single repetition p.  Figures 1A and 1B each show 

9 graph lines for the probability mass functions correspond-

ing to 9 different combinations of values of n and p.  In both 

figures, the different possible outcomes are represented by 

the x-axis and the corresponding probabilities by the y-axis.  

However, the figures differ in their selection of visual dimen-

sions to represent the parameters n and p.  In Figure 1A, the 

graph lines are contained in separate graphs, which are ar-

ranged in a grid, and the parameters are represented by spatial 

dimensions: each vertical position in the grid represents a dif-

ferent number of repetitions n, and each horizontal position a 

different probability of success p.  In Figure 1B, the graph 

lines are contained in a common plot area, and the parameters 

are represented by non-spatial dimensions: each line texture 

represents a different number of repetitions n, and each line 

color a different number of repetitions p. 

The graphs shown in Figures 1A and 1B all involve the 

same four variables: the proportions of repetitions resulting 

in success, the probabilities of each such proportion, and the 
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Figure 1. Training interface.  (A) Simultaneous/grid version, (B) Simultaneous/juxtaposed version,  

(C) Successive/grid version, (D) Successive/juxtaposed version.
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parameters n and p.  Because all of these variables are nu-

meric, the general constraints discussed above imply that  

they are most suitably represented by spatial dimensions.  

Thus, if the selection of representational dimensions is con-

sidered separately for each variable, the approach employed 

in Figure 1A, where the parameters are represented by spatial 

dimensions, should be superior to that of Figure 1B, where 

the parameters are represented by non-spatial dimensions. 

However, consideration of the selections of representa-

tional dimensions for all the variables taken together suggests 

a possible drawback of the approach in Figure 1A, namely, 

each spatial dimension represents more than one variable.  In 

particular, vertical position represents both the number of 

repetitions n and the probabilities associated with the differ-

ent proportions of successes, while horizontal position repre-

sents both the probability of success p and the proportion of 

repetitions resulting in success.  “Overloading” a single di-

mension by using it to represent multiple variables is poten-

tially confusing even if that dimension is a good choice to 

represent each variable individually. 

At this point, it is important to highlight that while the 

above example may appear highly specific, the issue just 

mentioned is not idiosyncratic to this example, but instead 

quite general.  Whenever data involving k numeric variables 

are represented using fewer than k spatial dimensions – for 

example, when data involving at least 3 numeric variables are 

represented using 2-dimensional graphs – using spatial di-

mensions to represent all of the numeric variables will neces-

sarily result in overloading at least one spatial dimension.  In 

such cases, the danger of overloading a single spatial dimen-

sion with multiple variables can be avoided by using non-

spatial dimensions to represent some of the variables.  This 

approach is illustrated in Figure 1B, in which different values 

of the parameters of the binomial distribution are represented 

by different line colors and textures, rather than by different 

horizontal and vertical positions. 

Besides avoiding confusion due to overloading spatial di-

mensions, the approach illustrated in Figure 1B has an addi-

tional potential advantage: By juxtaposing all of the graph 

lines in a common plot area, it facilitates comparison between 

them.  Comparison has been proposed as a basic cognitive 

mechanism capable of increasing the salience of both simi-

larities and differences between the things compared 

(Gentner, 2010; Kurtz, Boukrina, & Gentner, 2013).  Draw-

ing comparisons between examples can improve learning of 

categories and concepts by drawing attention to the critical 

dimensions on which the examples vary.  Thus, even if over-

loading of spatial dimensions is not an issue, using non-spa-

tial dimensions to represent some variables might still be ad-

vantageous by virtue of allowing more data to be juxtaposed 

in a common space, and thereby facilitating comparisons be-

tween different parts of the data. 

So far, we have only considered static representations in 

which all the information available is presented simultane-

ously, as in Figures 1A and 1B.  However, it is not obvious 

                                                           
1 The experiment can be accessed at https://perceptscon-

cepts.psych.indiana.edu/experiments/dwb/STOE_01/demo.html. 

that simultaneously presenting all available information is the 

best approach.  If the information is complex, as is often the 

case for datasets involving large numbers of variables, sim-

ultaneous presentation could create excessive cognitive load 

(Mayer & Moreno, 2003), making it difficult to process the 

information.  Presenting parts of the information successively 

could alleviate this difficulty by encouraging users of the rep-

resentation to focus on one part at a time.  This approach is 

illustrated in Figures 1C and 1D.  The information in these 

Figures is spatially organized in the same way as in Figures 

1A and 1B, respectively.  However, only one of the 9 graph 

lines is available at any given moment. 

The effects of simultaneous or successive presentation 

mode might interact with those of different approaches to 

spatial organization.  Specifically, if juxtaposed spatial or-

ganizations, such as the one employed in Figure 1B, are ad-

vantageous by virtue of facilitating comparisons, this ad-

vantage should be reduced or eliminated if different parts of 

the represented information are presented successively rather 

than simultaneously, as in Figure 1D.  The reason is that suc-

cessive presentation interferes with comparison, while simul-

taneous presentation facilitates it (Loess & Duncan, 1952).  

On the other hand, if juxtaposed organizations (Figure 1B) 

are advantageous by virtue of avoiding confusion due to over-

loading spatial dimensions with multiple variables, then this 

advantage should apply regardless of whether simultaneous 

or successive presentation is employed. 

The experiment described below was designed to address 

three related questions resulting from the above discussion.  

(1) If the number of numeric variables to be represented ex-

ceeds the number of spatial dimensions available to represent 

them, is it preferable to represent all of the variables by spa-

tial dimensions, or instead to represent some of the variables 

by non-spatial dimensions?  (2) If the latter approach is more 

effective, is the reason due to facilitating comparison or to 

avoiding confusion caused by overloading spatial dimensions 

with multiple variables?  (3) Is either simultaneous or succes-

sive presentation preferable to the other? 

Method 

Participants learned about how properties of the binomial dis-

tribution depend on the values of its parameters by using an 

interactive tutorial, which presented example graphs of the 

binomial distribution for different combinations of parameter 

values.  The examples were presented either simultaneously 

or successively, and were either organized in a grid or juxta-

posed in a common space, as described in the Introduction.  

After completing the tutorial, participants were tested on their 

understanding by answering recall and comprehension ques-

tions without being able to refer to the tutorial examples.  Ac-

curacy on the test served as a measure of the effectiveness of 

the representation used during the tutorial1. 
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Participants 

Participants were N=164 Indiana University undergraduate 

students who participated in partial fulfillment of a course re-

quirement.  Participants were assigned randomly to one of the 

four factorial combinations of presentation mode – simulta-

neous or successive – and spatial organization – grid or jux-

taposed.  42 participants were assigned to the simultane-

ous/grid condition, 40 to the simultaneous/juxtaposed condi-

tion, 40 to the successive/grid condition, and 42 to the suc-

cessive/juxtaposed condition. 

Materials 

Example graphs representing the probability mass function 

for the binomial distribution under different values of its pa-

rameters were created for use in the tutorial.  The values used 

for the number of repetitions n were 20, 40, and 100, while 

those used for the probability of success p were 25%, 50%, 

and 75%.  For each combination of parameter values, a graph 

line for the probability mass function was created in the fol-

lowing manner.  First, for each number k in 0, 1, ..., n, the 

probability that exactly k out of n binomial trials would result 

in successes was calculated assuming probability of success 

p.  Second, the numbers of successes k were converted into 

proportions of successes k/n by dividing by n.  Third, the val-

ues k/n were divided into a fixed number of bins (21) and the 

total probability mass within each bin was calculated.  Fi-

nally, the binned data were plotted by interpolating a smooth 

graph line using the splines function in R. 

For the simultaneous/grid condition, nine separate example 

graphs were created, i.e. one graph for each of the nine graph 

lines described above.  The nine graphs were laid out in a grid 

as illustrated in Figure 1A.  The rows and columns of the grid 

corresponded to different values of the parameters n and p 

respectively, with positions higher and to the right in the grid 

corresponding to larger values of the parameters.  For the suc-

cessive/grid condition, the nine graphs were positioned in a 

grid in the same manner as in the simultaneous/grid condi-

tion, but only one graph was visible at a time, while the others 

were hidden (Figure 1C).  

For the simultaneous/juxtaposed condition, a single exam-

ple graph was created, containing all nine of the graph lines 

created as described above (Figure 1B).  The size of this sin-

gle graph was approximately equal to the size of the grid con-

taining all nine graphs in the grid conditions.  The graph lines 

corresponding to different values of the parameter n were dif-

ferentiated by line texture (arbitrarily chosen degree of dash 

spacing), while the graph lines corresponding to different val-

ues of the parameter p were differentiated by color.  For the 

successive/juxtaposed condition, all nine graph lines were 

displayed in the same graph space just as in the simultane-

ous/juxtaposed condition, but only one graph line was visible 

at a time, while the others were hidden (Figure 1D).  Because 

the graph lines were not shown simultaneously, they were all 

shown with the same texture and color (solid black). 

In all four conditions, the example graphs were embedded 

in a tutorial interface consisting of the example graphs and 

two sliders (Figure 1).  One of the sliders was used to select 

a value for the number of repetitions parameter n, while the 

other was used to select a value for the probability of success 

parameter p.  In the simultaneous/grid condition (Figure 1A), 

selecting values for the two parameters using the sliders 

caused the example graph corresponding to the selected val-

ues to be highlighted, and the other 8 example graphs to be 

faded.  Similarly, in the simultaneous/juxtaposed condition 

(Figure 1B), the sliders caused the graph line corresponding 

to the selected parameter values to be highlighted and the 

other graph lines to be faded.  In the two successive condi-

tions, the sliders caused the example graph or graph line cor-

responding to the selected values to be displayed, and the 

other example graphs or graph lines hidden. 

Procedure 

The experiment was administered by computer using a web-

based interface.  Participants first read a passage explaining 

the binomial distribution and its parameters in the context of 

an example involving coin flips.  They were then presented 

with the tutorial interface corresponding to their experimental 

condition, as described under Materials.  Participants were 

given a series of tasks intended to lead them to explore the 

entire space of example graphs/graph lines.  Each task re-

quired the sliders in the tutorial interface to be set in such a 

way that the selected graph (or graph line) satisfied some re-

quirement, such as maximizing or minimizing the height of 

the peak.  The tasks were designed so that if all of them were 

performed correctly, each of the 9 example graphs would be 

selected at least once (and in most cases, twice) in the course 

of performing the tasks.  Participants were free to manipulate 

the sliders as long as they wished before submitting a re-

sponse for each task.  The tasks were performed one at a time 

in a fixed order.  If an incorrect response was submitted, par-

ticipants were given feedback and allowed two chances to 

correct the response, after which the correct response was 

shown. 

After the tutorial was complete, a series of 16 multiple 

choice test questions was shown.  There were two types of 

test questions: recall and comprehension, each accounting for 

half of the questions.  The recall questions required partici-

pants to identify the parameter values that would produce a 

given graph, or to select the graph that would result from 

given parameter values.  The comprehension questions tested 

whether participants were aware of qualitative relations be-

tween the values of the parameters n and p and characteristics 

of the probability mass function, such as the fact that the 

value of n does not affect the horizontal location of the peak 

of the graph line, but does affect how flat or sharp the peak 

is.  Each test question had 4 possible responses, of which only 

one was correct.  The questions were presented one at a time, 

in a (different) random order for each participant, and no 

feedback was given.  Participants could not refer to the tuto-

rial interface during the test. 
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Results 

Tutorial Behavior 

Although we were primarily interested in the effects of ex-

perimental condition on test performance, several measures 

of participants’ behavior during the tutorial were also ana-

lyzed for possible effects of condition.  In particular, for each 

participant, the following measures were calculated: tutorial 

accuracy, defined as the percent of tutorial tasks answered 

correctly on the first try, completion time, defined as the av-

erage time from beginning to end of one tutorial task, and 

positions visited, defined as the average number of slider set-

tings viewed in the course of performing one tutorial trial (a 

given slider setting could be counted more than once if it was 

revisited after the sliders were changed to a different setting). 

Average tutorial accuracy was 71.3%.  Tutorial accuracy 

showed no effect of presentation mode (simultaneous or suc-

cessive), spatial organization (grid or juxtaposed), or their in-

teraction, ps>.25.  Average completion time was 27.8 sec-

onds.  Completion time showed no effect of either experi-

mental factor or their interaction, ps>.50.  Average number 

of positions visited was 4.63.  In contrast to the other two 

measures, positions visited showed effects of both presenta-

tion mode, F(1,160)=27.92, p.000, and spatial organization, 

F(1,160)=8.57, p=.004, though not of their interaction, 

p=.115.  Participants visited more positions per task in the 

successive condition (5.14) than in the simultaneous condi-

tion (4.12), and more in the juxtaposed condition (4.92) than 

in the grid condition (4.34).  However, number of positions 

visited was uncorrelated with accuracy on the test, r(162)=-

.080, p=.310, suggesting that effects of experimental condi-

tion on positions visited are unlikely to explain any effects of 

experimental condition on test accuracy. 

Test Performance 

On average, participants answered 61.2% of the test ques-

tions correctly, with 25.0% representing chance performance.  

Test accuracy scores were submitted to a mixed ANOVA 

with presentation mode (simultaneous or successive) and 

spatial organization (grid or juxtaposed) as between-subjects 

factors and question type (recall or comprehension) as a 

within-subjects factor.  The effect of question type was highly 

significant, F(1,160)=549.09, p.000, indicating that accu-

racy was higher for recall questions (85.5%) than for compre-

hension questions (36.9%).  However, accuracy was signifi-

cantly higher than chance for both recall and comprehension 

questions, t(163)=31.8, p.000 for recall and t(163)=8.39, 

p.000 for comprehension.  Question type did not interact 

with any other factor, ps>.35. 

The main effect of spatial organization was also signifi-

cant, F(1,160)=5.61, p=.019, indicating that test accuracy 

was higher in the juxtaposed condition (64.3%) than in the 

grid condition (58.2%).  While the main effect of presentation 

mode was not significant, F(1,160)=0.51, p=.474, presenta-

tion mode did show a significant interaction with spatial or-

ganization, F(1,160)=8.76, p=.004.  Average test accuracies 

by presentation mode and spatial organization are displayed 

in Figure 2.  As shown in the figure, accuracy was highest in 

the simultaneous/juxtaposed condition (67.2%) and lowest in 

the simultaneous/grid condition (53.6%), with the other two 

successive conditions intermediate (successive/juxtaposed: 

61.5%, successive/grid: 63.0%).  Post-hoc t-tests indicated 

that when the presentation mode was simultaneous, the two 

spatial organization conditions (juxtaposed and grid) differed 

significantly, t(71.6)=3.57, p=.001, but when the presentation 

mode was successive, the two spatial organization conditions 

did not differ t(79.7)=.449, p=.655. 

 

 
Figure 2. Test accuracy by presentation mode and 

spatial organization. Error bars indicate standard errors. 

Discussion 

Studying function graphs juxtaposed in a common space, 

with different values of function parameters represented by 

different line colors and textures, led to better learning of the 

properties of the function than studying the same graphs laid 

out in a grid, with different parameter values represented by 

different horizontal and vertical positions in the grid.  This 

result is surprising from the point of view of cognitive con-

straints on the selection of representational dimensions, 

which would suggest that numeric variables such as the func-

tion parameters are more effectively represented by spatial 

dimensions, as in the grid organization, than by non-spatial 

dimensions, as in the juxtaposed organization.  This result 

supports the general point that representations of multivariate 

data may be well designed with respect to each individual 

variable in the data, but still poorly designed when considered 

as a whole.  Thus, it is important to understand not only how 

to select representational dimensions for individual variables, 

but also how multiple selections of representational dimen-

sions may interact with each other. 

A possible drawback of the grid organization, mentioned 

in the Introduction, is that its representation of multiple vari-

ables by each spatial dimension could cause confusion.  How-

ever, if this drawback was the reason for the advantage of 

juxtaposed over grid organization, then that advantage should 

have been observed in both the successive and simultaneous 

presentation modes.  To the contrary, the advantage was ob-

served only in the simultaneous presentation mode.  This 
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finding argues in favor of a different explanation, also men-

tioned in the Introduction, for the advantage of the juxtaposed 

organization – namely that that juxtaposing graph lines in a 

single graph facilitates making comparisons among them, 

and these comparisons in turn improve learning.  We hypoth-

esize that in general, representations will be more effective 

when representational dimensions for multiple variables are 

selected in such a way as to facilitate comparisons, and that 

the facilitative effects of such selection may outweigh the 

benefits of choosing the best representational dimension for 

each variable individually, as was the case in the present 

study.  However, further research is needed to test the validity 

of this hypothesized principle over a wider range of cases. 

Our analysis of tutorial behavior permits the elimination of 

several alternative explanations for the observed advantage 

of juxtaposed over grid organization.  In particular, this ad-

vantage is unlikely to result from juxtaposed organization fa-

cilitating performance of the tutorial tasks, nor, conversely, 

from its creating “desirable difficulties” (Bjork, 1994) by in-

hibiting performance of those tasks, because no effect of con-

dition on tutorial accuracy was found.  Nor does the ad-

vantage result from participants spending more time studying 

in the juxtaposed condition, because condition had no effect 

on time to complete the tutorial tasks.  Participants in the jux-

taposed condition apparently engaged in more exploration of 

the parameter space during the tutorial, as measured by num-

ber of positions visited per tutorial task, but this difference is 

also unlikely to explain the advantage of the juxtaposed con-

dition, as number of positions visited actually showed a (non-

significant) negative correlation with test performance. 

If facilitating comparison improves learning, then one 

might expect an advantage for simultaneous over successive 

presentation, on the grounds that the former facilitates com-

parison (Loess & Duncan, 1952).  The absence of such an 

advantage implies that – if our account for the advantage of 

juxtaposed organization is correct – successive presentation 

may offer some compensatory advantage.  One possibility is 

that successive presentation reduces cognitive load by reduc-

ing the total amount of information presented at any given 

moment.  If this explanation is correct, successive presenta-

tion might be positively beneficial for data more complex, but 

inferior to simultaneous presentation for data less complex, 

than the data used in the present study.  This prediction could 

be tested in future research. 

However, in the context of the present finding showing no 

net advantage for either simultaneous or successive presenta-

tion, it is worth noting that simultaneous presentation is a less 

technologically demanding approach than successive presen-

tation.  Simultaneous presentation can easily be implemented 

through static media, such as print, while successive presen-

tation requires some form of dynamic media, such as the in-

teractive interface employed in the present study.  If, as this 

consideration suggests, simultaneous presentation requires 

less effort to implement than successive presentation, and 

neither presentation mode is more effective than the other, 

then simultaneous presentation may be preferable for effi-

ciency reasons.  This conclusion dovetails with the findings 

of studies comparing the instructional effectiveness of anima-

tions and static diagrams, which have often found no ad-

vantage of the former or even an advantage of the latter  

(Mayer, Hegarty, Mayer, & Campbell, 2005; Tversky et al., 

2002; but see Höffler & Leutner, 2007). 
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