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Abstract 

Expertise affords individuals a variety of advantages for 
learning and for problem solving, including competing 
advantages such as using automatic strategies vs. using 
sophisticated strategies. In the present study, high school 
students with varying levels of calculus expertise completed 
measures of conceptual understanding and skill with external 
representations before a task in which they were asked to 
coordinate between multiple representations (CMR) and 
determine whether they represented the same mathematical 
function. Strategy use during the CMR task was coded based 
on think-aloud data. Results indicate that students with more 
expertise tended to use automatic strategies when completing 
the task, and, surprisingly, used fewer sophisticated strategies 
than more novice peers.  

Keywords: expertise; mathematics; coordinating multiple 
representations 

Introduction 

Numerous studies have documented the advantages that 

experts in a domain have for performance and learning in 

that domain. These advantages include, but are not limited 

to, improved memory abilities (Chi, 1978),  knowledge of 

strategies (Gaultney, 1995), and reasoning skills (Johnson, 

Scott, & Mervis, 2004). Further, such benefits have been 

shown to arise in widely varied domains of expertise, 

including physics (Chi, Feltovich, & Glaser, 1981), 

dinosaurs (Johnson, Scott, & Mervis, 2004), chess (Chi, 

1978), computer programming (Barfield, 1986), and 

gymnastics (Tenenbaum, Tehan, Stewart, & Christensen, 

1999).   

Regardless of domain, several of these advantages have 

direct implications for experts’ problem solving skills.  

Perhaps the most obvious implications follow from 

improved strategy knowledge.  By definition, experts have a 

greater conceptual understanding within their domain, and 

they are able to use this knowledge to generate better 

strategies for problem-solving in that domain (Chi et al., 

1981).  Their strategies tend to be driven by theory and 

consistent with their conceptual understanding of the 

problem situation (Dhillon, 1998). In contrast, novices tend 

to think about problems in a more basic manner, with 

strategies that focus on surface structures rather than on 

deep ones (Lovett & Anderson, 1996). Overlapping waves 

theory maintains that all individuals know and use a variety 

of strategies for solving problems, and that those strategies 

compete for use in every given situation; as individuals 

become more experienced and gain expertise, they are likely 

to use more sophisticated strategies than peers with less 

expertise (Siegler, 1996). Experts’ greater success in 

problem solving can be, at least partially, attributed to their 

use of more sophisticated strategies (Chi, Glaser, & Rees, 

1982).   

Another key advantage for experts that is relevant to 

problem solving is experts’ automaticity—that they have 

automatized certain knowledge and thus do not have to 

spend limited working memory resources to process 

problem components or carry out the procedures (Bereiter & 

Scardamalia, 1993).  Such procedures are thus carried out 

without the individual consciously monitoring them (Aarts 

& Dijksterhuis, 2003), allowing experts to perform better on 

difficult problem-solving tasks (Brown & Bennett, 2002).  

Automaticity can also happen in interpretation of the 

problem situation (Bargh, 1999), which is arguably related 

to another advantage of expertise: rapid and effective 
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encoding of relevant information (Ericsson & Kintsch, 

2000). Both automaticity and encoding are core mechanisms 

in information processing theories, indicating ways in which 

more experienced individuals are able to bypass capacity 

limitations in order to focus on critical problem features 

(e.g., LaBerge & Samuels, 1974; Heatherington & Parke, 

2003).   These mechanisms may also help account for the 

fact that experts often have difficulty articulating the 

strategies they utilize when solving problems (Chao & 

Salvendy, 1994).  

In the present study, we investigate how mathematics 

expertise relates to students’ approaches to the problem of 

coordinating multiple representations (CMR) in 

mathematics. The National Council for Teachers of 

Mathematics recommends use of external representations 

throughout mathematics instruction, even in elementary 

school, and stresses the importance of being able to 

coordinate between multiple representations (NCTM, 2010). 

This skill is especially emphasized in reform approaches to 

teaching higher-level mathematics courses, such as calculus 

(e.g. Hughes-Hallett et al., 2011).  Here, we examine 

specifically how conceptual knowledge in calculus 

(expertise) relates to students’ use of automatic vs. 

sophisticated vs. basic strategies for completing a CMR 

task. We also test the degree to which conceptual 

knowledge is predictive of strategy use above and beyond 

other factors which could increase performance (grade level 

and skill with external representations).  Based on the 

literature described above, we expect that students with 

greater conceptual knowledge will use sophisticated 

strategies (Siegler, 1996) or automatic strategies (Bereiter & 

Scardamalia, 1993), but not basic ones.  However, it is 

unknown whether they are more likely to use automatic or 

sophisticated strategies when coordinating multiple 

representations.   

 

Method 

Participants 

Participants included 40 pre-calculus and calculus students 

from two public, suburban high schools in the Northeast. 

Their mean age was 16.6; 45% were male; 77% were White, 

18% Asian, 3% Black, and 5% other races. As a proxy for 

socioeconomic status, median parental education was a 

Bachelor’s degree.   

Procedure 

Parental consent and student assent were acquired, after 

which students were tested individually in a session lasting 

approximately 70 minutes. Students received gift cards as 

compensation in the amount of $10 for their involvement in 

the study.  Participants completed a series of paper and 

pencil measures, including a standardized measure of basic 

graph/table skills and one researcher-constructed calculus 

conceptual knowledge measure.  Students also completed an 

eye-tracking measure for coordination of multiple 

representations (CMR) while verbalizing their thoughts.  

These measures are described below. 

Measures 

Calculus conceptual measure (CCM).  To assess students’ 

calculus conceptual knowledge, we used 32 researcher-

constructed items that measured students’ understanding of 

concepts that have been identified as crucial for success in 

calculus, including functions and limits (Lauten, Graham, & 

Ferrini-Mundy,1994), derivatives (Asiala, Cottrill, 

Dubinsky, & Schwingendorf, 1997), and the chain rule 

(Clark et al., 1997).   For example, one item asks 

participants to identify which pieces of information they 

would use to complete a mathematical task (e.g., finding the 

zeros of a function); students respond by circling any 

number of the following options; f, f’, and f”.  Students were 

given 7 minutes to complete the measure. Scores ranged 

from 0% to 72% (M=47%) and were highly correlated with 

a measure of students’ proficiency in calculus (Cromley et 

al., revision under review). Internal consistency was 

computed using Cronbach’s alpha; α= .99. 

 

Graph/table skills.  We created a measure comprised of 6 

released NAEP Grade 12 graph items and 5 released NAEP, 

NAAL, and ALL table items. These are from the “Easy” 

groups of multiple-choice items, which tap basic graph and 

table comprehension, such as finding a single data 

point/cell, rather than coordinating multiple representations 

skills which are typical of many “Hard” and some 

“Medium” questions.   One item asks participants to find the 

highest temperature in a city from a graph of temperatures 

across a range of days.  Given these are well-validated 

questions used by NAEP for years before public release, we 

expected them to show excellent reliability and validity with  

high school students and undergraduates.  Participants were 

given 6 minutes to complete the measure.  Cronbach’s alpha 

for the sample is .66. 

 

Think-aloud CMR Measure.  Student participants 

completed CMR tasks on an eye-tracking apparatus (eye-

tracking data reported elsewhere; Wills, Shipley, Chang, 

Cromley, & Booth, in press) while following a think-aloud 

protocol (Ericsson & Simon, 1998).  Participants were 

shown 12 pairs of representations and were asked to 

determine whether or not they expressed the same function.  

We used linear, quadratic, and cubic functions, with an 

equal number of matches and mismatches and equal 

numbers of the three possible pairings of each 

representation type (i.e., equation-graph, equation-table, 

graph-table).  Position of the first representation on the left 

or right was controlled for across participants.  A sample 

item is shown in Figure 1.  Cronbach’s alpha for responses 

to the match/mismatch questions for the sample is .87. 

Coding of Think-aloud Data 

Student verbalizations during the CMR task were 

transcribed and analyzed to develop a coding scheme for  
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Table 1: Think-aloud codes for automatic, sophisticated, and basic strategy use during the CMR task. 

 

student strategy use.  The second author coded 1,370 

utterances across all participants (M = 34 utterances per 

participant).  A second coder was trained on data other than 

those used for calculating inter-rater statistics and re-coded 

35% of the corpus (Cohen’s kappa = .91).  See Table 1 for a 

description of the think-aloud codes used in the present 

analyses. Two of the codes (AHA and IDK) represent 

automatic strategies, in which overt procedures are not 

undertaken to solve the problem. Four of the codes 

(EVALDIR, EVALCOEFF, EVALCON, and EVALOR 

represent sophisticated strategies which invoke deep 

problem features (the direction, coefficient, constant, or 

order of the function) in the solution process. The remaining  

three codes (MOP, MX, MY) reflect more basic problem 

solving strategies, in which only surface features in the 

problem (namely, the discrete ordered pairs in the functions) 

are utilized. 

 

Results 
 

First, to determine which types of strategies should be 

further explored with relation to conceptual understanding, 

we computed the mean number of times per item that verbal 

data indicated the use of each strategy. We then computed 

correlations between the CCM scores and the mean use of 

each strategy.  As shown in Table 2, significant correlations 

were found between CCM scores and the AHA, IDK, 

EVALCOEFF, and EVALCON strategies.  Thus, all further 

analyses will be conducted only on these strategies.  

To determine whether CCM is a useful and independent 

predictor of the use of each of these strategies, and to further 

investigate the nature of its impact, we conducted a series of 

regression analyses, one for each of the strategies with 

 
 

Figure 1:  A sample item from the eye tracking CMR task.  

This example pairs an equation with a graph; other items 

included equation-table or graph-table pairs. 

 

Strategy Code Description Example 

Automatic   

     AHA Feeling of knowing or “Aha!” moment oh, alright, f(x) equals y 

     IDK Reflecting on not knowing how to work 

through a stimulus 

I'm not really sure how to determine if they are the same 

because I haven't seen a graph like that before 

Sophisticated   

     EVALDIR Evaluating the direction  (positive or 

negative) 

 I see that this parabola is facing downwards so I would 

say that that’s negative and it’s not negative in the 

function 

     EVALCOEFF Evaluating the magnitude of a coefficent  The slope is 2 in the equation, rise 2 over 1, looks good 

in the graph 

     EVALCON Evaluating the magnitude of the constant  It looks like this graph is shifted to the right 

     EVALOR Evaluating the order  To me that doesn’t look like an x squared function, that 

looks to be like x cubed. 

 Basic   

     MOP Mapping  an ordered pair between 

representations 

Let’s see, x is 2 on the table, put it on the graph, equals 

negative 20, that fits with the table 

     MX Mapping the x intercept between 

representations (with or without verbally 

identifying it as such) 

x equals 3 and y equals 0, that matches the graph 

     MY Mapping the y intercept between 

representations (with or without verbally 

identifying it as such) 

So when x is zero, f of x is around negative one 
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Table 2: Correlations between conceptual understanding and automatic, sophisticated, and basic strategy use. 

 

 Automatic Sophisticated Basic 

 AHA IDK EVALDIR EVALCOEFF EVALCON EVALOR MOP  MX MY 

CCM .36** -.38** .18 -.47*** -.35** .24 -.02 .05 .14 

Note: ***p<.01, **p<.05 

 

Table 3: Regression results for conceptual understanding (CCM), grade level, and graph/table skills (NAEP) on use of each 

strategy 

  

 CCM Grade NAEP 
Analysis β Significance β Significance β Significance 

AHA .36 p < .05 .04 ns -.12 ns 

IDK -.43 p<.01 .26 p<.10 -.25 p<.10 

EVALCOEFF -.49 p<.01 .00 ns .11 ns 

EVALCON -.31 p<.10 -.15 ns .11 ns 

 

which CCM scores were correlated. In each model, we also 

included two alternate predictors: grade level and NAEP 

scores.  Grade level was included because students in higher 

grade levels tend to have higher conceptual knowledge 

(r(38) = .33, p < .05), and being in an advanced grade may 

also lead to more sophisticated strategy use, as more 

sophisticated strategies are likely to be taught in higher 

grades.  NAEP graph/table scores were included in order to 

isolate the impact of domain-specific expertise (e.g., 

conceptual knowledge in calculus) rather than more general 

competence with external representations (e.g., graphs and 

tables) which may also come with increased experience in 

mathematics classes.   

As shown in Table 3, conceptual knowledge in calculus 

was a significant positive predictor of the AHA strategy and 

the MOPY strategy, whereas it was a negative predictor of 

the IDK strategy and the EVALCOEFF strategy, and a 

marginal negative predictor of the EVALCON strategy. 

Students with higher conceptual knowledge of calculus were 

thus more likely to have an “Aha” moment or to match 

ordered pairs for the y-intercept, and less likely to evaluate 

the magnitude of the coefficient or the constant, or to say 

they did not know. Grade and NAEP graph/table scores 

proved to be marginal predictors of the IDK strategy (e.g., 

students with higher NAEP scores were less likely to say 

they don’t know, but students in higher grades are more 

likely to say they don’t know), but in all cases, there was an 

impact of conceptual understanding above and beyond that 

of the other factors.  

Discussion 

Results from this study suggest that students with greater 

conceptual understanding do not, in fact, use more 

sophisticated overt strategies than peers with less conceptual 

knowledge.  Instead, our results indicate that more 

conceptually strong students tend to complete the task 

without using overt strategies at all. These students are most 

likely to just have an “Aha!” moment in which they feel that 

they know whether the functions are the same.  

Conceptually strong students, however, do not just use 

any automatic strategy. They are less likely than more 

novice peers to utilize a relatively unproductive automatic 

strategy—giving up and saying they do not know whether 

the functions are the same.   

While it may not be surprising that experts in this study 

preferred productive automatic to overt sophisticated 

strategies, it is perhaps perplexing that the relation between 

expertise and use of overt sophisticated strategies was, in 

fact, negative. Experts used sophisticated strategies less 

often than more novice peers. This seems contrary to the 

wealth of literature on experts’ better repertoire of 

strategies.  However, it is important to note that these results 

do not speak to whether or not more advanced students 

know more sophisticated strategies, just whether or not they 

seem to use them overtly during the comparison tasks.  The 

underlying procedures that they are using to automatically 

process and solve the problem may or may not be 

sophisticated; it is impossible to tell that from the think 

aloud data.  Further analysis of eye-tracking data collected 

during the CMR task will be necessary for distinguishing 

which problem feature(s) the conceptually strong students 

noticed before and while they experienced the feeling that 

they knew the answer. Analysis of the eye-tracking data 

may also allow us to determine whether experts’ decisions 

were made based on automatic processing of problem 

features (encoding differences) or automatic application of 

problem-solving procedures.  
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