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Abstract 

Previous research has shown that Bidirectional Associative 
Memories (BAM), a special type of artificial neural network, 
can perform various types of associations that human beings 
are able to perform with little effort. However, considering a 
simple association problem, such as associating faces with 
names, iterative type BAM networks usually take hundreds 
and sometimes thousands of learning trials to encode such 
associations correctly, whereas humans in some conditions 
learn much faster. The present study therefore proposes an 
adjustment to a particular type of BAM network that 
increases its performance in a rapid learning condition while 
processing memory capacity is limited. Results show that the 
modification to the original learning rule of the BHM leads 
to improved performance when rapid learning is required. 
Moreover, the model preserves its high memory load 
capacity in standard learning. This study could lead to 
improved cognitive models that can adapt their behavior in 
function of the contextual conditions.  

Keywords: Artificial intelligence; Connectionist models; 
Bidirectional associative memory; Short-term memory 
learning. 

Introduction 

Like human beings, artificial neural networks can 

discriminate, identify, and categorize perceptual patterns 

(Faussett, 1994; Haykin, 2009). Bidirectional Associative 

Memories (BAMs) have been proposed as models of 

neurodynamics. As such, they are able to develop attractors 

allowing the network to perform various types of recall 

under noisy conditions and successfully carry out pattern 

completion. Many advances were made since Kosko 

introduced the BAM in 1988; see Acevedo-Mosqueda, 

Yanez-Marquez & Acevedo-Mosqueda (2013) for a review. 

Although the majority of improvements made BAM models 

better suited for learning a wider set of associations and 

brought greater performance, such improvements have been 

at the expense of learning times. Nowadays, BAM models 

often take hundreds and sometimes thousands of learning 

cycles to correctly associate patterns. Consequently, 

researchers have attempted to enhance convergence times 

and performance (Nong & Bui, 2012). Several one-shot 

learning rules were developed, showing almost perfect 

performance in some cases (Ritter, Diaz-Deleon, & 

Sussner, 1999; Wu & Pados, 2000, Acedo, Yanez, & 

Lopez, 2006a; 2006b). Although these improvements have 

successfully overcome the limitations of the model 

presented previously, these models were most often applied 

to engineering problems rather than providing legitimate 

models of cognition. For example, good connectionist 

models of cognition should adapt their connection weights 

locally, without homuncular knowledge, backpropagation 

of the error or complex learning procedure (O'Reilly, 

1998). Therefore, models should show the ability to learn 

quickly with excellent performance, while possessing 

limited memory capacity when encoding time is short (one 

shot or few shot learning). On the other hand, they should 

present good performance and good memory load capacity 

when the encoding time allowed is longer.  

The present study proposes the introduction of a recency 

parameter in a modified BAM network (Chartier & 

Boukadoum, 2006b; 2011), which leads to improved 

performance in rapid learning situations, but with limited 

storing capacity. The proposed process therefore allows for 

learning in conditions where a limited number of iterations 

is required. The remainder of the paper is divided as 

follows: The background section describes the architecture 

of the model and the internal properties of the network, 

while the method section presents the learning and recall 

procedures of the model. The results section describes the 

recall performance tasks of the model under various level 

of noise. The final section discusses the results and 

provides a conclusion to the study. 

Background 

The model proposed by Chartier & Boukadoum (2006b; 

2011) uses an unique matrix for each layer. This 

Bidirectional Heteroassociative Memory (BHM) is able to 

learn correlated patterns for bipolar patterns as well as for 

real-valued patterns. 

Architecture 

The network is made of two Hopfield-like neural networks 

interconnected in a head-to-tail fashion, providing a 
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recurrent flow of information that is processed 

bidirectionally. The network's architecture is shown in 

Figure 1 where x(0) and y(0) represent the initial vector-

states, W and V are the weight matrices and t is the current 

iteration number.  

 

 
 

Figure 1: Architecture of the BAM. 

Transmission Function 

The transmission function is based on the classic Verhulst 

equation extended to a cubic form with a saturating limit at 

±1 (Chartier & Boukadoum, 2006b): 
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where N and M are the number of units in each layer, i is 

the unit index,  is a general transmission parameter and a 

and b are the activations. These activations are obtained the 

usual way: a(t)=Wx(t) and b(t)=Vy(t). Figure 2 illustrates  

the shape of the transmission function for  = 0.2.  

 

 
 

Figure 2: Transmission function for  = 0.2. 

 

Contrary to sigmoid-type function, there are no asymptotic 

behaviors in the transmission. This function has the 

advantage of exhibiting grey-level attractor behaviour 

which contrasts with other BAMs that can only develop 

bipolar attractors (Chartier & Boukadoum, 2006b). 

Learning Rule 

The connection weights are modified following a 

Hebbian/anti-Hebbian approach (Storkey & Valabreque, 

1999; Bégin & Proulx, 1996): 
 

                                    

                                    
 (2) 

 

where  is the learning parameter controlling for the speed 

of convergence and k is the learning trial number. 

Connection weights are initiated at 0 and x(0) and y(0) are 

the initial inputs to be associated. The network has 

converged when x(0)=x(t) or y(0)=y(t).  Thus, each weight 

matrix converges when the feedback is equal to the initial 

inputs. In the BHM, the network convergence is guaranteed 

if the learning parameter   is set according the following 

condition (Chartier & Boukadoum, 2006a): 
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where M and N are respectively the dimensionality of the 

input and its association. The   parameter was set to a 

lower value than the threshold found in (3) for every 

simulation performed. The learning rule (2) acts much like 

a long-term memory where the learning convergence is 

longer, but exhibits an increased storage capacity and has a 

better-defined attractor. 

Learning Rule Modification 

In order to lower the time to learn associations, the memory 

capacity has to be decreased. One way to accomplish this is 

by introducing a recency parameter (     ). This 

parameter removes from the memory associations that are 

not reinforced enough.  The resulting learning rule after 

modification is given by: 
 

                                     

                                     
 (4) 

 

If =1 then the learning is accomplished in the same 

fashion as in Equation 2. This learning rule can be 

simplified to the following hebbian/anti-hebbian equation 

in the case of auto association where y(0)=x(0):  

 
                                   

                                   
 (5) 

 

 Simulations 

The simulations are to assess the performance of the Short-

term BHM on a recall task in comparison to the standard 

Hopfield, Kosko and BHM networks.  
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Methodology  

Learning was carried out according to the following 

procedure: 

1) Random selection of a pair of patterns (x(0) and 

y(0)). 

2) Computation of x(t) and y(t) according to the 

transmission function (1). 

3) Computation of the weight matrices update 

according to (4). 

4) Repetition of steps 1) to 3) until all of the pairs 

have been presented. 

5) Repetition of steps 1) to 4) for an a-priori set 

number of epochs.  

The transmission parameter () was set to 0.2 throughout 

the simulations and the number of iterations to perform by 

the network before the weight matrices were updated was 

set to    . The network was tested on an auto-association 

and hetero-association task that consisted of 26 stimuli 

placed on 7x7 grids (Figure 3). The auto-association task 

was an association of uppercase stimuli only, whereas the 

hetero-association consisted of the association between 

uppercase and lower case stimuli. The recency parameter 

() was set to 0.99 and 0.995 for the rapid setting and at 1.0 

for the standard long-term setting. In the rapid setting, 

instead of presenting all the patterns at once, the network 

was limited to only one subset at a given time. In other 

words, rather than learning all stimuli in one epoch, the 

network limited itself to grouped associations of a 

maximum of 5 associations.  

 

 
 

 

 
 

Figure 3: Patterns used for the simulation 

 

Following the learning phase, the network was tested on 

a recall task according to the following procedure: 

1) Selection of an input pattern x(0). 

2) Computation of y(1) according to the transmission 

function (1). 

3) Comparison with the target value y(0) 

4) Repetition of steps 1) to 3) until all of the patterns 

have been presented. 

In this situation a given pattern iterated until a steady state. 

Recall performance was recorded for the level of flipped 

pixels varying from 0 to 24 (0 to ≈50%). The network was 

tested on grouped associations of 2, 3, 4 and 5 patterns. The 

network was tested 200 times for every condition and the 

average performance was computed.  

Results 

Figure 4 presents an example of the first 10 patterns 

recalled in a noiseless (0 flipped pixel) situation for both 

auto-association and hetero-association tasks. The orange 

dashed lines represent the demarcation between previously 

learned associations and the associations that have just been 

learned. The model was compared to the results of 

Hopfield's model (1982) as well as Kosko's (1988). For 

both networks, contrary to the BHM, there are no memory 

traces between the past and current association. In other 

words, the connection weights are reset to zero between the 

learning of a given group. The connection weights had to 

be set to zero since both Hopfield and Kosko's model 

cannot perform the task otherwise as they suffer from 

memory overload. It is as if we are comparing the 

performance of a single BHM with several independent 

Hopfield or Kosko models. Although this situation is 

different, it was included for comparison purposes using 

optimal conditions for Hopfield and Kosko.  

The results (Figure 4) for the auto-association of the 

short-term memory show that previously learned 

associations tend to be erased as new associations are 

made, particularly when the correlation is very high 

between two patterns (for example, the stimulus E and F). 

When patterns are presented in groups of two, the short-

term network makes no mistakes in associating the patterns 

presented within the step; this also holds for conditions 

where patterns are presented in groups of 5. The Hopfield 

network shows perfect performance when the input patterns 

are learned in groups of two. However, when presented in 

groups of 5, the network makes several mistakes even in 

the absence of noise. These results are even more disastrous 

for hetero-associations, where the network can barely recall 

any associations. Hence, Kosko's network is not able to 

learn any of the associations grouped in pairs, whereas the 

short-term BAM is able to learn all associations whether 

they are presented in groups of 2 or 5. Results for the 

standard BHM were not shown because it could learn and 

recall perfectly in all of the previous situations.  

 Figure 5 depicts Monte Carlo simulations of the 

network performance on recall tasks with flipped pixels. As 

can be seen in figure 5a and 5b, the short-term memory 

outperforms the standard BHM. However, the results for 

the independent Hopfield networks with sequences of 2 and 

4 items are very similar to the results of the short-term 

version of the BHM. Results for sequences of 5 inputs are 

not reported since it was shown in Figure 4 that the 

Hopfield networks could not perfectly recall more than 4 

associations even in a noiseless condition. In addition, 

more epochs (15 rather than 5) systematically lead to 

increased performance in the BHM. In other words, using 

the batch of training sets for a greater number of cycles 

before updating the weight matrices leads the short-term 

BHM to better recall performance. For example, the 
performance for input sequences of 5 improved if the 

number of epoch is increase from 5 to 15 epochs. However, 

for the remaining conditions, the number of epochs has 

little or no impact on the performance. Evidently, because   
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Figure 4: Association recall for auto and hetero-association learning 

 

 

1920



 5 learning epochs 15 learning epochs 
A

u
to

-a
ss

o
ci

at
io

n
 (


=
0

.9
9

) 

 
(5a) 

 
(5b) 

H
et

er
o

-a
ss

o
ci

at
io

n
 

(
=

0
.9

9
) 

 
(5c) 

 
(5d) 

H
et

er
o

-a
ss

o
ci

at
io

n
 

(
=

0
.9

9
5

) 

 
(5e) 

 
(5f) 

 

Figure 5: Performances of the network on a recall task with pixels flipped. The legend is laid out as follow: Stan. BHM 

are the results for a standard BHM. BHM 2, BHM 3, BHM 4 and BHM 5 are the results for the short-term version of the 

BHM for input sequences of respectively 2, 3, 4 and 5 patterns. Finally, Hopfield and Kosko are the results for the Hopfield 

and Kosko networks for input sequences of respectively 2 and 4 patterns

Hopfield network uses a strict Hebbian learning rule, 

anything other than one epoch will lead to worse results 

(Bégin & Proulx, 1996). Finally, for both the Hopfield and 

BHM network, the performance is reduced as the lengths of 

the sequences are increased.  

Similar results hold for the more difficult task of 

hetero-associations (5c and 5d) where a trend similar to 

what was presented for auto-associations is presented. 

However, in some conditions, such as simulations 

performed on sequences of 4 and 5 inputs for the short-term 

BHM, the network could not systematically recall the task 

100% of the time (5c and 5d). We therefore tested the 

network using a value of        , which led to perfect 

performance on recalls with little or no noise (5e and 5f). 

Moreover, the results for Kosko's BAM are drastically 

reduced in comparison to the previous results on auto-

associations. In fact, the independent networks cannot learn 

perfectly sequences of 2 nor 4 associations. In no condition 

could Kosko's BAM perform as well as the standard or the 

short-term BHM. 

Discussion and Conclusion 

The results show that the modification to the learning rule of 

the standard BHM leads to increased performance in 

conditions where rapid learning is necessary. Those results 

are similar to other research done in the field of 

bidirectional associative memory, which led to perfect 

performance on recalls with little or no noise (5e and 5f). 

Moreover, the results for Kosko's BAM are drastically 

reduced in comparison to the previous results on auto-

associations. In fact, the associative memories, such as 

Nong & Bui (2012), in which a BAM model was proposed 
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with both faster convergence and improved performance. 

However, the proposed network remains a compelling 

model of human cognition as it retains the original 

properties of the standard BHM network (Chartier & 

Boukadoum, 2006), which was not the case in Nong & Bui 

(2012). In other words, the same BHM model can be used 

for both short-term and long-term memory encoding. The 

results show that the use of short-term memory is 

advantageous for short sequences of inputs for both auto- 

and hetero-associations.  

Although the objective of the study was not to model 

human data, the fact that traces of older memories remain 

encoded in the connection weights is an interesting 

component to the model since real-time problem solving, as 

constantly done by human beings, requires memory traces to 

be kept. This could lead to a priming effects, where learning 

performance could increase, resulting in a faster learning 

during long-term memory encoding. On the other hand, 

erasing such information, as is done in Hopfield’s and 

Kosko’s models, would force for constant relearning of the 

same associations. The BHM network proposed also 

exhibits some advantages in comparison to the Hopfield and 

Kosko networks as the BAM network is much better a 

hetero-association and can tackle longer input sequences. 

In conclusion, this study introduces a modification to the 

original learning rule of the BHM, which leads to improved 

performance when rapid learning is required. It showed that 

BAM models are well suited to perform associations using a 

faster learning phase. Hence, they appropriately encompass 

biological and environmental limitations. Future research 

should evaluate the performances when the sequence is set 

randomly between epochs (i.e. abc, bac, acb). In addition, 

future research should explore the dynamics obtained as  is 

varied systematically under various dimensions of stimuli. 

The parameter could allow for more freedom on the number 

of items that can be kept in memory, which could vary in 

relation to contextual settings. These results are a step 

towards the construction of a larger model of working 

memory, since it is shown that the encoding of shorter 

sequences of input patterns leads to a different dynamic. 

Therefore, artificial neural networks used for real time 

problem solving (such as in robotics for example) should 

have a short-term memory component as well as a long-term 

memory.  
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