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Abstract

Previous research has shown that Bidirectional Associative
Memories (BAM), a special type of artificial neural network,
can perform various types of associations that human beings
are able to perform with little effort. However, considering a
simple association problem, such as associating faces with
names, iterative type BAM networks usually take hundreds
and sometimes thousands of learning trials to encode such
associations correctly, whereas humans in some conditions
learn much faster. The present study therefore proposes an
adjustment to a particular type of BAM network that
increases its performance in a rapid learning condition while
processing memory capacity is limited. Results show that the
modification to the original learning rule of the BHM leads
to improved performance when rapid learning is required.
Moreover, the model preserves its high memory load
capacity in standard learning. This study could lead to
improved cognitive models that can adapt their behavior in
function of the contextual conditions.
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Bidirectional associative memory; Short-term memory
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Introduction
Like human beings, artificial neural networks can

discriminate, identify, and categorize perceptual patterns
(Faussett, 1994; Haykin, 2009). Bidirectional Associative
Memories (BAMs) have been proposed as models of
neurodynamics. As such, they are able to develop attractors
allowing the network to perform various types of recall
under noisy conditions and successfully carry out pattern
completion. Many advances were made since Kosko
introduced the BAM in 1988; see Acevedo-Mosqueda,
Yanez-Marquez & Acevedo-Mosqueda (2013) for a review.
Although the majority of improvements made BAM models
better suited for learning a wider set of associations and
brought greater performance, such improvements have been
at the expense of learning times. Nowadays, BAM models
often take hundreds and sometimes thousands of learning
cycles to correctly associate patterns. Consequently,
researchers have attempted to enhance convergence times
and performance (Nong & Bui, 2012). Several one-shot
learning rules were developed, showing almost perfect

performance in some cases (Ritter, Diaz-Deleon, &
Sussner, 1999; Wu & Pados, 2000, Acedo, Yanez, &
Lopez, 2006a; 2006b). Although these improvements have
successfully overcome the limitations of the model
presented previously, these models were most often applied
to engineering problems rather than providing legitimate
models of cognition. For example, good connectionist
models of cognition should adapt their connection weights
locally, without homuncular knowledge, backpropagation
of the error or complex learning procedure (O'Reilly,
1998). Therefore, models should show the ability to learn
quickly with excellent performance, while possessing
limited memory capacity when encoding time is short (one
shot or few shot learning). On the other hand, they should
present good performance and good memory load capacity
when the encoding time allowed is longer.

The present study proposes the introduction of a recency
parameter in a modified BAM network (Chartier &
Boukadoum, 2006b; 2011), which leads to improved
performance in rapid learning situations, but with limited
storing capacity. The proposed process therefore allows for
learning in conditions where a limited number of iterations
is required. The remainder of the paper is divided as
follows: The background section describes the architecture
of the model and the internal properties of the network,
while the method section presents the learning and recall
procedures of the model. The results section describes the
recall performance tasks of the model under various level
of noise. The final section discusses the results and
provides a conclusion to the study.

Background

The model proposed by Chartier & Boukadoum (2006b;
2011) wuses an unique matrix for each layer. This
Bidirectional Heteroassociative Memory (BHM) is able to
learn correlated patterns for bipolar patterns as well as for
real-valued patterns.

Architecture

The network is made of two Hopfield-like neural networks
interconnected in a head-to-tail fashion, providing a
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recurrent flow of information that is processed
bidirectionally. The network's architecture is shown in
Figure 1 where x(0) and y(0) represent the initial vector-
states, W and V are the weight matrices and ¢ is the current
iteration number.
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Figure 1: Architecture of the BAM.

Transmission Function

The transmission function is based on the classic Verhulst
equation extended to a cubic form with a saturating limit at
+1 (Chartier & Boukadoum, 2006b):

Vi, ., N, Yifer1= f(ai(r)) (12)
1, if ai(t) >1
= —1, ifai(t) < _1
6+ Dayy — 531'3@)' else
and
Vi, o, M, Xt 41]= f(bi(t)) (1)

1, ifby) > 1
—J1-1, ifbyy < -1
(6 + Dby — by, else

where N and M are the number of units in each layer, i is
the unit index, J is a general transmission parameter and a
and b are the activations. These activations are obtained the
usual way: a(f)=Wx(¢) and b(¥)=Vy(¢). Figure 2 illustrates
the shape of the transmission function for 6 = 0.2.
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Figure 2: Transmission function for & = 0.2.

Contrary to sigmoid-type function, there are no asymptotic
behaviors in the transmission. This function has the
advantage of exhibiting grey-level attractor behaviour

which contrasts with other BAMs that can only develop
bipolar attractors (Chartier & Boukadoum, 2006b).

Learning Rule

The connection weights are modified following a
Hebbian/anti-Hebbian approach (Storkey & Valabreque,
1999; Bégin & Proulx, 1996):

W(k + 1) = W(k) + n(y(0) — y(©)(x(0) + x(t)"
V(k+1) = V() + - T @)
= n(x(0) —x(0)(y(0) + y())
where 77 is the learning parameter controlling for the speed
of convergence and k is the learning trial number.
Connection weights are initiated at 0 and x(0) and y(0) are
the initial inputs to be associated. The network has
converged when x(0)=x(t) or y(0)=y(t). Thus, each weight
matrix converges when the feedback is equal to the initial
inputs. In the BHM, the network convergence is guaranteed
if the learning parameter 77 is set according the following
condition (Chartier & Boukadoum, 2006a):

1 1
n< 2(1-28)Max[M,N]’ 6 # 2 3)

where M and N are respectively the dimensionality of the
input and its association. The 7 parameter was set to a
lower value than the threshold found in (3) for every
simulation performed. The learning rule (2) acts much like
a long-term memory where the learning convergence is
longer, but exhibits an increased storage capacity and has a
better-defined attractor.

Learning Rule Modification

In order to lower the time to learn associations, the memory
capacity has to be decreased. One way to accomplish this is
by introducing a recency parameter (0 < f < 1). This
parameter removes from the memory associations that are
not reinforced enough. The resulting learning rule after
modification is given by:

W(k + 1) = BW(k) + n(y(0) — y()) (x(0) + x(t))T
_ _ T 4)
V(k +1) = pV(k) + n(x(0) — x(t))(y(0) + y(t))
If =1 then the learning is accomplished in the same
fashion as in Equation 2. This learning rule can be
simplified to the following hebbian/anti-hebbian equation
in the case of auto association where y(0)=x(0):

W(k + 1) = W (k) + n(x(0)x(0)" - x(Dx(t)")

V(k + 1) = BV(K) + n(y 0y ()T — y(Oy(©)) ©)

Simulations

The simulations are to assess the performance of the Short-
term BHM on a recall task in comparison to the standard
Hopfield, Kosko and BHM networks.
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Methodology
Learning was carried out according to the following

procedure:
1) Random selection of a pair of patterns (x(0) and
y(0).

2) Computation of x(f) and y(#) according to the
transmission function (1).
3) Computation of the weight matrices update
according to (4).
4) Repetition of steps 1) to 3) until all of the pairs
have been presented.
5) Repetition of steps 1) to 4) for an a-priori set
number of epochs.
The transmission parameter () was set to 0.2 throughout
the simulations and the number of iterations to perform by
the network before the weight matrices were updated was
set to t = /. The network was tested on an auto-association
and hetero-association task that consisted of 26 stimuli
placed on 7x7 grids (Figure 3). The auto-association task
was an association of uppercase stimuli only, whereas the
hetero-association consisted of the association between
uppercase and lower case stimuli. The recency parameter
(P) was set to 0.99 and 0.995 for the rapid setting and at 1.0
for the standard long-term setting. In the rapid setting,
instead of presenting all the patterns at once, the network
was limited to only one subset at a given time. In other
words, rather than learning all stimuli in one epoch, the
network limited itself to grouped associations of a
maximum of 5 associations.

Figure 3: Patterns used for the simulation

Following the learning phase, the network was tested on
a recall task according to the following procedure:
1) Selection of an input pattern x(0).
2) Computation of y(1) according to the transmission
function (1).
3) Comparison with the target value y(0)
4) Repetition of steps 1) to 3) until all of the patterns
have been presented.
In this situation a given pattern iterated until a steady state.
Recall performance was recorded for the level of flipped
pixels varying from 0 to 24 (0 to =50%). The network was
tested on grouped associations of 2, 3, 4 and 5 patterns. The
network was tested 200 times for every condition and the
average performance was computed.

Results

Figure 4 presents an example of the first 10 patterns
recalled in a noiseless (0 flipped pixel) situation for both
auto-association and hetero-association tasks. The orange
dashed lines represent the demarcation between previously
learned associations and the associations that have just been
learned. The model was compared to the results of
Hopfield's model (1982) as well as Kosko's (1988). For
both networks, contrary to the BHM, there are no memory
traces between the past and current association. In other
words, the connection weights are reset to zero between the
learning of a given group. The connection weights had to
be set to zero since both Hopfield and Kosko's model
cannot perform the task otherwise as they suffer from
memory overload. It is as if we are comparing the
performance of a single BHM with several independent
Hopfield or Kosko models. Although this situation is
different, it was included for comparison purposes using
optimal conditions for Hopfield and Kosko.

The results (Figure 4) for the auto-association of the
short-term memory show that previously learned
associations tend to be erased as new associations are
made, particularly when the correlation is very high
between two patterns (for example, the stimulus E and F).
When patterns are presented in groups of two, the short-
term network makes no mistakes in associating the patterns
presented within the step; this also holds for conditions
where patterns are presented in groups of 5. The Hopfield
network shows perfect performance when the input patterns
are learned in groups of two. However, when presented in
groups of 5, the network makes several mistakes even in
the absence of noise. These results are even more disastrous
for hetero-associations, where the network can barely recall
any associations. Hence, Kosko's network is not able to
learn any of the associations grouped in pairs, whereas the
short-term BAM is able to learn all associations whether
they are presented in groups of 2 or 5. Results for the
standard BHM were not shown because it could learn and
recall perfectly in all of the previous situations.

Figure 5 depicts Monte Carlo simulations of the
network performance on recall tasks with flipped pixels. As
can be seen in figure 5a and 5b, the short-term memory
outperforms the standard BHM. However, the results for
the independent Hopfield networks with sequences of 2 and
4 items are very similar to the results of the short-term
version of the BHM. Results for sequences of 5 inputs are
not reported since it was shown in Figure 4 that the
Hopfield networks could not perfectly recall more than 4
associations even in a noiseless condition. In addition,
more epochs (15 rather than 5) systematically lead to
increased performance in the BHM. In other words, using
the batch of training sets for a greater number of cycles
before updating the weight matrices leads the short-term
BHM to better recall performance. For example, the
performance for input sequences of 5 improved if the
number of epoch is increase from 5 to 15 epochs. However,
for the remaining conditions, the number of epochs has
little or no impact on the performance. Evidently, because
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Figure 5: Performances of the network on a recall task with pixels flipped. The legend is laid out as follow: Stan. BHM
are the results for a standard BHM. BHM 2, BHM 3, BHM 4 and BHM 5 are the results for the short-term version of the
BHM for input sequences of respectively 2, 3, 4 and 5 patterns. Finally, Hopfield and Kosko are the results for the Hopfield
and Kosko networks for input sequences of respectively 2 and 4 patterns

Hopfield network uses a strict Hebbian learning rule,
anything other than one epoch will lead to worse results
(Bégin & Proulx, 1996). Finally, for both the Hopfield and
BHM network, the performance is reduced as the lengths of
the sequences are increased.

Similar results hold for the more difficult task of
hetero-associations (5c¢ and 5d) where a trend similar to
what was presented for auto-associations is presented.
However, in some conditions, such as simulations
performed on sequences of 4 and 5 inputs for the short-term
BHM, the network could not systematically recall the task
100% of the time (5¢ and 5d). We therefore tested the
network using a value of f = 0.995, which led to perfect
performance on recalls with little or no noise (5e¢ and 5f).
Moreover, the results for Kosko's BAM are drastically
reduced in comparison to the previous results on auto-

associations. In fact, the independent networks cannot learn
perfectly sequences of 2 nor 4 associations. In no condition
could Kosko's BAM perform as well as the standard or the
short-term BHM.

Discussion and Conclusion

The results show that the modification to the learning rule of
the standard BHM leads to increased performance in
conditions where rapid learning is necessary. Those results
are similar to other research done in the field of
bidirectional associative memory, which led to perfect
performance on recalls with little or no noise (5e and 5f).
Moreover, the results for Kosko's BAM are drastically
reduced in comparison to the previous results on auto-
associations. In fact, the associative memories, such as
Nong & Bui (2012), in which a BAM model was proposed
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with both faster convergence and improved performance.
However, the proposed network remains a compelling
model of human cognition as it retains the original
properties of the standard BHM network (Chartier &
Boukadoum, 2006), which was not the case in Nong & Bui
(2012). In other words, the same BHM model can be used
for both short-term and long-term memory encoding. The
results show that the use of short-term memory is
advantageous for short sequences of inputs for both auto-
and hetero-associations.

Although the objective of the study was not to model
human data, the fact that traces of older memories remain
encoded in the connection weights is an interesting
component to the model since real-time problem solving, as
constantly done by human beings, requires memory traces to
be kept. This could lead to a priming effects, where learning
performance could increase, resulting in a faster learning
during long-term memory encoding. On the other hand,
erasing such information, as is done in Hopfield’s and
Kosko’s models, would force for constant relearning of the
same associations. The BHM network proposed also
exhibits some advantages in comparison to the Hopfield and
Kosko networks as the BAM network is much better a
hetero-association and can tackle longer input sequences.

In conclusion, this study introduces a modification to the
original learning rule of the BHM, which leads to improved
performance when rapid learning is required. It showed that
BAM models are well suited to perform associations using a
faster learning phase. Hence, they appropriately encompass
biological and environmental limitations. Future research
should evaluate the performances when the sequence is set
randomly between epochs (i.e. abc, bac, acb). In addition,
future research should explore the dynamics obtained as £ is
varied systematically under various dimensions of stimuli.
The parameter could allow for more freedom on the number
of items that can be kept in memory, which could vary in
relation to contextual settings. These results are a step
towards the construction of a larger model of working
memory, since it is shown that the encoding of shorter
sequences of input patterns leads to a different dynamic.
Therefore, artificial neural networks used for real time
problem solving (such as in robotics for example) should
have a short-term memory component as well as a long-term
memory.
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