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Abstract

Simultanagnosia is a visual cognitive disorder following a bi-
lateral lesion in parieto-occipital brain areas. It affects the pa-
tients integrative perception so that scenes or hierarchically or-
ganized objects cannot be perceived as a whole but just in a
piecemeal fashion. Qualitative explanations consider impair-
ments of attentional selection mechanisms, feature binding,
or global shape processing. Until now, however, no compu-
tational model has been used to quantitatively reproduce the
performance patients suffering from simultanagnosia. We fo-
cus on modeling the impairment of recognizing hierarchical
stimuli (Navon letters), which have been used in several stud-
ies with patients and healthy subjects. In particular, we apply
the established HMAX model of object recognition, specifi-
cally trained on letter recognition, to investigate the role of
low-level, bottom-up processing, salience, and the selection
of a window of attention. We also assess to which extent
a top-down modulatory mechanism is necessary to quantita-
tively reproduce the global letter recognition performance in
patients. Our results indicate that as long as a bottom-up seg-
mentation of the global shape from local elements is possi-
ble, global shape recognition succeeds. However, when top-
down form completion appears necessary to identify the global
shape, the current, bottom-up processing model fails. More-
over, we replicate training effects in the global task, which are
comparable with patients performance in similar tasks. The
present results suggest several promising future research di-
rections to extend the model for modeling the mechanisms un-
derlying global shape recognition in healthy subjects as well
as the impairments in patients suffering from simultanagnosia.

Keywords: simultanagnosia; cognitive modeling; global
shape perception; models of the visual cortex.

Introduction
Simultanagnosia, sometimes described as the inability to see
the forest for the trees, is a visual deficit, which is part of
the Bálint syndrome (Bálint, 1909). Patients suffering from
simultanagnosia experience severe difficulties in perceiving
more than one object at a time. They are usually unable to
recognize complex scenes or composed objects (from their
global shape) (Wolpert, 1924; Luria, 1959). The symp-
toms generally appear after a bilateral lesion within and in

the vicinity of parieto-occipital cortical areas. Other typical
symptoms include the inability to recognize two distinct ob-
jects at once, but to perceive them as a single unit if joined by
a line or when combinable into a semantic unit (Luria, 1959;
Coslett & Saffran, 1991; Dalrymple, Kingstone, & Barton,
2007).

Since the recognition of single objects per se is not ham-
pered, simultanagnosia is considered to impair attention or
substantially reduce its resources. Attention and recognition
(and conscious perception) indeed may interact at multiple
points in the visual hierarchy, and in different waves of feed-
forward and feed-back processing (Lamme & Roelfsema,
2000). To add to this multifaceted picture, evidences were
presented both in favor of a space-based and of an object-
based account of the disorder (Dalrymple, Barton, & King-
stone, 2013). It is hence not clear which and how many
cognitive functions are actually damaged. Different types
of symptoms could be due to different subtypes of simul-
tanagnosia, impairing concurrently or exclusively early vi-
sion, feature binding, and object and location binding (Coslett
& Lie, 2008). Research efforts have investigated to which
extent the spatial relationships between figure elements are
critical and whether the problem would be explicable as a re-
stricted window of attention, or the inability to shift from one
item to another (Luria, 1959; Farah, 1990) as a result of an
extreme winner-takes-all competition (Jackson et al., 2009).
Alternative explanations point to a reduced processing speed
(Duncan et al., 2003), or to the inability to integrate single
stimuli and even single features into a unity (Robertson, 2003;
Coslett & Lie, 2008).

Qualitative explanations cannot reproduce or predict pa-
tients’ performance quantitatively, test which mechanism ex-
actly produces the observed effects, how selective attention
contributes to integrative perception, and how bottom-up
saliency and top-down modulation interact in selecting the
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level of representation of the observed scene. To the best of
our knowledge, no neurocognitve model of the visual cor-
tex has been devised or applied to model simultanagnosia so
far. To develop a robust and flexible-enough model of such a
disorder would have many far-reaching implications: under-
standing this disorder more deeply would help identify the
mechanisms of global shape perception and the influence of
attention in healthy subjects and improve current computer
vision systems in a cognitive way.

In this paper we put forward an experimental testbed that
consists of a simple set of stimuli, a state-of-the-art model
of object recognition (Serre et al., 2007), and possible exten-
sions thereof. The purpose of this testbed is to account for
both healthy and brain-lesioned subjects’ performance in or-
der to investigate which mechanism is responsible for which
symptom. The presented model is able to cope with the stim-
uli used in a real study (Huberle & Karnath, 2006) and to
reproduce the performance of patients. We finally discuss
gained insights and future developments of the model in or-
der to reproduce healthy subjects’ performance and be able to
selectively test which modules are responsible for the impair-
ments present in simultanagnosia.

A testbed for modeling simultanagnosia
Many studies reported that patients suffering from simul-
tanagnosia suffer from ’local capture’ effects, that is, the ten-
dency to focus attention on atomic elements of a larger, hi-
erarchical picture, and the inability to switch between the lo-
cal and global level of the image (Karnath, Ferber, Rorden,
& Driver, 2000; Huberle & Karnath, 2006). This is typi-
cally demonstrated via Navon hierarchical stimuli: large let-
ters that consists of many much smaller letters (Navon, 1977).
Healthy subjects usually present a ”global precedence” effect,
being faster at recognizing the global letter, while patients
suffering from simultanagnosia are typically stuck on the lo-
cal letter. Yet, this is not a completely binary effect, and in
some cases patients are able to recover the global shape (or
to see just the global one, as achieved in an experiment by
Thomas, Kveraga, Huberle, Karnath, and Bar (2012)). Per-
formance in the global task with Navon stimuli is strongly
modulated by the inter-element distance (Huberle & Karnath,
2006), by the size of the global stimulus (Dalrymple et al.,
2007), and by the salience of the local elements with respect
to the salience of the global letter (Huberle & Karnath, 2010).
In order to model simultanagnosia, these stimuli present the
advantage of being rather simple (just black and white) and
devoid of background clutter and semantic implications, thus
enabling an object recognition system to be trained on them
rather straightforwardly, without any pre-processing steps.
These stimuli, nevertheless, tackle the global processing issue
in patients in a critical way, and allow for a fair comparison
of performance between patients and model.

Stimulus material and human experimental results
As a first set of data and stimuli, we used the material and
results from Huberle and Karnath (2006). In that study, five

different letters (A,B,E,H,N) were used for both the local and
the global scale, with each global letter made up of one of
the other 4 letters (only inconsistent stimuli). The stimuli
were 700x700 pixel in size, where the global letters were cen-
tered in a bounding box of 600x600 px (10.9◦x10.9◦) while
local letters were 16x16 px in size (0.35◦x0.35◦). The inter-
element distance was varied fivefold (see Figure 1): 145 px
(Distance 1, 2.55◦), 96 px (Distance 2, 1.70◦), 73 px (Dis-
tance 3, 1.28◦), 48 px (Distance 4, 0.85◦), 36 px (Distance 5,
0.64◦). Hence the whole dataset consisted of 100 stimuli.

Figure 1: One example (A made of Bs) of the Navon stimuli
used in (Huberle & Karnath, 2006) and in this study. Versions
for the five inter-element distance are shown (Distance 1, top
left, to 5, bottom right).

Two patients and five healthy subjects were presented with
each of these stimuli repeatedly, one block with the task of
naming the letter at the local scale and another with the task
of naming the global letter. Before starting, all subjects were
familiarized with the stimuli and the tasks. Control subjects
performed 100% correctly on the local task and 99.5% cor-
rectly on the global task. Both patients responded correctly
well above chance in the local scale task (between 75% and
100% correct responses). Conversely, patients performed
rather poorly on the global task. In general, the larger the
inter-element distance was, the worse was the performance.
One patient performed well above chance with denser stimuli
(Distance 4 and 5 around 85% and 75% respectively), while
the other could give at most 40% correct answers even on Dis-
tance 5 stimuli. Both were at chance level (20%) or around
the 95% confidence interval for chance level (33%) for stim-
uli at distances 1 and 2.

The HMAX model for a letter recognition task
In the computer vision literature a lot of object recognition
approaches have been proposed (Andreopoulos & Tsotsos,
2013), with some more grounded in computational neuro-
science and inspired by the hierarchical structure of the vi-
sual cortex. To be able to generate testable predictions and
rely on a robust and biologically plausible model, we chose
the well-established HMAX model (Riesenhuber & Poggio,
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1999; Serre et al., 2007), in the publicly available imple-
mentation by Mutch and Lowe (2006). The model is hier-
archically organized in functional layers that can be linked
to corresponding cortical areas. It relies on the purely feed-
forward, interleaved application of a cascade of Simple (”S”)
layers, computing the convolution of local filters with the out-
put of the previous layer, and Complex (”C”) layers, applying
a max-like operator pooling units from the previous layer over
a local neighborhood.

In the implementation used, the first layer is the image
layer, where the input image is converted to grayscale and
the shorter edge is scaled to 140 pixels. A pyramid of 9 levels
is created, reducing the image at each scale by a factor 21/4.
Layer S1 filters the pyramid via a Gabor filter bank (emu-
lating V1 simple cell receptive fields) to gain a multi-scale
representation of edge orientation features present at every
location. Layer C1 yields a certain position invariance by
pooling nearby S1 units with same orientations, extracting the
maximal response and subsampling the pyramid (functionally
simulating V1 complex cells). The intermediate feature layer
S2 uses a learned dictionary of prototype patches (consid-
ered as higher level features) to match with C1 unit responses
via a Gaussian radial basis function. This step is believed to
correspond with processing in V4 or posterior IT. Prototypes
(square patches of side 4,8,12 and 16 px) are learned as fea-
tures characterizing the classes of objects to be recognized.
Their structure is critical for discriminating one class from the
other. The C2 layer finally reaches higher invariance by com-
puting the maximal response to every prototype and storing it
in a vector. The last stage feeds this vector to a classifier sys-
tem for multi-class classification. In Mutch and Lowe (2006)
this is done via Support Vector Machines, or in the Matlab im-
plementation via a one-vs-rest regularized least-squares clas-
sifier. This is admittedly the least biologically plausible step,
but it represents a decision-making process, and could be, for
example, replaced by a Hebbian learning rule based classifier.

As mentioned, this is a feed-forward recognition system,
relying on the assumption that the object to recognize is more
or less centered in the picture with minor scale variations.
Since the Navon stimuli present a ratio of about 1:30 between
local and global scale, the huge scale difference poses an ad-
ditional challenge, specifically regarding invariance in terms
of letter size, location, and font thickness. Hence, the model
was first tested with parameters as in Mutch and Lowe (2006).
The size of the dictionary was set to 500 prototypes. Proto-
types are uniformly randomly picked from every given stim-
ulus.To avoid non-meaningful features from the white back-
ground, only features with a minimal variance of σ = 10−4

were allowed in the dictionary. By experimenting with test
pictures of the five letters mentioned above (solid letters with
the same font as in the Navon stimuli but obtained by vary-
ing font thickness, position and size), we assessed how robust
and general the resulting model is in, for example, recogniz-
ing a letter of a size that is different from the letters used to
generate the feature dictionary and to train the classifier. Dur-

ing exploratory testing, we identified a suitable dictionary for
the discrimination of the five letters, to be used in the ex-
periments with the Navon letters. For the following experi-
ments, the dictionary was established by learning 500 proto-
types from images that contained centered, 6px thick letters
of size 62x62 px. The training set for the classifier allowed for
some variability in the set by using examples of the five let-
ters in four sizes (14, 26, 62, 108 px), where for the first three
sizes the letter was placed at one position in a 10x10, 5x5 or
2x2 grid, respectively, within the 140x140 image. This is the
baseline training set (130 images for every letter class) used
in the following experiments.

Model results on Navon Stimuli

After tuning and testing the model for the baseline task (let-
ter recognition), we assessed its performance on the Navon
stimuli set illustrated above. We first tested the basic model,
which does not include an attentional focus, that is, it assumes
the whole image as the ’spotlight’ of attention. Performance
was computed as correct classification of the global letter.
The model was tested both on normal letters (control task)
and on all Navon stimuli. The dictionary used was always the
same, while the training set for the classifier was tested in four
different configurations (see grouped bar charts in Figure 2).

In the first case (’baseline’), only the baseline training set
was used to train the classifier. This training condition pro-
duced a perfect performance in the control task (100% correct
classification of all normal letters), but failed with any of the
Navon letters at any distance (chance level performance or
slightly above for Distance 5). In the second training set, we
tested the use of sole Navon letters. Yet, to limit overfitting
only samples from one distance for every class were used, ei-
ther Distance 5 (Figure 2, top plot, ’only Navon’), which was
considered more similar to the dictionary set, or Distance 3
(Figure 2, bottom plot), which was expected to be more ca-
pable to generalize to other distances. For each of the five
letters, only one sample at the chosen distance was shown to
train the classifier (5 Navon stimuli in total). Training sets of
the five global letters made of the remaining four local let-
ters were produced (45 sets). During testing, however, the
complete Navon set was presented (average performance is
shown). In this case, Navon stimuli were classified better, but
mostly those at the trained distance. Normal letters on the
other hand were hardly correctly classified. The feature dic-
tionary is, thus, apt to represent also Navon stimuli. However,
to be able to correctly classify both types of stimuli, it seems
critical to train on both stimulus types (normal and Navon let-
ters). Thus, in the third training set tested (’normal+Navon’),
the best-performing Navon letters from the previous test were
used for training along with normal 108x108 px letters – one
for each class (10 training examples). The performance was
much better, with 80% correct classification even at Distance
1. Again, yet, on normal letters performance was rather poor.
This suggests that the normal letter presents important fea-
tures of each class to the classifier, which is hardly available
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Figure 2: Performance of the HMAX model on normal letters
and Navon Stimuli (grouped on the abscissae with respect to
inter-element distance). The different color bars represent the
different stimuli (normal letters and Navon at five distances).
Each group of bars represents a different training set.

in the corresponding Navon stimulus. Hence, training on both
helps the classifier to identify the most discriminative features
and weigh them more strongly.

The second and third training sets consisted of a very lim-
ited number of examples . In the final, fourth test, we thus
used the training set along with a more conspicuous number
of Navon samples. To still be able to test the capability to
generalize over diverse Navon letters, 24 copies of the very
same Navon letter (one for each class) at the same distance
(either 3 or 5) were put in the training set (hence, 130+24
training images for each letter class). The hypothesis behind
this test was that by training with enough varied examples of
both normal and Navon letters the classifier would be able to
learn a suitable set of discriminative features and their inten-
sity spectrum. Note that this last procedure may be consid-
ered as simulating the familiarization phase participants had
before the experiment. In this case (’baseline+24xNavon’ in
Figure 2), performance was very good both on normal and
Navon stimuli, especially for the case of Distance 3 for the
training, being able to generalize to neighboring distances.
Both training sets (with Distance 3 and 5), however, still had
problems with the sparsest stimuli (Distance 1).

These simulations have shown that Navon letters can be
recognized by the HMAX model particularly well when
Navon stimuli were also used during training and even bet-
ter when normal and Navon stimuli were used and better in
the cases where perceptual grouping occurs more easily (Dis-
tance 5 to 3, due to fusion of the letters in the downscaling of
the image, as when looking at a composite object squinting).
Such training effects were demonstrated also in simultanag-
nosic patients (Shalev, Mevorach, & Humphreys, 2007).

So far, the model was tested on the whole Navon stimuli.
As said, the image layer in the HMAX model rescales the
input at 140x140. For the original Navon stimuli (700x700)
this means that local letters (of 16 px side) end up covering a
2x2 px patch. Thus, obviously the system cannot perform the
local letter recognition task on the same image resolution. As
for humans, an ’attentional spotlight’, that is, a focus mecha-
nism is needed to select the location and image resolution of
interest. To implement a first resolution selection mechanism,
we experimented with a very simple attentional filter of fixed
size, which was arbitrarily imposed on the image. The filter
is a mask extracting an image patch in three possible sizes:
700x700, 140x140, or 36x36 px – either entailing the entire
image (global focus), multiple local letters (medium focus),
or just one local letter (local focus). The assumption is that an
attention mechanism delivers one of the three scales of pro-
cessing: the global object, part of it (such as a T-junction),
or a sub-element. Figure 3 shows on the left how the three
patches look on the original image and on the right how they
look to the model, once cropped and rescaled to 140x140 px
in the image layer of the HMAX model.

Figure 3: Attention scale selection: The system is given a por-
tion of the image selected by a focus mechanism with three
sizes. On the left, the three sizes are shown in the original
image size (patch sizes in red). On the right, the patches were
rescaled to 140x140 px, which represents the information that
is fed into the HMAX model (rescaled size of the local letters
in red).

The feature dictionary stayed the same as for the exper-
iments above. The classifier was trained with the baseline
training set plus the 24 replications of the best-performing
Navon letter for each class (either at Distance 3 or 5). Hence
the training set consisted of a total of 270 stimuli (130 normal
and 24 Navon x 5 classes). During testing, all 100 original
stimuli were used for the 700x700 mask size. For the smaller
mask sizes, patches were sampled by scanning all 100 stimuli
at 35 pixel steps in the medium focus and at 20 pixel steps in
the small focus, retaining the 10 and 20 patches that contained
the most non-white pixels, respectively, thus avoiding empty
patches. The test set consisted of 3100 stimuli (1+10+20
patches x 100 Navon stimuli). Results for these three foci
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are shown in Figure 4 along with the results of patients, av-
eraged across the two subjects reported in Huberle and Kar-
nath (2006). Model performance in the local task (small and
medium focus) was very good for each of the inter-element
distances (above 80%) as for the patients. Performance in the
global task (global focus) is again very good on the trained
distances and drops dramatically at Distance 2 and Distance
1, which was indeed also the case for the tested patients, even
if to a different extent.

Figure 4: Model and patient performance: color bars indi-
cate performance on Navon stimuli at different distances. The
first 2 bar groups on the left simulate selection of local foci
of attention of different size. The third group represent the
patients performance in the local task. The last two groups
show model and patients performance in the global task.

Discussion
The experiments presented in the previous section showed
that the HMAX model is capable of flexibly and robustly rec-
ognizing letters in normal and Navon configurations. More-
over it is capable of reproducing the patients’ performance
and training effects in the global task. In the present state, the
model is completely bottom up and feedforward. It cannot
simulate healthy subjects’ classification scores in recovering
the global Navon shape, specifically when this does not eas-
ily emerge from low-level perceptual grouping. In that case a
top-down effort is likely to be required for form completion.
Nonetheless, the current model shows that the system needs
a focus mechanism to succeed in both the global and the lo-
cal task. This mechanism determines the scale of processing
for the current task. When the whole image is considered,
the resolution of the local letters is too low for recognition.
On the other hand, when focusing on some local letters or
just one letter, the bigger picture is lost. In the following,
we discuss which modules and mechanisms should be added
for succeeding in modeling the performance of healthy par-

ticipants and for revealing the actual processes impaired in
patients suffering from simultanagnosia.

In the presented experiments the focus size and location
was arbitrarily and manually set. In the future a more flexible
mechanism based on saliency grouping should be added. By
pre-processing the whole image with a bottom-up saliency
model that (e.g. Itti, Koch, & Niebur, 1998), which also
makes use of a multiresolution representation, the areas or
scales containing most saliency can be identified and used
to select a sub-image for further recognition processing. For
Navon letters at Distances 1 and 2 the saliency map would
contain multiple activation peaks, centered on each letter,
while for Distance 4 and 5 a single salient area would emerge
– simulating grouping by proximity and similarity, particu-
larly fast in humans (Ben-Av & Sagi, 1995). Areas of con-
nected saliency would be segmented and the patch (or proto-
object) containing the maximum saliency would be fed to
the HMAX model. Alternatively, the saliency mask could
directly modulate processing in the S1 and S2 layers (see
Walther & Koch, 2006). Higher saliency of the global form
with respect to local items may explain the correct classifi-
cation of denser Navon letters. Further tests should inves-
tigate the replication of the results in Huberle and Karnath
(2010), where the local/global saliency ratio was manipulated
by varying local item size, global item size, or both.

Although enhanced with an attention mechanism, the re-
sulting system would still work in a purely bottom-up fash-
ion. It still would not be able to reproduce the perfor-
mance of healthy subjects. Grouping effects and figure-
background discrimination appear to be accomplished by ad-
ditional top-down feedback mechanisms to primary visual ar-
eas (Roelfsema, 2006). Such top-down modulations can be
related to the principle of predictive coding (Rao & Ballard,
1999), according to which endogenous expectations are re-
currently compared with the sensory stimulation and differ-
ences are propagated up in the hierarchy to adapt internal
states and expectations.

Chikkerur, Serre, Tan, and Poggio (2010) extended HMAX
with a Bayesian attentional process to model expectations re-
garding multiple features or location, producing space- and
feature-based selectivity. Such an architecture may allow the
modeling of the top-down, task-related information expecta-
tion at a specific scale, hence top-down biasing the compe-
tition between a global and a local focus of attention, even
when saliency at the local level is stronger. This would help
to assess to what extent focus size selection is due to scale
competition and how this competition is disrupted in patients.

Besides static top-down mechanisms, temporal dynamics
need to be taken into consideration to account for multiple
feed-forward and feed-back sweeps, from selection, through
completion, to recognition. Such interactive dynamics seem
particularly necessary to recognize sparser Navon letters, as
indicated by longer reaction times in healthy subjects when
reporting the global letter in those configurations in which
patients failed (Dalrymple et al., 2007). A neuro-dynamic

1915



model has been indeed shown to achieve shape-completion
on challenging stimuli, such as the Kanizsa figures with illu-
sory contours (Weidenbacher & Neumann, 2009).

In conclusion, the present study lays the basis for an ex-
perimental framework to model simultanagnosia. First tests
succeeded in reproducing results of patients suffering from
simultanagnosia on typical stimuli used to investigate factors
influencing local versus global capture. A complete model
should be able to account also for healthy subjects’ results, by
entailing the main mechanisms known to be at play in such
tasks. This would allow the identification of the functional
modules (and responsible areas) that are affected by the le-
sion. We expect that a neuro-dynamic model, operating on
a multiscale representation, will be essential to identify the
cognitive aspects impaired by simultanagnosia.
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