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Abstract

Here we introduce a simple actor-critic model of eye
movements during category learning that we call RLAttn
(Reinforcement Learning of Attention). RLAttn stores the
rewards it receives for making decisions or performing
actions, while attempting to associate stimuli with particular
categories. Over multiple trials, RLAttn learns that a large
reward is most likely when the values of the relevant
stimulus features have been revealed by fixations to them.
The model is able to approximate human learning curves in
a common category structure while generating fixation
patterns similar to those found in human eye tracking data.
We additionally observed that the model reduces its fixation
counts to irrelevant features over the course of learning. We
conclude with a discussion on the effective role eye
movements might play in bridging structural credit
assignment and temporal credit assignment problems.
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Introduction

Researchers have known for decades that appropriate
selective attention is needed to facilitate learning (Shepard,
Hovland & Jenkins, 1967) due in part to evidence showing
that deficits in attention impair learning (Filoteo, Maddox,
Ing & Song, 2007). However, we are only just beginning to
understand how selective attention itself is learned.
Gottlieb (2012) has advanced the thinking about this issue
and has outlined some of the important interactions
between learning, attention and eye movements. This work
strongly motivates thinking of eye movements as both
aiding in learning, as well as implementing actions, by
virtue of the rewards obtained by them. In general, the
process of discovering optimal behaviours, given particular
rewards, is known as reinforcement learning (Sutton &
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Barto, 1998), and a number of different methods have been
developed that properly apportion reward given a sequence
of behaviours.

Of the several different kinds of reinforcement learning
approaches, one in particular, the actor-critic method, has
stood out as having a plausible mapping on to the mid-
brain mesencephalic dopaminergic system (Holroyd &
Coles, 2002). In this account, a recurrent loop between the
anterior cingulate cortex and the basal ganglia works to
produce action signals that are then critiqued based on
differences in expected versus acquired reward. With
uniform expectations, those differences are merely
proportional to the size of the reward. As experience
reveals the utility of particular actions, any differences in
expectations modify the size of future weight adjustments;
should something good come along when something very
bad was expected, this difference would have a larger
reinforcing effect on the decision taken to get it than a
more expected result. To reinforce the sequence of actions,
a small amount of that reward, known as the temporal
difference error, is passed back to the preceding actions
that got to the present decision. This is done not in one step
but as a function of what the system can expect by taking
that particular action the next time it finds itself in that
particular state. Once the chain is in place, following the
sequence of actions simply collects the expected reward.

While there is considerable evidence supporting the
notion that eye movements are sensitive to rewards
(Hikosaka, Sakamoto & Usui, 1989), models of
categorization and attention have not comprehensively
investigated the implications of this. Most of the learning
models built to explore various category structures employ
methods meant to optimally assign blame for classification
errors based on physical features of the input without
regard for the temporal nature of information acquisition.



In this paper we introduce an actor-critic reinforcement
learning model of eye-movements in the context of
category learning that we call RLAttn (Reinforcement
Learning of Attention). We demonstrate that the model
qualitatively mimics several aspects of human eye-
movement data, including the overall number of fixations
and the relative number of fixations to relevant and
irrelevant features. Finally, we consider the similarities and
differences between RLattn and existing reinforcement
learning models, each of which, including RLAttn, has its
own strengths and weaknesses.

Structure of the model

In reinforcement learning, the agent improves its
performance by interacting with the environment in order
to achieve a goal. The agent is the learner, and the
environment is the set of all possible actions or interactions
that the agent faces. The actor-critic method of
reinforcement learning that RLattn uses is based on the
method of temporal differences (Sutton & Barto, 1998).
This is a class of dynamic programming methods that
breaks up a problem into a set of possible states (S) with
associated actions (A) leading from one state into another
ideally with optimal transition probabilities, without
storing the entire history. The agent acts in the
environment in discrete time steps. During each time step
(t), the agent receives some information about the state of
the environment.
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Figure 1: Starting a trial from the state (k=27) of unknown
feature values [? ? 7], RLAttn selects an action, collects the
associated rewards or punishments and transitions to a
different state.

The possible states in the category learning
environments in the present investigation are based on
three stimulus features and a category decision action. All
three features can hold one of two possible values on any
given trial: either 1 or 2. Additionally, each of the three
features can be unknown, which we coded as 3. As such,
there are three possible states resulting from each of the
three features: known (1 or 2) or unknown (3).
Additionally, the three possible feature states over the three
different features yield 3’ = 27 possible combinations, and
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the addition of a category decision state make a total of
S=28 states, £ € . The decision state is one in which the
agent makes a category choice. As an example, state k=27
is the starting state on each trial and represents the state of
not knowing anything about the features. It encodes the
state of knowledge [3 3 3], which is to say that none of the
three features have been fixated. From this state, the agent
might decide to look at feature 1. Having fixated the
feature, the agent is in one of two possible initial “feature 1
known” states, which, depending on the value of that
feature, might move it to state k=25, (1 3 3), or state k=26,
(2 3 3). The values of features 2 and 3 are both coded to 3
because they are still unknown after the first fixation.

RLAttn selects an action based on the action
probabilities in its current state, where A=Qy The possible
actions for the agent in our environment are to fixate one
of the three features, or to make a category decision. Upon
selecting an action, the agent is brought into a different
knowledge state, unless opting to fixate the same feature
again. For that particular time step ¢, the agent is given a
reward r as a consequence of its chosen action.

RLAttn’s environment has three possible sources of
reward: access cost, and correct or incorrect decision
rewards. In modelling human gaze data, access cost is a
punishment that has been used to represent the bio-
mechanical energy cost of making an eye movement
(Nelson & Cottrell, 2007). Access costs, in the form of
temporal delays, have been experimentally shown to
influence patterns of human eye movements in category
learning tasks (Meier & Blair 2013; Wood, Fry & Blair,
2010). In RLAttn, access costs are a small penalty for each
eye-movement. Correct and incorrect rewards are
relatively larger rewards/punishments that are collected as
function of whether or not the model made the correct
decision. The record of the reward for each action a in
each state is stored in a Q-matrix:

0,.,(a)=0,,(a)+0b, (1)

where 5, is the temporal difference error calculated by

differences in the state value record Vy. and « is a learning
rate. The Q-matrix has A columns and S rows; in our case
4 (one for each of the three features, and one for making a
category decision) columns and 28 rows. The final, 28"
row, contains the set of possible category choices, which
also happens to be A=4 in this particular case (one action a
for each of the four possible categories shown in Table 1).
The reward, r,, for a decision action, a € A | is stored here.
The relationship between the state Oy and the action a is
called the policy. The policy is a mapping from each of the
states and the selection of a possible action based on a set
of corresponding probabilities. Typically a policy might be
set to greedy, i.e. select the most reinforced action, or be
varying probabilistic to explore the space.

Over time, the agent learns that it is more preferable to
be in some states as opposed to others. This is controlled



by the value vector V. This value vector has one column
which stores the value of the full state, and so contains S
rows. In practice, the value of a state under a policy is the
expected return starting from state £ and following the
policy to select an action, which in our case is the Luce
decision rule. The values within V are updated by:

0,=V,, +r

t+1

—c-V, @

where V| is the value of the current state, r.; is the reward,
modulated by an access cost ¢, and Vi, is the value of the
state that the agent is in after its action.

V.=V, +as, 3)

Given this formalization, it still has to be decided how
the action probabilities for particular unvisited states in the
Q matrix are initialized. We currently opt for simple
generalization rules in RLAttn. If a particular knowledge
state k has never been visited, all actions are equiprobable,
however the decision action is defined by Vi—s. When
initializing the category selection probabilities from state
Qu—25 the average of all Qi r is taken.

The action probabilities are transformed by a modified
Luce decision rule, such that:

Oy, (a)T

e
pa,0,,)= W @)

beA

where Qy, is the agent’s current state, e is Euler’s constant,
a is the action whose odds of selection are being
transformed, b is a member all possible actions for that
state, and T is a temperature constant, set to 1 for RLAttn.
Over multiple time steps, the probability of selecting the
action with the highest reward is higher than selection all
of the other possible actions. In general, the agent’s goal is
to maximize the reward that it receives overall - not just
the immediate reward. The Luce decision rule acts as the
policy for the model, and is among the simplest strategies
for defining a policy (Sutton & Barto, 1998).

Human Data

In order to assess the performance of RLAttn we fit data
(Figure 2) from McColeman, Barnes, Chen, Meier, Walshe
and Blair (2014). In this study, participants had to learn to
sort images of fictitious micro-organisms into four possible
categories. The images each contain three spatially
separated features, and the values of two of the features
indicate to which category the image belongs. The
remaining feature is irrelevant (Table 1). The data comes
from 19 learners with high quality gaze data in the perfect
feedback condition of an experiment manipulating
feedback validity. All participants come from Simon
Fraser University’s Research Participation pool, and
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everyone received partial credit for their
participation.

Eye tracking data were converted into fixations using a
modified version of the Salvucci-Goldberg dispersion
algorithm (2000). Additional methodological details are
available along with the probability of fixating the
irrelevant feature, fixation durations, attention change and
error bias in McColeman, Barnes, Chen, Meier, Walshe &
Blair (2014). These data are available on the Simon Fraser

University Summit Repository system'.

course

Table 1: Category Structure.

Feature 1 Feature 2 Feature 3 Category
0 0 0/1 A
0 1 0/1 B
1 0 0/1 C
1 1 0/1 D
Accuracy

As can be seen in Figure 1, people quickly learn the
category structure and maintain high accuracy for the
duration of the experiment. Trials prior to achieving 9
correct answers consecutively are deemed pre-learning,
and those after 9 correct answers in a row, the criterion
point, are post-learning.

Human and RLAttn Accuracy
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Figure 1: Accuracy is shown with standard error

represented as the shaded region around the mean accuracy
line.

Fixation count

As with the participants’ accuracy, the fixation counts were
also reported in McColeman, Barnes, Chen, Meier, Walshe
& Blair (2014). Figure 2 depicts an example of one kind of
attentional optimization, whereby participants reduce the
overall number of fixations they make over the course of
the experiment.

! http://summit.sfu.ca/item/12720



Example of Human Fixation Count
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Figure 2: Fixation counts relative to the criterion point,
shown as a dashed vertical black line, in the participant
most similar to the mean criterion point (in this case trial
71 compared to the mean criterion point of all participants
of trial 75). Trials with gaze quality are not included, and
are visible as gaps in the plot.

Model Data

The model was fit by minimizing the difference between
its accuracy and the human subject accuracy (see Figure 1)
on a trial-by-trial basis. The fitting procedure was initiated
with a simple grid search of several different levels of the
two free parameters, learning rate, and reward. The best
fitting parameters were chosen as the seeds for a simplex
based minimization method implemented in MATLAB,
named fminsearch (Lagarias, Reeds, Wright & Wright,
1998). Because RLAttn is a stochastic model we ran the
model 3 times before returning the average fit value from
these runs to fminsearch. Once the best fitting parameters
were found, we ran the model another 5 times under these
parameters to generate 5 simulations for each of our 19
human subjects upon which to base our analysis.
Occasionally RLAttn would enter a pathological state,
such as endlessly fixating features without making a
decision. If such a state was entered using a set of best
fitted parameters, the simulation was dropped. In this case
we lost 3 simulations leaving 92 simulations. Despite a
particularly conservative fit calculation, where we
calculate the match in accuracy on each trial between the
human and the model data, RLAttn matched of 81% (SD =
0.12) of the total trials.

Accuracy

Overall RLAttn matches the qualitative features of human
learning. As can be seen in Figure 1, RLAttn took slightly
longer to attain the same level of accuracy as humans,
likely due to the level of randomness in the Luce decision
rule, governed by T, which was not fit as a free parameter
in this instantiation of RLAttn. Humans may also be
generalizing their category knowledge more efficiently
than the model.
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Fixation count

As with the human data, the mean fixation counts decrease
over the course of the experiment (Figure 4.).
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Figure 3: Fixation counts relative to the criterion point,
shown as a dashed vertical black line, in the best fitted
model for the same subject as that in Figure 2, with
criterion point most similar to that individual from the
simulation distribution (trial 76 for this simulation).
Although the trials with fixation counts >20 are less in the
model for this simulation (fixation counts were not fit
directly), the means are very similar (usupec—= 3.86 and
MRLattn = 346)

In line with previous attentional efficiency results
(McColeman et al, 2014), the decrease is
disproportionately associated with the irrelevant feature.
As the values of particular eye movement decisions are
refined, access cost begins to outweigh the expected
reward from looking at irrelevant information.
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Figure 4: The mean fixation counts to each feature are
comparable between the model and the human participants
over the course of the experiment. Further, RLAttn is
exhibiting the right kind of reduction in fixation count as it
reduces its fixations to the irrelevant feature.



Model Comparison

Here we compare RLattN with two related models that
attempt to address eye movements and attention during
category learning. The first is a Bayesian model developed
by Nelson and Cottrell (2007) which links the probability
of making a query to a stimulus dimension to the
probability that a particular dimension will improve a
category decision. This estimation is added to the mutual
information between that stimulus dimension and the
probability of a correct category determination, while the
energy cost of making an eye movement is subtracted. If
the mutual information between a dimension and the
correct category decision is low, a function of the feature
being irrelevant, than the cost of making a movement will
outweigh the expected information gain of looking at that
feature and no movement will be made. In this sense, the
model is an attempt to directly account for attentional
optimization results which show reduced fixations over the
course of learning to irrelevant dimensions. Apart from
being easily interpretable, the use of mutual information as
a metric for deciding an action is supported by research
showing that human behaviours are often taken to reduce
uncertainty within a task (Renninger, Verghese &
Coughlan, 2007).

Although RLAttn employs the idea of access cost and
can be interpreted as being influenced by probability gain,
there are a number of interesting differences in model
behaviours and assumptions. For instance, Nelson and
Cottrell note that human learners often do not query all
stimulus dimensions even prior to understanding the
category structure (Rehder & Hoffman, 2005). In RLAttn
this kind of counter-intuitive behaviour is seen as a direct
consequence of the agent not knowing the relative values
of looking at information as opposed to making category
decisions. Not until negative rewards have had a chance to
discourage this kind of ignorant decision making will the
participant settle in to a more consistent and useful fixation
pattern; this could be thought of as a simple rule testing
mechanism but more empirical research on this question
would be needed. Further, the inclination to make a
particular motor movement is not simply guided by
probability gain concerns (Meier & Blair, 2013) but also
by the reinforcement history (Holroyd & Coles, 2008).
Overall, we see the use of mutual information as an
important consideration to a more comprehensive model of
eye movements and see RLattN as addressing a separate
set of concerns pertaining to the reward responsive nature
of the saccadic system.

One of the most influential models of attentional
learning in categorization is ALCOVE (Kruschke, 1992).
In ALCOVE, attentional weight to particular stimulus
dimensions (represented in the present work as features) is
tuned by errors during learning. Whereas ALCOVE was
developed to model human learning based on a
psychological reworking of the back-propagation
algorithm, Jones and Cafias (2010) extended these ideas in
Q-ALCOVE using reinforcement learning principles. They
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did this by using temporal-difference error to solve what
would normally be a structural credit assignment problem
but posed in such a way as to allow a temporal credit
assignment solution. To understand this, consider the
categorization problem they develop. The stimuli they use
have two parts, presented sequentially, where the action
taken by the participant when viewing the first part
modifies the available actions in the second part, thereby
affecting the elicited reward. Learning as a function of
temporal difference error would predict that higher valued
actions taken in the first part of stimulus viewing would be
reinforced by the later reward and, perhaps unsurprisingly,
this is what was found in human participants doing the
same task (Cafias & Jones, 2010).

The insightful part about this work is the way in which it
uses the structure of the task to separate stimulus
dimensions in time to circumvent what could easily have
been a contemporaneous conjunctive rule problem, thus
allowing the temporal difference error to determine the
correct structural relationships. There is very clearly an
important intuition about human learning being developed
in this model but it is never quite explicitly stated: all
structural problems have temporal contingencies as a
consequence of serial selective attention. The primary
difference between RLAttn and Q-ALCOVE is that we see
the embodied sequential actions of the eyes as the primary
conduit of these contingencies. Either way, this
contribution to the literature deserves to be recognized as
an advancement of category learning models towards the
general fact that any category decision is the result of a
serious of previous sub-decisions that share in rewards.

Discussion

We have presented an actor-critic reinforcement learning
model of eye movements during category learning that is
able to approximate human learning curves while also
improving their attentional efficiency based on previous
rewards. In addition to these qualities, the model offers a
reason for the seemingly odd behaviour of participants to
guess categories without fully exploring a stimulus, as had
been previously reported: until punished, decision actions
in a particular state are actions like any other. Thinking of
behaviour in this way allows us to understand why people
are sometimes prone to making objectively non-optimal
decisions. We see the creation of models like RLAttn as a
useful first step towards bridging neurophysiological
research on reward processing, particularly with respect to
eye movements and attention, with the well-studied
category structures used in the category learning literature.
To our knowledge, only a few models have been presented
that have attempted to address these issues (see Barnes,
Walshe, Blair & Tupper, 2013, in addition to the models
looked at here) which is surprising given the longstanding
interest in psychology in category learning and
computational modeling.

Finally, the relationships between category learning and
sequencing behaviours are important to understand for a



number of reasons. Not only do humans solve both
structural and temporal credit assignment problems (the
difference between what causes something and when
should something be done) but deficits in areas implicated
with reinforcement learning, like the basal ganglia, are
observed to impair both category learning and sequencing
behaviours (Seger, 2006). The solution provided here,
which is to store information needed to solve classification
problems over multiple, serially accessed states, fits will
with the ‘just-in-time’ representations posited by Ballard
and colleagues (1997). That is to say that working memory
resource constraints point to the need to dynamically
retrieve information as it is needed and actions like eye
movements offer a method of pointing to the information
needed. It seems plausible to think that computer models
that learn category structures based on these principles
may one day contribute solutions to broader problems in
cognitive science and psychology.
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