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Abstract

Animals routinely adapt to changes in the environment in
order to survive. Though reinforcement learning may play a
role in such adaption, it is not clear that it is the only
mechanism involved, as it is not well suited to producing
rapid, relatively immediate changes in strategy in response to
environmental changes. We explored the possible adaptive
mechanisms underlying in a cognitive model of human
behavior in a change detection experiment. Besides
reinforcement learning, the model incorporates counterfactual
reasoning to help learn the utility of different task strategies
under different environmental conditions. The results show
that the model can accurately explain human data and that
counterfactual reasoning is key to reproducing the various
effects observed in this change detection paradigm.
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Introduction

Detecting changes in the natural environment is often vital
for an organism’s survival. Animals routinely experience
environmental changes across days and seasons, and
sometimes more sudden and drastic changes such as flood
and drought. Evolution has equipped organisms with many
abilities to detect such changes, and learning is perhaps the
most powerful one of them. Studying change detection, a
problem that learning is possibly originally evolved for,
may shed light on the capabilities and limitations of
learning.

Rational analyses of change detection have been
developed based on optimal foraging theories (e.g.,
McNamara and Houston, 1987; Stephens, 1987). Stephens
(1987) derived the optimal foraging strategies for a
simplified, hypothetical environment that contains a variable
food energy resource that periodically switches between a
poor and a rich state, and a stable food energy resource that
provides a medium amount of energy. It is found that to
maximize the intake of food energy, there is an optimal
frequency for how often the variable resource should be
sampled (to detect its rich state). This analysis suggests that
to survive in the natural world, animals need to actively
explore the environment and perhaps need to do so in a
particular rate to maximize the benefit and minimize the
cost of explorations. But how does animals learn when to
explore, and what mechanisms drive them to explore rather
than to stay in a stable habitat?

Past research suggests that animals may use
reinforcement learning to detect environmental changes
(Behrens et al., 2007; Pearson et al., 2011). Reinforcement
learning was shown to be a biologically plausible learning
mechanism (Holroyd and Coles, 2002) and it is very similar
to linear operators derived in optimal foraging theory to
track the changes of a hidden environmental variable with
probabilistic observations (McNamara and Houston, 1987).
Several behavioral and neuroimaging studies (Behrens et al.,
2007; Nassar et al., 2010) showed that people seem to use
reinforcement learning to detect changes, and their
performance in these tasks approaches the performance of
an ideal observer.

Despite its dominance in the discussion of change
detection, reinforcement learning alone cannot fully explain
how some animals often quickly switch to drastically
different task strategies, because its error-learning rule
suggests a gradual transition of behaviors in response to
changes (Pearson et al., 2011). For example, reinforcement
learning cannot easily explain how monkeys do not just try
to jump higher to reach a bunch of hanging bananas, but
know to use chairs and sticks. Such strategies cannot result
from gradual updates of a single strategy, rather, they are
likely a result of evaluating a wide array of different
options.

This research proposes that counterfactual reasoning is a
missing piece in this theoretical framework for explaining
change detection behaviors. Counterfactual reasoning
captures the process in which humans think about potential
or imaginary events and consequences that are alternatives
to what has occurred. This gives humans abilities to learn
the utility of a task strategy without actually applying it.
Neuroimaing studies (e.g., Coricelli et al, 2005) show that
such processes indeed exist and they seem to play a key role
in decision making. Nevertheless, counterfactual reasoning
is somewhat overlooked as a plausible explanation for
change detection behaviors.

This paper presents the behavioral data collected from a
stochastic change detection task, compares the human data
with the predictions of an ACT-R cognitive model that
incorporates reinforcement learning and counterfactual
reasoning, and compares models with and without
counterfactual reasoning to demonstrate the importance of
counterfactual reasoning in explaining human change
detection performance.
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Experimental Paradigm

The change detection experiment presented here is designed
as an investment game, in which there is a virtual market
that the participant can invest virtual chips in. The market
alternates between the bear state, in which the participant is
likely (> 50%) to lose the investment, and the bull state, in
which the participant is likely (> 50%) to profit. The change
of the market state occurs at a small, constant probability
per turn. The market state is not directly observable by the
participants, but has to be inferred from the investment
outcomes (profiting or losing) of the recent trials. In
essence, the virtual market is designed as a hidden Markov
process to mimic the natural environment in which the
underlying states, such as the amount of food in a habitat,
are not directly observable, but are often similar to the states
of the recent past.

Participants Forty-eight participants (26 females; mean age
= 36.71 years, range 21-62 years) were recruited on the
Amazon Mechanical Turk website. Each participant
received a base compensation of $3 and up to a $4 bonus for
completing the 30 min long experiment. The bonus that
participants received depended on their task performance.

Apparatus and Materials In each trial, two buttons labeled
“pass” and “10” were presented on the screen. Clicking
“pass” would skip the investment opportunity, while
clicking “10” would invest 10 chips to the market. If the
participant chose to invest, he or she would either win 15
chips or lose the 10-chip investment. This investment
outcome, as well as the participant’s total number of chips,
were immediately shown to the participant after each trial. If
the participant finished a trial within 5 seconds (indicated by
a count-down timer on the display), a reward of 0.05 cents
would be added as a bonus.

Design Three factors were manipulated. The first was the
discriminability between the bull market and the bear
market. Error! Reference source not found. shows the
probability of profiting and losing in the two
discriminability conditions tested in the experiment. As can
be seen from the table, the profiting probability of the bull
and the bear markets were set to be more similar in the low
discriminability condition than those in the high
discriminability condition, and hence it was harder to
distinguish the two market states in the low discriminability
condition. Manipulating this factor helped us examine how
the reliability of observation might affect peoples’ ability to
infer the underlying environmental states.

The second factor of the experiment was the probability

Table 1: The probability of profiting and losing of the
bear and the bull markets in the low and the high
discriminability conditions.

Low Discriminability  High Discriminability

Profiting  Losing Profiting  Losing
Bull  70% 30% 10% 90%
Bear 30% 70% 90% 10%

of a market-state change in each trial. Again, two levels
were tested, one with 5% change probability and the other
with 15% change probability. This factor examined how
well people adapt to the volatility of the environment.

The third factor of the experiment was whether to provide
information about the outcome of the market when “pass”
was selected. In the no-feedback-for-pass condition, the
participant needed to guess what was happening in the
market if pass was selected, based on the past experience
such as how long the bear market generally lasted. This
condition simulated an environment in which one can only
acquire information about the choice they made. We
expected that participants would perform worse in the no-
feedback-for-pass condition than in the has-feedback-for-
pass condition.

The discriminability factor was a within-subject variable,
and the change-frequency and the feedback factors were
between-subject variables balanced across the 48
participants. In other words, each participant did both the
low discriminability and the high discriminability
conditions, but experienced only one change frequency and
one feedback condition.

Procedure The participant clicked a link provided on an
Amazon Mechanical Turk webpage to navigate to the
experiment website. Before doing the experiment, the
participant needed to accept a consent form, fill out a
demographic survey, and complete a risk propensity scale
(see Meertens and Lion, 2008). The experiment instructions
included that the market switches between a bull and a bear
state at a constant probability per trial, but no concrete
parameters such as the profiting probabilities were shown to
the participants.

Each participant completed two low-discriminability
blocks and two high-discriminability blocks, with the
running order randomized and balanced across participants.
The participant was informed about the market
discriminability before each block. In each block, the
participant started with 100 chips, and underwent 150 trials.
The performance feedback, including the number of chips
earned and how much bonus the chips translated to, was
provided after each block and at the end of the experiment.

Experimental Results

Figure 1 shows the overall task performance across the
different experimental conditions, measured as the average
number of chips earned in each block. Participants earned
more chips in the high-discriminability condition than in the
low-discriminability condition (z = —11.2, p < .001)', as is
shown in the graph that the bars in the left column are taller
than the bars in the right column. Participants also earned
more chips in the has-feedback condition than in the no-
feedback condition (z = —2.45, p < .001), as is shown in the

1 . . . .
Multiple comparisons were done using general linear

hypotheses tests on a linear mixed-effects model. Main effects and
effect sizes were obtained using a repeated measure ANCOVA,
with the covariate being the number of profitable trials in a block.
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Figure 1: Average number of chips earned per block in
the different experimental conditions. Error bars show
95% confidence intervals of the mean.

graph that within each panel, the dark gray bar is usually
taller than the light gray bar. Market discriminability and the
feedback condition had the largest effect on task
performance (for discriminability, F(1, 44) = 55.5, p <.001,
mz; = .888; for feedback, F(1, 44) =7.42, p=.009, r](Z; =.12),
whereas change frequency did not have a significant main
effect, F(1, 44) = 3.00, p = .09, nZ = .056.

Figure 2 reveals participants’ investment strategies and
shows how these strategies are heavily influenced by the
market discriminability. The investment percentages in the
graph were calculated using the last 100 trials of each block
because at the beginning of each block participants were
likely still exploring the task parameters, and the behaviors
during the first 50 trials probably cannot represent the
stabilized behavior. As can be seen from the graph, in the
high-discriminability — conditions (left column), the
investment percentages of the bear market are very different
from those of the bull market, particularly in the top left
panel. This result suggests that the participants could
somewhat accurately infer the market state and use that
information to avoid investing in the bear market and at the
same time, exploit the bull market. In the low-
discriminability condition, however, the investment
percentages are about the same across the bear and bull
markets. This suggests that the participants could not
identify the market state and thus applied the same strategy
all along, which no doubt contributed to the poor
performance in the low-discriminability conditions.

Figure 2 also shows that in the no-feedback condition, in
which the market outcome was only provided if “invest” is
selected, participants were less able to detect the underlying
changes of the market. This can be seen in the left two
graphs in Figure 2 (high discriminability) where the
difference between the no-feedback conditions is less than
the difference between the has-feedback conditions.
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Figure 2: Average percentage of trials the participants
invested in when the market was in the bear and the bull
states in the different experimental conditions. Only the

last 100 trials of each block were used for this graph.

Furthermore, it seems that when there was no feedback for
the pass option, the participants were more conservative in
investing in the market, as can be seen that in the bottom
right panel the no-feedback conditions has smaller
investment percentages than the has-feedback conditions.

The above results suggest that the participants’ strategies
may be rational to some extent because they tried to
maximize their pay in some conditions, but their ability to
infer the market state from the probabilistic observations is
perhaps limited by memory and learning mechanisms. The
next section presents a cognitive model that tries to
reproduce this bounded rationality using reinforcement
learning and a counterfactual reasoning strategy.

The Change Detection Model

The model presented here is implemented using the ACT-R
cognitive architecture (Anderson et al., 2004). ACT-R has
many built-in constructs that directly support the modeling
of this task. Particularly, it has a powerful production
system that learns by reinforcement learning. In a
production system, task strategies are written as production
rules, which are IF-THEN statements that execute certain
actions (the THEN part) when the conditions are met (the IF
part). In ACT-R’s production system, each production rule
can also be assigned a utility value, which roughly
corresponds to how likely this production rule leads to the
successful completion of the task. In every 50-ms cognitive
cycle, ACT-R executes one of the production rules whose
conditions are matched, and the probability that a matched
rule will be selected is an increasing function of its
production utility:
eU i/\/ES
Probability(i) = .

jer/\/Es ()
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where U; is the utility of the production rule 7, s is a free
parameter, and the denominator is a summation over all
production rules whose conditions are matched. s is also
referred to as the utility noise parameter, because as s
increases the probability that a production rule will fire
depends less on its utility and more on the random chance.

When a task goal is reached (or fails) and a reward (or
penalty) is triggered, the reward (penalty) is propagated
back through the firing chain of the production rules so that
the utility of the previously fired rules can all be updated
accordingly by the following equation:

Up=Up_1+ a(Rn - Un—l) @)

where U,,_; is the utility of the production rule before the
update, U, is the utility after the update, R,, is the reward,
and «a is the learning rate. The production selection equation
and the utility updating equation are essentially the same as
the ones used in some ideal observer models (Behrens et al.,
2007; Nassar et al., 2010) with the exception that the
learning parameter ¢ in ACT-R is set by the analyst, as
opposed to be learned on a trial-by-trial basis.

Figure 3 illustrates the task strategy of the model. At the
beginning of the trial, the model executes one of the two
production rules, assume-bull and assume-bear, based on
Equation 1. If assume-bull fires, the rule invest will ensue
because it is rational to capitalize on the bull market. Then
just like the experimental design, if the market returns a
profit, a reward of 15 will be delivered and the utility of
assume-bull will be updated using Equation 2; if the market
returns a loss, a penalty of 10 (R, = —10) is delivered. If
assume-bear fires, the rule pass will be fired next, and a
reward of 0 will be delivered just like how the participant
would neither win nor lose when selecting pass.

Note that the model does not explicitly track the
environmental parameters such as the profiting probabilities
of the bull and bear markets, which might hinder its ability
in making correct investment decisions. This deficiency is
somewhat compensated by the utility updating equation that
automatically incorporates the frequency in which the
reward and penalty occur. When the market state is stable,
the utility of assume-bull and assume-bear should, over
time, tend to the expected return of the bull and bear
markets, and the production selection based on these utilities
should lead to good investment decisions.

The model tracks the change of the market state by
heavily weighting the experience of the recent trials when
updating the utility of assume-bull and assume-bear. The
learning parameter « is set to 0.5 to give equal weights to
the recent experience and to the last utility estimation,
which enables the production utility to quickly respond to
the change of the market. For example, considers how the
model would detect the change from the bull to the bear
state. Initially, the model will continue firing assume-bull
because this rule accumulated high utility from winning in
the bull market. But as losing becomes more frequent after
the market changes to the bear state, the utility of assume-
bull is penalized and quickly drops down to below zero, at
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Figure 3: A flow chart showing how the model performs a
trial of the experiment. Each trial only goes through one
of the dashed lines once to complete the counterfactual
reasoning (CR) process. In CR, the production utilities are
updated the same way as in a regular learning process.

which point assume-bear is fired because its utility (which
stays at zero) is now larger than the utility of assume-bull.

To detect the change from the bear market to the bull
market, however, requires counterfactual reasoning, which
evaluates what would happen if the non-selected choice was
selected given the newly acquired information about the
environment. For the proposed model, if there is no
counterfactual reasoning, then once assume-bear is selected,
the model is likely to be trapped in an assume-bear state,
especially when the production noise parameter s is set low.
This is because when assume-bear fires, assume-bull’s
production utility is likely below zero. To reset its utility, it
needs to be fired, but because assume-bear’s utility is
higher, it does not have a chance to fire. With counterfactual
reasoning, the model temporarily disables assume-bear so
that assume-bull has no competition and can be fired. This
way, the model can appropriately update assume-bull’s
utility when the market changes to a bull state, which then
allows the detection of the change.

The counterfactual reasoning processes used by the model
are indicated in Figure 3 by the dashed-line connections. As
can be seen, after evaluating the made choice, the model
continues to another path to evaluate and update the utility
of the alternative choice. Note that the lower-right corner of
the graph specifies what to do when the current condition
does not provide feedback about the market outcome for the
pass option (No Feedback condition). In this situation,
because the model does not know what would occur if it
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invested in the market, it needs to estimate a reward for
assume-bull. We explored a few settings for this reward
parameter and set it at 3 in the final model so that the model
generates streaks of pass choices (which are eventually
interrupted as assume-bull’s utility surpasses assume-bear
through counterfactual reasoning) that are about as long as
those observed in the empirical data.

Overall, the model is a straightforward combination of
reinforcement learning and counterfactual evaluation. As
will be shown in the following section, though the model
does not perform as well as an optimal Bayesian model in
terms of the number of chips earned, it does seem to fit the
human data.

Model Results

The model was run on all 28,800 trials that the participants
performed. To examine whether the model and the
participants achieved optimal performance, a Bayesian
optimal solution was developed. For every trial, this
solution computes the posterior probability of the bull and
bear markets given the market outcome and the prior
probability of the two markets (which are computed from
the previous trial using the same procedure). It then
calculates the expected return of investing, and if the return
is smaller than zero, pass will be selected, otherwise,
investing will be selected. Unlike our human participants,
this Bayesian model has knowledge of the underlying
market profitabilities (70%/30% or 90%/10%) and
underlying change probabilities (5% or 15%), and can thus
make optimal decisions. The human data, the model
predictions, and the optimal solutions are compared below.
Figure 4 shows the investment percentages across the
three data sets. As can be seen, the model (light gray) match
the human data (dark gray) very well in almost all
conditions except in the No-Feedback group’s top-left and
bottom-right panel. Similar to the participants, in the high
discriminability condition, the model was able to capitalize
on the bull market and avoid investing in the bear market,
whereas in the low discriminability condition, the model
invested at similar percentages across the two markets. In
the conditions in which the model does not match the data
well (No-Feedback condition’s top-left and bottom-right
panel), the model invested more aggressively than the
participants. Further examination of the payoff data shows
that the model in fact earned more chips than the
participants (by 0.5 chips per turn) in these conditions,
which suggests that the model’s strategy—always
performing counterfactual reasoning—is a “good enough”
strategy, and perhaps the reason that participants did worse
is because they did not always use counterfactual reasoning.
The model matched the human data well even in
conditions in which the participants’ strategy deviated from
the optimal solution. It can be seen from Figure 4 that the
optimal solution matches the participants’ and model’s
strategies in almost all conditions except in the low-
discriminability and 15%-change condition. This condition
is the most difficult condition of the experiment, and indeed
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Figure 4: Average percentage of trials invested by
the participants, the model, and the optimal
Bayesian solution. Only the last 100 trials of each
block were used in this analysis.
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even the optimal solution could not distinguish the bear and
bull markets and had to adopt a uniform investment
percentage across the two markets. Unlike the participants
and the model, however, the optimal solution invested very
aggressively, almost at 100%, in both markets, whereas the
model and the participants only invested in about 50% of
the trials. The reason that the model could reproduce the
participants’ conservative strategy is perhaps that when the
environment is volatile, the model never had the chance to
learn the expected return of the bull market because
whenever the model starts investing, the frequent losses
soon leads to a switch to the pass behavior. The utility of
assume-bull thus remained low most of the time, which
resulted in a conservative behavior.

Figure 5 illustrates how counterfactual reasoning (CR) is
an indispensable component of the model for explaining the
human data. The y-axis shows the average absolute
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Figure 5: Average absolute percentage error (AAPE)
between the predicted investment percentages and the
observed percentages, for the 11 models that utilize
counterfactual reasoning (CR) at different rates.

percentage error (AAPE) between a model’s predicted
investment percentages and the observed percentages. In
this analysis, we created 11 versions of the model that
perform CR at different frequencies, ranging from 0% of the
trials to 100% of the trials. It can be seen that if the model
never uses CR (0%), its predictions are about 30% to 35%
away from the observed investment percentages. As the
model utilizes CR more frequently, the predictions become
closer to the human data. The best fit is reached at
somewhere between 80% CR and 90% CR, which suggests
that perhaps participants did CR most but not all of the time.

Discussion and Conclusions

Our experimental results show that people can detect
changes in a stochastic environment in which the
observations are only imperfect indicators of the
environment’s underlying state. When the observations can
be used to somewhat reliably identify the hidden states, the
participants’ performance approach optimal. When the
observations do not reliably identify the hidden states,
participants seem to show loss aversion and to adopt a
conservative strategy to avoid risks.

A cognitive model that uses reinforcement learning and
counterfactual reasoning seems to accurately account for
participants’ performance, be it optimal or suboptimal. The
fact that the model has very few free parameters and yet it
can still predict the trends in the human data across a variety
of conditions strongly suggests that reinforcement learning
and counterfactual reasoning might be the main mechanisms
behind decision making in such changing environment.
Particularly, that the model reproduces participants’
tendency of loss aversion in the most volatile condition
suggests that perhaps loss aversion is simply a byproduct of
applying reinforcement learning in a very unpredictable
environment.

A model sensitivity analysis that varies the percentage of
trials in which counterfactual reasoning is applied shows
that counterfactual reasoning is key to explaining the human
data. As discussed in the introduction, counterfactual
reasoning is essentially learning by imagining the
interactions between the organism and the outside world.
Compared to learning by actually experiencing the world, it
incurs almost no risks. Understandably, it might be a
powerful tool that drives animals to safely explore novel
options in response to unusual changes of the environment.
Our research suggests that this is likely the case, and
perhaps future theories and models of learning and decision
making should always incorporate counterfactual reasoning.
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