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Abstract

Human subjects exhibit “sequential effects” in many
psychological experiments, in which they respond more
rapidly and accurately to a stimulus when it reinforces
a local pattern in stimulus history, compared to when
it violates such a pattern. This is often the case even
if the local pattern arises by chance, such that stimu-
lus history has no real predictive power, and therefore
any behavioral adjustment based on these erroneous pre-
dictions essentially amounts to superstition. Earlier, we
proposed a normative Bayesian learning model, the Dy-
namic Belief Model (DBM), to demonstrate that such be-
havior reflects the engagement of mechanisms that iden-
tify and adapt to changing patterns in the environment
(Yu & Cohen, 2009). In that earlier work, we assumed a
monotonic relationship between prior bias and response
time (bias toward a stimulus was assumed to result in
faster reaction time when that was the actual stimu-
lus; conversely, when the other stimulus was present,
it was assumed to result in a slower response). Here,
we present a more detailed and quantitative analysis of
the relationship between prior bias and behavioral out-
come, in terms of response time and choice accuracy. We
also present novel behavioral data, along with a frame-
work for jointly identifying subject-specific parameters of
the trial-by-trial learning (Dynamic Belief Model, DBM)
and within-trial sensory processing and decision-making
(Drift-Diffusion Model, DDM) based on the behavioral
data. Our results provide strong evidence for DBM, and
reveal potential individual differences, in their differen-
tial beliefs about the timescale at which local patterns
persist in sequential data.

Keywords: Perceptual Decision Making; Se-
quential Effects; Bayesian Model; Drift-Diffusion
Model

Introduction
In a variety of behavioral experiments, human subjects
display “sequential effects”, a modulation of response
time and/or accuracy by recent trial history (e.g. Ber-
telson, 1961; Laming, 1968; Kornblum, 1973; Soetens,
Boer, & Hueting, 1985; Cho et al., 2002; Jones, Curran,
Mozer, & Wilder, 2013). For example, in two-alternative
forced choice experiments, in which subjects discriminate
between two types of stimuli (A or B), subjects respond
more accurately and rapidly if a trial is consistent with
the recent pattern (e.g. AAAAA followed by A, ABABA
followed by B), than if it is inconsistent (e.g. AAAAA
followed by B, ABABA followed by A). This sequen-
tial effect depends on the length of the run (Cho et al.,
2002). For instance, an alternation following four repe-
titions affects responding more than one following only

two repetitions. Figure 1 illustrates a robust finding of
the dependence of RT and error rate on recent trial his-
tory, both being largest when a relative long run of rep-
etitions or alternations are broken by the current obser-
vation (middle two trial types), and smallest when such
runs are extended (left and right end).

Previously, we proposed a Bayesian learning model, the
Dynamic Belief Model (DBM), to account for sequential
effects, via a human learning mechanism that assumes the
potential for discrete, un-signaled changes in the environ-
ment. Consequently, DBM repeatedly modifies internal
estimates of the relative probability of one stimulus type
versus another occurring, based on recent stimulus his-
tory (Yu & Cohen, 2009). By assuming reaction time
and error rate to be monotonically and inversely corre-
lated with the estimated prior probability of observing
the actual stimulus prior to stimulus onset, DBM can
qualitatively reproduce the empirically observed sequen-
tial effects shown by Cho et al. (2002).

In this work, we give a more precise and quantitative
treatment of the influence of prior expectations on sen-
sory processing and decision-making within a trial, by as-
suming an evidence-integration-to-bound process (Gold,
2002), which is formally similar to the Drift-Diffusion
Model (DDM) (e.g. Bogacz, Brown, Moehlis, Holmes,
& Cohen, 2006) and appears to explain activities of pari-
etal cortical neurons during primate perceptual decision-
making (Roitman & Shadlen, 2014). We present a
Bayesian method for simultaneously identifying subject-
specific parameters of DBM and DDM based on an in-
dividual’s choice accuracy and reaction times, and apply
it to behavioral data collected in a simple 2-alternative
choice perceptual discrimination task. Using this quan-
titative method, we will compute the relative support,
measured in Bayes factors, the data lend to DBM versus
a competing model, the Fixed Belief Model (FBM) (Yu
& Cohen, 2009), which assumes that human subjects do
not believe the task statistics to be changeable over time.
We will also characterize the population distributions of
subject-specific Bayesian model parameters, which cor-
respond to semantically readily interpretable variables,
such as subjects’ beliefs about the rate of change in the
environmental statistics, the overall relative frequency of
repetition and alternation trials, and the subjective diffi-
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culty (or sensory/perceptual noise) associated with pro-
cessing the sensory stimulus.

The paper is organized as follows. First, we will de-
scribe the experiment and the data collected. Second,
we will review DBM and FBM, showing their qualitative
differences in trial-wise behavior. Next, we will introduce
the quantitative model of prior bias on choice RT and ac-
curacy. Subsequently, we will analyze the empirical data
using the models. And finally, we will conclude with a dis-
cussion of the results, their implications, and directions
for future inquiries.

Experiment

42 college students in UCSD participated in this experi-
ment. All with normal or corrected vision. In this 2AFC
discrimination task, subjects were instructed to decide if
the coherent motion of a patch of moving dots on the
computer screen was toward left or right by pressing the
corresponding arrow keys. Subjects were seated in a chair
approximately 60 cm from the computer screen. When a
trial started, a patch (diameter: 5 deg visual angel) with
coherent moving dots would appear on the screen, mov-
ing at a speed of 5 deg/second. The density of the dots
was 16.7 dots per sq deg/second, with 3 pixels per dot.

All subjects needed to complete two practice sessions
and reach an accuracy of at least 80% to proceed to
the main experiment. In the main experiment, there
were 7 coherence levels, ranging from 0 to 100%. There
were 14 blocks in total, with 120 trials/block, and 2
blocks/coherence. As our first modeling attempt, we only
considered data collected from the blocks with 100% co-
herence. There was no time limit on each trial. Stimuli
repetition or alternation were d650 ms. Subjects received
feedback at the end of each trial with a beep to indicate
if their response was correct. A crisp beep indicated a
correct response, while a low-frequency beep indicated
an incorrect response. There was a 4-second black screen
penalty for premature response (respond within 100 ms
after stimuli appears).

Figure 1 C;D demonstrate that very similar sequential
effects were observed in this experiment as in (Cho et al.,
2002).

Learning Models

We give a brief summary of the two Bayes-optimal, ideal
observer models in (Yu & Cohen, 2009), which have dif-
ferent assumptions about the temporal persistence of sta-
tistical contingencies in the world.

Fixed Belief Model (FBM): Learning about
a Fixed World

Suppose the subject has an internal model that on each
trial t, there is a fixed probability γ of seeing a repetition
(xt = 1), and therefore a probability 1 − γ of seeing an
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Figure 1: Sequential effects in 2AFC tasks manifested in
previous and current experiments. (A) Median reaction
time (RT) and (B) error rate (ER) averaged across six
subjects, adapted from Figure 1 of (Cho et al., 2002).
Along the abscissa are all of the possible five-stimulus-
long sequences, where R stands for repetition, and A
stands for alternation. Each sequence, read from top to
bottom, proceeds from the earliest stimulus progressively
toward the present stimulus. (C) Median RT and (D)
error rate from the current experiment show similar pat-
terns; error bars: s.e.m. (each error bar shows the stan-
dard error of subjects’ median RT’s for the corresponding
sequence)

alternation (xt=0). p0(γ) is the generic prior to capture
the subject’s belief about γ before any observations. The
prior is modeled as a Beta distribution, Beta (a, b). Over
time, the subject can use the number of observed repe-
titions versus alternations to gain an increasingly precise
estimate of the underlying γ. After t observations, the
posterior belief of γ is

p(γ|xt) ∼ p(xt|γ)p0(γ) (1)

which is simply Beta (a+ rt, b+ t− rt), where rt is the
number of repetitions observed up to trial t; xt is short-
hand for the vector of observed sequence (x1, . . . , xt). The
probability of observing a repetition on trial t + 1 is the
mean of the posterior distribution over γ:

p(xt+1 = 1|xt) =
rt + a

t+ a+ b
(2)

Dynamic Belief Model (DBM): Learning
about a Changing World

Suppose the subjects believe that the relative frequency
of repetition (versus alternation) can undergo discrete
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Figure 2: Generative models of the fixed and dynamic be-
lief models. (A) Fixed Belief Model (FBM): a hidden bias
parameter γ specifies the frequency of repetitions (and al-
ternations) in the experiment. (B) Dynamic Belief Model
(DBM): the hidden bias parameter can change from trial
t to trial t+ 1.

changes at unsignaled times during the experimental ses-
sion (see Figure 2B for graphical representation of the
model), the subject’s implicit task, then, is to track the
evolving frequency of repetition versus alternation over
the course of the experiment. The crucial assumption is
that γt has a Markovian dependence on γt−1, such that
there is a large probability α of them being the same, and
a small probability 1 − α of γt being redrawn from the
generic prior distribution, p0. As with the FBM, the ob-
server would then need to combine the sequentially devel-
oped prior belief about stimulus identity, with the incom-
ing stream of sensory inputs, x1, x2, . . . , xt, . . . , to infer
the identity of the stimulus in each trial in an iterative
fashion:

p(γt = γ|xt−1) = αp(γt−1 = γ|xt−1) + (1− α)p0(γ) (3)

and the posterior distribution is:

p(γt = γ|xt) ∝ p(xt|γt = γ)p(γt = γ|xt−1) (4)

The probability of seeing a new repetition is thus:

p(xt = 1|xt−1) =

∫
p(xt = 1|γt)p(γt|xt−1)dγt

= (1− α)〈γ〉p0(γ) + α〈γt|xt−1〉
(5)

One important consequence of the diminishing uncer-
tainty in the FBM versus the persisting uncertainty in
the DBM is that the influence of individual observations
persist indefinitely in FBM, but decreases over time for
DBM, with the parameter α determining the effective
time window over which individual events exert predic-
tive influence on future events. Figure 3 graphically il-
lustrates analyses of the consequences of the different as-
sumptions made by the two models. These simulation re-
sults support our hypothesis that the trial-to-trial adjust-
ments seen in subjects’ behavior in 2AFC tasks reflect a
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Figure 3: Sequential effects transient in FBM, persistent
in DBM. (A) illustrates the trial-wise predictive proba-
bility of repetition by FBM (cyan), to a sequence of 100
data points, random with γ = .5 for a repetition. An ideal
observer implementing FBM is superior: it becomes im-
mune to the noisy fluctuations in the sequence of observa-
tions (the darkening and narrowing band) and converges
to the true value. (B) illustrates the trial-wise predictive
probability by DBM under the same process. As DBM
is (erroneously) applied to learn about a stationary (and
random) process, it is strongly and persistently influenced
by spurious local patterns. (C) When the underlying en-
vironment is truly volatile, FBM cannot easily adapt to
new values of γ, whereas as (D) DBM negotiates these
changes adroitly.

(perhaps implicit and unconscious) assumption that sta-
tistical regularities, such as runs of repetitions or alter-
nations, exist and persist on a characteristic timescale.
Such a strategy is useful for a truly volatile environment
but inappropriate for the experimental environment, in
which stimulus statistics are held fixed.

Bayesian Model of Prior Belief on
Reaction Time and Choice

Previously (Yu & Cohen, 2009), we suggested within-trial
perceptual inference and decision-making to be analogous
to the sequential hypothesis ratio test (SPRT), and made
a loose argument for the prior bias (inferred by DBM) to
have an approximately linear effect on mean RT. Sepa-
rately, we have found that the approximately linear rela-
tionship to RT hold for a wide range of α values (data not
shown). Here, we take a similar approach but explicitly
model the relationship between prior bias and RT. The
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Figure 4: Graphical representation of the joint inference
of the cross-trial learning (DBM) and within-trial deci-
sion making (DDM). Discriminability of the hypothetical
distributions in SDT (captured by µ, since we can fix σ
at 1 without loss of generality) determines the rate (m)
and variability (s2) of sensory evidence accumulation in
DDM within a trial. The bias of DDM (I0) is deter-
mined by the prior probability of repetition as inferred
by DBM from cross-trial learning, conditioned on the pa-
rameter associated with a stationary environment (α) and
the generic prior belief of the probability of a repetition
trial (e). Shaded nodes represent variables that are ob-
servable to the experimenter, or can be calculated in a
model-free fashion, such as the stimulus sequence (xt),
the observed choices and RT’s (Dt), and the log odds
of overall accuracy of decision making (Z). The black
solid frame indicates t repeated plates of the cross-trial
variables. Colored broken frames illustrate different com-
ponents in the composite model.

general idea is to specify a within-trial mapping from the
belief state (prior probability impending stimulus type),
and the stimulus strength/sensory uncertainty, to choice
and RT of a given trial.

Within-Trial Processing

We introduce our method in the context of our ex-
periment, whereby the decision maker needs to decide
whether the coherent motion of the dots is toward left or
right. For simplicity, and similar to the signal-detection-
theory (SDT) formulation (Green & Swets, 1966), we as-
sume each of the two possible stimuli generates normally
distributed noisy neural responses at some intermediate
stage of the visual pathway, based on which the subse-
quent brain region(s) must decide which stimulus was

present (and thus which response is required) and when
to respond. We assume that the perceived strength and
uncertainty of the motion does not depend on its direc-
tion, thus the two distributions under hypothesis H1 (mo-
tion toward the left) and H2 (motion toward the right)
have means −µ and µ, and equal variance, σ2. The dis-
tribution under the true hypothesis is termed the target
distribution. Figure 4A illustrates SDT.

SPRT solves the problem of deciding between H1 and
H2, based on an ongoing stream of independent series
of sensory signals from the stimulus (the target distri-
bution), y1, . . . , yt, . . . , perceived at discrete steps. The
total length (sample size) of sensory signals is also un-
der the observer’s control. SPRT says that the observer
should keep tracking the relative likelihoods of the two
hypotheses being true, and choose the more likely one as
soon as the likelihood ratio crosses some decision thresh-
old Z1 (in which case, stop and decide H1) or Z2 (stop
and decide H2). Suppose the prior probability of H1 be-
ing true is p; the probability of the sensory signals up
to time t, yt := {y1, . . . , yt}, conditioned on hypothe-
sis H1 being true, is f1(yt), and the probability of the
same sequence of sensory signals being generated by hy-
pothesis H2 is f2(yt), then SPRT says to stop as soon

as Sn := pf1(yt)
(1−p)f2(yt)

≥ Z1 or if Sn ≤ Z2, and continue

otherwise (i.e. if Z2 < Sn < Z1). Suppose ε is the type
I error to be controlled for deciding on either hypothesis,
then Z1 = 1−ε

ε , and Z2 = ε
1−ε .

It has long been noted that SPRT is formally equivalent
to a bounded random-walk model (Laming, 1968; Bogacz
et al., 2006). When the observations have statistically
independent noise, we have fj(y1, . . . , yt) =

∏t
i=1 fj(yi)

for j = 1, 2, and thus

In := logSn = log
p

1− p
+

t∑
i=1

log
f1(yi)

f2(yi)

Notice that f1 and f2 are density functions of Gaussian
distributions N(−µ, σ2) and N(µ, σ2). The increment of
information gained from a sensory signal yi, and its mean
and variance are

δIi = log
f1(yi)

f2(yi)
= −2µ

σ2
yi

m := E (δIi) = ±2µ2

σ2

s2 := Var (δIi) =
4µ2

σ2

(6)

Since logSn is strictly monotonically related to Sn, the
decision policy is equivalent to stopping as soon as In ≥
Z (and choose H1) or In ≤ −Z (and choose H2), for
Z := log(1− ε)− log ε. In other words, the sensory signal
accumulation in SPRT is equivalent to a bounded random
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Figure 5: Distributions of the MAP estimates of α, e and
µ

walk with noisy increments that have a mean drift rate
of m per time step (positive if H1 is true, negative if H2

is true).
We can then rewrite the total sensory evidence accrued

with n steps as

In = I0 +

n∑
i=1

δIi (7)

where I0 := log p− log(1− p) is the starting bias toward
H1. Assuming sensory signals are obtained at small time
intervals, we consider the continuous-time limiting pro-
cess, I(t), which satisfies the stochastic differential equa-
tion

dI = mdt+ sdW, I(0) = I0 (8)

where m and s2 are defined by Equation 6. Equation 8
is a drift diffusion process. The thresholds for In, with
respect to the thresholds in the original SPRT form, are
just ±Z. Figure 4B illustrates DDM.

Cross-Trial Processing

Both DBM and FBM infer the identity of the stimulus
(repetition vs alternation) for each trial, based on the pre-
vious observed sequence (Equation 2 and Equation 5). At
trial t, the prior probability of seeing a repetition p(xt =
1|xt−1) can be readily translated to the bias in SPRT:
I0 = ± (log p(xt = 1|xt−1)− log(1− p(xt = 1|xt−1)))
which takes positive (negative) sign if H1 (H2) was true
on the previous trial.

Graphical Model Implementation

Figure 4C shows a graphical representation of our join
inference of DBM, SDT, and DDM. Unshaded nodes rep-
resent model parameters to be inferred from data. Be-
cause only the ratio of µ and σ (relative discriminability
of the two hypotheses) matters in determining the drift
of DDM, we can fix σ at 1. We model the generic prior
of the probability of repetition in DBM using Beta(a, b),
and denote its mean by e := a/(a+ b). To reduce compu-
tational complexity, we fix a+ b at 2, assuming subjects
have (equally) low certainty of the environment before
observing any stimulus. We also use the simplest treat-
ment for non-decision time by subtracting the smallest
RT for each subject. In fitting the joint model, we first

Figure 6: Left: distribution of Bayes factors of DBM
against FBM, with each brick showing one subject; Right:
model predicted RT’s compared to data.

generated the sequential predictions by DBM, given the
true sequence of stimuli observed by each subject, using a
grid (.02 increment) of α and e values ranging between 0
and 1. We then used MCMC sampling for the graphical
model inference using a uniform prior between 0 and 10
for µ, and “discretized uniform” priors for α and e. We
fit the model to each individual subject, and conducted
a formal model comparison between DBM and FBM by
examining the Bayes factors (e.g. Kass & Raftery, 1995).

Results

The top row of Figure 5 shows distributions (over all sub-
jects) of the maximum a posterior (MAP) estimates of the
DBM parameter, α, the prior belief of the mean probabil-
ity of repetition, e, and the psychological discriminability
of the target direction, µ. The distribution of α has large
variation indicating individual differences. The mean of
the distribution of e is smaller than .5, implying a bias
toward alternation in general. However, we can clearly
see that some subjects hold a greater bias toward either
repetition or alternation, as indicated by the more ex-
treme estimates of e. There is only one subject who had
poor choice accuracy (.74), captured by a low µ value
in SDT representation. We did not find any significant
correlations between any pair of parameters.

We examine DBM and FBM in their abilities of cap-
turing empirical data, using the Bayes factor as a model
comparison measure. We calculate the Bayes factor of
DBM against FBM, both combined with DDM, for each
individual subject. The left panel of Figure 6 shows the
distribution of Bayes factors over all subjects. Evidence
for DBM against FBM is positive for 35 (out of 42) sub-
jects, with a Bayes factor greater than 3 (according to
the interpretation scale proposed by Kass and Raftery
(1995)). We also compared the RT conditioned on 5 pre-
vious trials predicted by DBM and FBM at their best
parameterization. The right panel of Figure 6 shows that
FBM predicts a much smaller sequential effect as com-
pared to real-world behavior, whereas DBM can capture
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a stronger sequential effect as seen in the data.

Discussion

Previous computational approach to sequential effects fo-
cused on Bayes-optimal learning mechanisms, while giv-
ing a simplified treatment to the decision process, such
as assuming approximate linear effect of prior on choice
RT (Yu & Cohen, 2009; Jones et al., 2013). In this study,
we assume an explicit model for within-trial processing,
and develop a method for the joint inference of cross-trial
learning and within-trial decision making, by augment-
ing the computational learning model with a principled,
sequential hypothesis testing paradigm that is proven to
be optimal in both the frequentist and the Bayesian sense
(Wald & Wolfowitz, 1948).

Our joint inference and model comparison results sup-
port DBM as a better account of human sequential learn-
ing than FBM. On the other hand, our results also pro-
vide strong evidence for individual differences in their be-
lief of the rate of changing of the environment. The dis-
tribution of the inferred α values across all subjects has
a large variation that implies potential individual differ-
ences.

Our model builds prior knowledge in the starting point
of SPRT (and its continuous-time limit, DDM). One of
the main theoretical points of proponents of alternative
race/accumulator type of models is that the starting point
confounds prior knowledge with decision utilities (values).
We do not manipulate utilities in the current study, yet
future work involves an analysis of how the model would
handle decision utilities.

Another future direction is to consider a joint infer-
ence of computational and neural models, by extending a
newly developed, statistical approach of combining neural
and behavioral measures to study cognition (Turner, in
press). By jointly fit the computational and neural mod-
els, it would become feasible to make simultaneous infer-
ence about the correlation between parameters at these
different levels.
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