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Abstract

The current study investigated the interactions among cate-
gory structure, supervision, and the ability to selectively attend
during category learning. Specifically, we compared pigeons’
with human adults’ category learning using artificial categories
to examine the role of selective attention in category learning.
Results showed that pigeons benefit more from supervision,
and unlike human adults, the benefit is stronger for sparse cat-
egories. Moreover, whereas supervision did not affect human
adults’ generalization performance, low-supervision resulted
in lower generalization for pigeons. The results were discussed
in terms of the difference in utilizing the supervisory signal,
and the ability to selectively attend to category relevant infor-
mation.

Keywords: category learning; selective attention; supervision;
category structure; comparative study.

Introduction

Selective attention is one of the crucial components in cate-
gory learning (Shepard, Hovland, & Jenkins, 1961). Impor-
tantly, selective attention supports efficient category learning
and generalization since it enables one to focus on category-
relevant information while ignoring category-irrelevant infor-
mation (Mackintosh, 1965). For example, when learning how
to distinguish halibuts from flounders, the shape of the tail
is a relevant dimension. Once one learns to focus on the
shape of the tail and ignore other parts of the fish, distin-
guishing the two fishes becomes efficient when encountering
new instances. Moreover, since selective attention undergoes
marked development due to the maturation of the prefrontal
cortex (PFC) (Diamond, 2002; Hanania & Smith, 2010), se-
lective attention has been considered to be one of the main
factors in explaining the development of category learning
(Sloutsky, 2010).

Along with selective attention, the structure of the cate-
gory is another important factor that shapes the process of
category learning. Among many, one way to view category
structure is by its density (Gentner, 1981; Kloos & Sloutsky,
2008). Specifically, Kloos & Sloutsky (2008) proposed a for-
mal measurement for category density using entropy values.
Category density was defined by “the ratio of variance rel-
evant for category membership to the total variance across

members and nonmembers of the category”. Therefore, dense
categories have low within variability and high between vari-
ability, whereas sparse categories have low between variabil-
ity and high within variability. For example, dogs and cats
are dense categories since they have many overlapping fea-
tures within their category, but are also distinguishable from
other categories. Due to the redundancy of the category rele-
vant information it is known that even infants are able to learn
dense categories (e.g., Quinn, Eimas, & Rosenkrantz, 1993).
On the other hand, chest x-rays of different kinds of diseases
could be considered as sparse categories. For example, it is
hard to distinguish patient who have pneumonia from those
who do not or even from patients who have other diseases.
This is due to the fact that while many x-rays look alike, only
a few features are relevant in diagnosing a certain disease.
Also, having only little category relevant information makes
category learning hard, and requires extensive training (e.g.,
Palmeri, Wong, & Gauthier, 2004).

Naturally, learning sparse categories requires selective at-
tention, whereas dense categories could be learnable with-
out selective attention. From this point of view, evidence
has shown that 3- to 4-month-olds do not selectively attend
to category relevant dimensions when learning dense cate-
gories (Best, Yim, & Sloutsky, 2013), and adults could learn
dense categories using distributed attention (Best, Robinson,
& Sloutsky, 2014).

Finally, supervision also interacts with the above two com-
ponents during category learning, where supervision aids se-
lective attention to find the category-relevant information.
The distinction between unsupervised and supervised learn-
ing in category learning is well recognized (Love, 2002), and
different underlying mechanisms have been also proposed
(Love, Medin, & Gureckis, 2004). On the other hand, the
interaction among the amount of supervision, category struc-
ture, and the ability to selectively attend is not extensively
studied. Some evidence has shown that sparse categories ben-
efit from supervision more than dense categories (Kloos &
Sloutsky, 2008). It was argued that the use of supervisory sig-
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Figure 1: Stimuli structure and experimental design used in Experiment 1 and 2. (a) Dense and sparse stimuli structure used
in the learning phase and generalization phase. (note that the red circle depicted in the sparse categories was invisible to the
subjects). (b) Experimental design in Experiment 1. (c) Experimental design in Experiment 2.

nals were mediated by selective attention and the related brain
areas such as the PFC. Therefore, sparse categories, which re-
quire selective attention, would benefit more than dense cate-
gories.

In the current study, we further investigated this view by
manipulating (1) different kinds of category structure, (2) dif-
ferent amount of supervision, and (3) different ability in man-
aging selective attention during category learning, which was
achieved by cross-species comparisons. Since selective at-
tention is closely linked to the PFC, we selected pigeons -
species that are known to not have a comparable PFC to hu-
mans. Therefore, the cross-species comparison will show us
the difference in the category learning due to the functionality
of the PFC (or the ability to selectively attend).

Experiment 1

Experiment 1 examined the benefit of supervision during cat-
egory learning in human adults. The effect of category den-
sity was manipulated by stimuli (i.e., Dense/Sparse), whereas
the amount of supervision was manipulated through the learn-
ing procedure (i.e., High-supervised/Low-supervised).

Methods

Subjects Ninety six undergraduate students at The Ohio
State University participated for course credit (56 females,
M =19.63 years, SD = 2.00). Each participant was randomly
assigned to one of the four conditions, resulting in 24 sub-
jects for each condition. Two additional participants from the
Low-supervised Dense condition was excluded due to not un-
derstanding the instructions correctly.

Materials Flower-like artificial categories were used in the
experiment (see Figure la). For the learning phase, there
were two sets of categories (i.e., Category A, and Category
B) for each density condition (i.e., Dense, and Sparse). Each
exemplar had a gray hexagon in the middle with six colored
shapes on every side. For Dense categories three out of six
changed their color and shape, whereas three were constant in
their shape, color, and location, which served as category rel-

evant dimensions. For example, Category A in the Dense con-
dition had three pink triangles that where constant through-
out the exemplars, whereas Category B had three blue semi-
circles in the same location. For Sparse categories, five out of
six dimensions changed their color and shape, whereas one
was constant. For example, one category in the Sparse con-
dition (i.e., Category A) had a pink triangle whereas another
category (i.e., Category B) had a blue semi-circle. Stimuli for
the generalization phase were identical to that of the learning
phase. However, irrelevant dimensions changed their shape
and color from the learning phase. Each category set in the
learning and generalization phase had 18 unique exemplars.

Procedure The subjects were told that they are going to
play a game where a star is hidden under the tree or the rocks.
They were also told that the location of the star will depend
on the artificial flower that will be presented in the middle of
the screen, and that they should look at the flower carefully
to find the star. There were 12 blocks, where each block con-
tained 12 learning trials. Among the 12 trials, half contained
exemplars from Category A, and the other 6 trials contained
exemplars from Category B. The exemplars were presented
in a random order.

On each trial, an exemplar was presented on the top center
of the computer screen, and a picture of a tree and a rock
was each presented on the bottom left and right side of the
screen, which was randomized by subject (see Figure 2b).
On every trial, subjects used the mouse to click on the picture
of a tree or rock to indicate their decision about where the
star is hidden. In the Low-supervised condition, when the
subject made a decision, the star appeared on the correct side,
which was counterbalanced for Category A and B for each
subject, for 2000 msec regardless of their response accuracy.
Also a ”’Good Job!” phrase was simultaneously presented on
the bottom of the screen. In the High-supervised condition,
the star was only presented when the subject made a correct
response. If the subject made an incorrect response, a ~Try
again!” phrase was presented on the center of the screen for
2000 msec, and the subjects saw the same exemplar again.
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When a subject had more than 10 trials correct in a block
(i.e., 83% accuracy), a generalization phase with 6 trials was
introduced before proceeding to the next block. The gen-
eralization trials were identical to the learning trials except:
(1) stimuli from the generalization set were used, and (2)
a blank screen was presented for 2000 msec after the sub-
ject’s responses, which prevented subjects from getting any
direct feedback. The experiment was terminated for each sub-
ject either when the subject responded to all 12 blocks, or
when the subject’s responses were perfect for 2 consecutive
blocks. The experiments were written in MatLab, using Psy-
chophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).

Results

We first classified learners and non-learners by setting a cri-
terion of .85 accuracy in a block. Within 12 blocks, subjects
who reached .85 accuracy and showed an asymptotic perfor-
mance after reaching the criterion were considered as learn-
ers. Overall, there were more learners in the Dense condi-
tions, and in the High-supervised conditions (see Table 1).
A binary logistic regression with Supervision and Density as
covariates show that there was a statistically significant effect
for Supervision (Wald = 7.76, p < .005), and Density (Wald
= 5.77, p < .05). The non-learners were excluded from all
following analysis.

Table 1: Proportion of learners in Experiment 1.

‘ Dense Category  Sparse Category
High-Supervised 1.0 .83
Low-Supervised .87 .67

Trials-to-criterion (TTC) was calculated by counting the
number of trials to reach the criterion (.85) for each sub-
ject. The High-supervised Dense condition showed the fastest
learning (M = 22.50, SD = .99), followed by the Low-
supervised Dense condition (M = 34.80, SD = 2.49), High-
supervised Sparse condition (M = 47.43, SD = 1.94), and
the Low-supervised Sparse condition (M = 75.43, SD = 2.70)
(see Figure 2a). The TTC data was submitted to a 2 x 2
(Supervision x Density) between-subjects ANOVA. Results
showed a statistically significant main effect of Supervision
(F=12.94, p < .001), and Density (F = 34.24, p < .001), but
no interaction (F = 1.96, p = .17). By comparing the ratio
of the High-supervised condition to the Low-supervised con-
dition, the benefit of supervision could be calculated for the
Dense and Sparse conditions. The calculations showed that
the Sparse condition benefited slightly more (1.59 =75.43 tri-
als / 47.43 trials) than the Dense condition (1.54 = 34.8 trials
/22.5 trials).

Finally, generalization trials were analyzed. The average
of the first 2 generalization trials after each subject reached
the criterion (.85) was used in the analysis. The two Dense
conditions showed similar accuracy on the generalization tri-
als with both conditions having an average of .97 (High-
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Figure 2: Results from Experiment 1 with humans. (a) Trials-
to-criterion, and (b) generalization accuracy. (error bars rep-
resent +/- 1 SEM)

supervised, SD = .12; Low-supervised, SD = .07). The High-
supervised Sparse condition (M = .81, SD = .18) was slightly
less accurate than the Low-supervised Sparse condition (M =
.89, SD = .18). Conducting a 2 x 2 (Supervision x Density)
between-subject ANOVA showed that there was a statistically
significant main effect for Density (F = 12.86, p < .001), but
not for Supervision (F = 1.46, p = .23) or interaction (F =
1.63,p = .21).

In sum, results from the number of learners, and TTC
showed that Dense conditions are overall easier than Sparse
conditions, and that supervision aided learning in both condi-
tions. However, there was no significant interaction between
category structure and the amount of supervision. That is, the
benefit of supervision did not significantly differ across dif-
ferent densities. Moreover, generalization was only affected
by density and not by the amount of supervision.

Experiment 2

In Experiment 2, pigeons were introduced to compare the ef-
fect of the ability to selectively attend during category learn-
ing. The manipulation of the two other factors (i.e., category
density, and amount of supervision) was similar to Experi-
ment 1.

Subjects

The subjects were 16 feral pigeons maintained at 85% of their
free-feeding weights by controlled daily feedings. The pi-
geons were randomly assigned into one of the conditions,
resulting in 4 pigeons for each condition. The pigeons had
served in unrelated studies prior to the present project.

Materials

The experiment used four 36 x 36 x 41 cm operant con-
ditioning chambers detailed by Gibson et al. (2004). The
chambers were located in a dark room with continuous white
noise. Each chamber was equipped with a 15-in LCD mon-
itor located behind an AccuTouch resistive touchscreen (Elo
TouchSystems, Fremont, CA). The portion of the screen that
was viewable by the pigeons was 28.5 cm x 17 cm. Pecks to
the touchscreen were processed by a serial controller board
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outside the box. A rotary dispenser delivered 45-mg pigeon
pellets through a vinyl tube into a food cup located in the
center of the rear wall opposite the touchscreen. Illumination
during the experimental sessions was provided by a house-
light mounted on the upper rear wall of the chamber. The
pellet dispenser and houselight were controlled by a digital
I/0O interface board. Each chamber was controlled by a per-
sonal computer, and the experiments were developed in Mat-
Lab. The category exemplars used in the experiment were
identical to those used in Experiment 1.

Procedure

The learning phase consisted of 144 trials each day. Among
the 144 trials half contained exemplars from Category A, and
the other half contained exemplars from Category B. On each
trial, two identical exemplars were presented on the right and
left side of the computer screen (see Figure 2c). In the Low-
supervised condition, after five responses to either of these
two images, a target stimulus (i.e., black concentric rings on
a white background) was presented on the correct side of the
screen, where the correct side for Category A and Category B
was counterbalanced among subjects. After one response to
this target stimulus, food reward was delivered. Completing
the sequence of category exemplars-target stimulus always
ended with food reinforcement, regardless of the specific side
that the pigeons chose when the exemplars were presented.
Inter-trial intervals were 5000 msec in duration. The High-
supervised condition was very similar to the unsupervised
procedure. However, the five responses to the category ex-
emplars must be on the correct side for the target stimulus
to be presented. If the last peck was on the wrong side, the
screen would go black for 1000 msec and the category ex-
emplars were presented again. The pigeons had to complete
the 5-pecks response requirement again until the correct re-
sponse was made. Responses from the correction trials were
not analyzed. When a bird reached a learning criterion of .85,
generalization phase was introduced the next day for 4 days.

The generalization phase consisted of 162 trials a day
which included 144 training trials and 18 testing trials ran-
domly intermixed. The trials presented the generalization
stimuli; on these trials, no correction procedure was given (to
avoid teaching the birds the correct response) so that pigeons’
choices were always reinforced, regardless of the pigeons be-
ing in the Low- or High-supervised conditions.

Results

One bird in the Low-supervised sparse condition was ex-
cluded from all analysis due to not reaching the learning cri-
terion after 76 days (10944 trials). Trials-to-criterion (TTC)
was calculated by counting the number of trials to reach the
criterion (.85) for each subject. Overall, birds in the Dense
conditions learned the categories faster (M = 1062.00, SD =
1378.92) than those in the Sparse conditions (M = 2777.14,
SD = 3262.29), and birds in the High-supervised conditions
learned the categories faster (M = 450.00, SD = 179.48) than
those in the Low-supervised conditions (M = 3476.57, SD =
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Figure 3: Results from Experiment 2 with pigeons. (a) Trials-
to-criterion, and (b) generalization accuracy. (error bars rep-
resent +/- 1 SEM)

2992.32) (see Figure 3). The TTC data was submitted to a 2 x
2 (Supervision x Density) between-subject ANOVA. Results
showed a statistically significant main effect of Supervision
(F = 15.46, p < .005), Density (F = 6.16, p < .05), and a
marginal interaction (F = 4.36, p = .061). The benefit of su-
pervision was also calculated as in Experiment 1. The benefit
in the Dense condition was 6.38 (= 1836 trials / 288 trials),
and 9.25 (= 5664 trials / 612 trials) in the Sparse condition,
which indicated a greater benefit in the Sparse condition.

In the generalization trials, the High-supervised Dense
condition showed the highest accuracy (M = .94, SD = .03)
followed by the Low-supervised Dense condition (M = .88,
SD = .17), High-supervised Sparse condition (M = .85, SD =
.09), and the Low-supervised Sparse condition (M = .67, SD
=.13). A 2 x 2 (Supervision x Density) between-subjects
ANOVA showed a statistically significant main effect of Den-
sity (F = 14.03, p < .005) and Supervision (F = 9.14, p <
.01), but no interaction (F = 2.19, p = .17). Interestingly, the
Low-supervised Sparse condition did not show above chance
performance (t = 2.54, p = .13).

Based on the TTC results, pigeons showed a greater ben-
efit from supervision in learning the categories than adults.
Moreover, pigeons benefited more in the Sparse condition
than the adults. Interestingly, supervision also interacted in
the generalization phase unlike human adults - lower super-
vision was accompanied by worse generalization. This gen-
eralization difference between humans and pigeons is further
investigated in the next section using a simulation approach.

ALCOVE simulation

In this section we further investigate the mechanism under-
lying the generalization difference between the two species.
When comparing the two species regarding generalization,
pigeons needed more learning trials to reach the criterion (i.e.,
.85) while showing less accuracy in generalization. This is
particularly noticeable in the Low-supervised Sparse condi-
tion where pigeons showed chance level generalization. The
results could be explained by the difference in the ability to
selectively attend between pigeons and humans. If humans
have a better ability to selectively attend to category relevant
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information, it would take less time to learn the category, and
would be easier to apply it to new instances since one would
only need to pin point the relevant information while ignoring
irrelevant information. On the other hand, if selective atten-
tion is less functional, category learning would have to rely on
rote memory. Therefore when encountering new instances,
generalization would rely on the overall similarity between
the learned (or memorized) exemplars and the new instances.
We could easily simulate this account by utilizing computa-
tional models in category learning. Here we used ALCOVE
(Kruschke, 1992) to identify the contribution of selective at-
tention, and memory to category learning.

ALCOVE is an exemplar based network model that rep-
resents the exemplars on a multidimensional space, and in-
corporates attentional learning. Compared to other exemplar
based category learning models, it is able to simulate learn-
ing trajectories (c.f., Nosofsky, 1986), and simple in that it
only deals with supervised learning (c.f., Love, Medin, &
Gureckis, 2004), which is suitable to our data. However, any
exemplar based category learning model that incorporates se-
lective attention would be able to simulate the same results.

We took a simulation approach where we changed Ay, (at-
tention weight learning rate) systematically while fixing all
other parameters. The Ay, controls how well the model is able
to shift attention throughout learning, and has been an use-
ful parameter to explaining various category learning studies
(e.g., Nosofsky & Kruschke, 2002). The simulation used the
sparse categories used in the study, and the A, was decreased
from 1 to le-5 while other free parameters were fixed (i.e., A,
=.01, c=.5, ¢ =4.5). The model learned the exemplars until
it reached the learning criterion (.85), and was tested on the
generalization stimuli without learning.

Results are shown in Figure 4. The first row shows trials
to criterion (TTC) as Ao decreases. As attentional flexibil-
ity decreased learning slowed down. The second row shows
generalization accuracy as Ay decreased. It shows that even
though more learning was required under low A, generaliza-
tion accuracy decreased. The third row shows how attention
was deployed in the model, where dimension 1 is the relevant
dimension in the sparse category (note that there was only
one relevant dimension in the sparse category). It shows that
the model learned to attend to the relevant dimension when
Ao, was high, whereas attention was diffused across all di-
mensions when Ay was low. In sum, simulation results using
ALCOVE were consistent with our argument where the dif-
ference in the ability to selectively attend affected both TTC
and generalization accuracy.

General Discussion

The current study investigated the interactions among cate-
gory density, supervision, and the ability to selectively attend
during category learning. Especially, we compared pigeons
with human adults to examine the effect of the ability to se-
lectively attend to relevant dimensions during category learn-
ing. Overall, results showed that learning was faster in the
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Figure 4: ALCOVE simulation results. The first column (Ay
= 1) resembles the performance of human adults whereas the
fourth column (Aq, = le-5) resembles the performance of pi-
geons. All parameters where fixed where only the Ay pa-
rameter (attention weight learning rate) was systematically
changed (see text for details). The top row in each subplot
represents TTC where the criterion was .85, the middle row
represents accuracy in the generalization trials, and the bot-
tom row represents attention weights where the first value on
the x-axis represents the attention weight for the relevant di-
mension.

Dense condition than in the Sparse condition, and pigeons
required more trials to learn the categories than adults. Inter-
esting findings were that only density but not supervision af-
fected generalization for human adults, whereas both factors
affected generalization for pigeons. Moreover, adults did not
have any difference in the benefit of supervision between the
Dense and Sparse conditions, whereas pigeons had a greater
benefit in the Sparse condition.

First, pigeons’ greater benefit in the Sparse condition is
worth noting. We had hypothesized that since pigeons do not
have a PFC as humans do, pigeons’ ability to focus on the
relevant dimension (i.e., selective attention) would not ben-
efit from the supervisory signal. There could be two pos-
sible explanations of the results. One is that pigeons do
have a brain structure subserving selective attention (Shimizu,
2009). Therefore, the supervisory signal may aid the pigeons
with focusing on the relevant dimension during learning. An-
other possibility is that the supervisory signal helps pigeons to
learn the contingency between the studied exemplars and the
response action (i.e., the location of pecking). In this case, pi-
geons would benefit from supervision during category learn-
ing without any involvement of selective attention. The two
explanations are both possible, and further research would be
required. Especially, the later possibility could be tested by
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conducting a latent learning paradigm (e.g., Tolman, 1948),
where pure category learning could be decomposed from con-
tingency learning.

Second, it was interesting that pigeons needed more learn-
ing trials to reach the learning criterion (i.e., .85) while show-
ing less accuracy in generalization. We used ALCOVE (Kr-
uschke, 1992) to argue that this could be due to the difference
in the ability to selectively attend to category relevant infor-
mation. The simulation results are also consistent with pre-
vious eye-tracking studies where infants learned categories
with diffused attention whereas adults showed evidence of
selective attention (Best, Yim, & Sloutsky, 2013). The two
studies together imply that with higher functionality of the
PFC, selective attention becomes more flexible during cate-
gory learning. Moreover, with flexible selective attention cat-
egory learning becomes easier, and more generalizable. This
fact is particularly interesting regarding the development of
category learning, since the ability to control selective atten-
tion (or the maturation of PFC) could explain the develop-
ment of the speed and flexibility of category learning.

Finally, the amount of supervision between the two groups
should be further investigated. Regarding the TTC results,
human adults had less benefit than the pigeons. Though
the results could directly indicate performance difference be-
tween the two species, it is possible that the amount of su-
pervision between the Low-supervised and High-supervised
conditions were different between the two groups. For exam-
ple, it is possible that for human adults, the Low-supervised
condition provided enough supervision, whereas for pigeons
the amount of supervision in the High-supervised condition
was tantamount to that. Future research would be required
to investigate the comparable amount of supervision between
adults and pigeons.
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