Computational and algorithmic models of strategies in turn-based games

Gerben Bergwerff
Institute of Artificial Intelligence, University of Groningen

Ben Meijering (ben@meijering.com)
Institute of Artificial Intelligence, University of Groningen

Jakub Szymanik (jakub.szymanik@gmail.com)
Institute for Logic, Language and Computation, University of Amsterdam

Rineke Verbrugge (L.C.Verbrugge@rug.nl)
Institute of Artificial Intelligence, University of Groningen

Stefan M. Wierda (wierda.stefan@gmail.com)
Institute of Artificial Intelligence, University of Groningen

Abstract

We study two different models of a turn-based game called
the Marble Drop Game, which is an experimental paradigm
designed to investigate higher-order social reasoning. Our
first model is a computational-level description of the game,
associating cognitive difficulty of a game trial with its
structural properties. Our second model is an algorithmic-
level model postulating a forward reasoning plus back-
tracking strategy for solving the game, rather than backward
induction as prescribed by game theory. Our experiment
shows that the algorithmic-level model is more predictive for
the participants’ reaction times. This research illustrates how
various methods of logic and computer science may be used
for building computational cognitive models.

Keywords: cognitive difficulty; strategic games; higher-order
social reasoning; theory of mind

Introduction

Theory of mind (ToM; Premack & Woodruff, 1978) is the
ability to attribute beliefs, desires, and intentions to others.
It is a widely studied phenomenon in the fields of
psychology, neurosciences, philosophy, and logics. Despite
the wide interest in ToM, relatively little research has
concentrated on the complexity of the underlying cognitive
strategies (Apperly, 2011).

We speak of first-order reasoning in ToM when a person
attributes a simple belief, desire, or intention to someone
else. For example, imagine Ingrid and Rob interacting. If
Rob thinks “Ingrid knows that it is snowing”, he makes a
first-order ToM attribution. However, if the situation
becomes more complex, first-order ToM reasoning is not
sufficient. When Ingrid thinks “Rob knows that I know that
it is snowing”, she makes a second-order attribution.

One way of studying the cognitive basis of ToM in a
controlled experimental setting is the use of competitive and
collaborative games. By investigating the underlying
strategies used during these games, one can shed light upon
the underlying cognitive processes involved in this game—
including ToM reasoning. In these games, the experimenter

can control the order of reasoning required to play the game
successfully by selecting the instances of the game.

It has turned out in recent years that logic and the
computational sciences can help to delineate the complexity
of cognitive tasks, which in turn helps to explain human
cognition in general, and human cognitive strategies in
particular. Predictions based on computational analyses can
be fruitfully compared with empirical evidence. For an
overview of this emerging field of research, including
several examples of research on theory of mind combining
computational and empirical methods, see (Isaac, Szymanik,
& Verbrugge, 2014). It appears that turn-taking games form
an especially successful application area in which to bring
logic and computation to the lab (Szymanik, 2013).

When analyzing cognition from a computational point of
view, it is useful to distinguish the levels of analysis of the
cognitive task at hand, as proposed by Marr (1983). In this
paper, we investigate the cognitive task of making a
decision in a particular turn-taking game. We will propose
an analysis on Marr’s computational level, which concerns
the problem solved or the function computed, as well as an
analysis on the algorithmic level, which concerns the
particular way of achieving a solution to the problem.

In the current paper, we will focus on the marble drop
game—a two-player game in which the players have to take
into account the actions, beliefs and goals of the other.

The marble drop game

The marble drop game is a strategic two-player game that
has been used to study theory of mind (Meijering, Van Rijn,
Taatgen, & Verbrugge, 2011; Meijering, van Rijn, Taatgen,
& Verbrugge, 2012; Raijmakers, Mandell, van Es, &
Counihan, 2014). Just like well-known games such as poker
and bridge, marble drop is turn-based. However, marble
drop is a perfect information game, in contrast with poker
and bridge, in which players cannot see the others’ cards. In
the game, each player is assigned a color (orange or blue).
Then, a marble is dropped onto trapdoors that are controlled
by one of the players: If the trapdoor is blue, the blue player
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controls the trapdoor; if the trapdoor is orange, the orange
player controls the trapdoor. A trapdoor leads either to
another trapdoor or to a bin containing marbles. Each bin
contains a number of blue and orange marbles'. The number
of marbles of the player’s own color determines his pay-off.
In the marble drop games discussed in this paper, there are
always four bins and four possible pay-offs, i.e., {1, 2, 3, 4}.
The goal of this game for a player is to obtain as many
points as possible, irrespective of the score of the other
player.

An example trial of the marble drop game is shown in
Figure 1. In this particular trial, the blue (dark grey) player’s
highest number of marbles is in bin 3; for the orange (light
grey) player, the highest number of marbles is in bin 4.

1 2 3 4

Figure 1: A trial of the marble drop game that requires
second-order reasoning: The orange (light grey) player has
to reason about which side of trapdoor C the blue (dark
grey) opponent believes that the orange player himself
intends to open.

Backward induction, the process of reasoning backwards
from the end to determine a sequence of optimal actions,
will yield the optimal solution for this game (Aumann,
1995). Although there is a lively debate among game
theorists about the question whether common knowledge of
rationality in a game of perfect information entails the
backward induction solution (see Ghosh et al. 2014 for an
overview), game theory textbooks generally propose
backward induction as the standard solution (e.g., Osborne
& Rubinstein, 1994). For marble drop trials with four bins
and three trapdoors that have been used in the experiment,
the backward induction solution will always be found in 6

! Note that in the original game, the hue of the color of the
marbles in the bin determined its payoff. However, for the
convenience of the reader, we will use the number of marbles.

steps, where each step consists of attending to one pay-off.
In the example game of Figure 1, the orange player would
perform backward induction as follows: check and compare
the numbers of orange marbles in bins 3 and 4 (two steps);
the number in bin 4 is higher, so now check and compare
the numbers of blue marbles in bins 2 and 4 (two steps); the
number in bin 2 is higher, so now check and compare the
numbers of orange marbles in bins 1 and 2 (two steps); the
number in bin 1 is higher, so open the left-hand side of
trapdoor A. The total number of steps is 2+2+2=6. It is not
hard to see that this is irrespective of pay-off structure.

S,1 S,1
VN N

(3,2) T2 (3,1) T2

/N /N

(1,3) U,l1 (4,3) U1

/N /N

(2,4) 4,1) (1,4) (2,2)

Figure 2: Pay-off structures of two types used in the
experiment. The left and right numbers in the leaves
correspond to the pay-off of the player and opponent,
respectively. The numbers after S, T, and U represent
whether it is the player’s turn (1) or the opponent’s (2).

However, backward induction is not the only possible
reasoning strategy. Meijering et al. (2012) investigated
whether participants used this backward induction strategy,
which is indeed in general the most optimal way to play the
marble drop game, or if participants rather used the so-
dubbed forward reasoning plus backtracking strategy. See
the next section for an explanation how that strategy works
for the example games represented in Figure 2.

Forward reasoning plus backtracking appears at first sight
to be a suitable candidate because of the prevalence of a
forward causal or temporal direction in human reasoning.
Moreover, for most pay-off structures that can occur in
theory, the solution can be found with forward reasoning
plus backtracking in a smaller number of steps than when
backward induction were used (see Szymanik, Meijering,
and Verbrugge, 2013 for a simulation showing this). For
example, if bin 3 had contained 4 blue and 4 orange
marbles, the forward reasoning plus backtracking algorithm
would only have taken four steps: “attend the number of
marbles in bin 1, 2, 3 consecutively (three steps) and
conclude that bin 3 contains the maximum possible number
of 4 blue marbles; then check that it also contains the
maximum number, 4, of orange marbles (fourth step), so
choose the right-hand side of trapdoor A”.

In their study, Meijering et al. (2012) recorded eye-
fixations while participants were playing the marble drop
game. Next, they analyzed the fixation patterns and
compared the found patterns to predicted patterns by either
the backward induction strategy or the forward reasoning
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plus backtracking strategy. The eye-fixation data suggested
that participants were using the forward reasoning plus
backtracking strategy more than backward induction.

Forward reasoning plus backtracking

As suggested by the name of the strategy, forward reasoning
plus backtracking is a combination of forward reasoning and
backward reasoning. In principle, forward reasoning alone
can yield a very fast solution if the highest value for the blue
player is in bin 1—there is no need for ToM reasoning in
that case. However, all items used in the experiment of
Meijering et al. (2012) were carefully picked such that they
all required second-order ToM reasoning in order to obtain
the highest possible pay-off. In these items, backtracking is
required to predict the succeeding action of the opponent in
order to determine whether the highest possible pay-off (4)
is accessible. A player who employs this strategy starts at
the top trapdoor and tries to find out which trapdoor to open
to obtain the highest pay-off, and then uses backward
reasoning to find out whether that bin is reachable.

Szymanik et al. (2013) investigated the use of the forward
reasoning plus backtracking strategy by looking at the
reaction times obtained by Meijering et al. (2012).
Szymanik et al. used an ad hoc forward reasoning plus
backtracking algorithm that had been used by Meijering et
al. to create fixation-patterns for their eye-tracking analyses
of the 16 item types used in their experiments. The
algorithm was then used to predict the number of decision
steps necessary for each type of trial. Szymanik et al. found
that the number of steps as calculated by the algorithm
indeed predicted the reaction times. In the current paper, we
present a more general forward reasoning plus backtracking
algorithm that can be applied to any binary turn-taking
(extensive form) game tree (see Algorithm 1).

Structural Complexity of Game Trees

Inspired by the work of Szymanik (2013) on the
computational complexity of solving finite extensive-form
turn-taking games, Szymanik et al. (2013) investigated
possible computational-level explanations of the marble
drop task. They introduced a method to quantify the
difficulty of a marble drop trial that was constructed such
that it is independent from particular algorithmic-level
implementations. In their study, they proposed to look at the
structure of marble drop game trials. The main idea is to
quantify the complexity of the corresponding game trees
with respect to the number of alternations between two
players. The intuition is that every alternation potentially
corresponds to the next level of higher-order ToM
reasoning. Therefore, the difficulty of the game should
increase with the number of alternations. Additionally, the
pay-off distribution must be taken into account, because
many alternations may be simply ignored by the players if
reasoning about them clearly does not lead to better pay-
offs. Let us give a reminder of the definitions.

Definition 1 Let us assume that players {1,2} strictly
alternate in the game,; Let player i € {1,2}. Then:

eInaA! tree, all nodes are controlled by Player i.

* A Arttree, a tree of k-alternations for some k > 0,
starts with a player I node.

Note that all 16 game trees corresponding to item types used
in the experiments of Meijering et al. (2012) are A trees.

Definition 2 A game T is generic, if for each player, distinct
end nodes have different pay-offs.

Note that all 16 item types in the experiments of Meijering
et al. (2012) are generic games.

Definition 3 Suppose i € {1,2}. If T is a generic game tree
with the root node controlled by Player 1 and n is the
highest possible pay-off for Player 1, then T "is the minimal
sub-tree of T containing the root node and the node with

pay-off n for Player i.

1
For example, consider both Astrees from Fig. 2. Taking the
minimal sub-trees containing the root node and the node

with pay-off 4 for Player 1 yield a A’ sub-tree for the item 1

and a A2 sub-tree for item 3 (also see Szymanik et al., 2013
for more explanations).

The levels of lambda-difficulty of reduced trees 7~ (later
“lambda-difficulty”) was indirectly tested by comparing
trials in which the highest pay-off was accessible to trials in
which the highest pay-off was not accessible (Szymanik et
al., 2013). The rationale behind this test was that non-
accessible trials would generally include more alternations
and would therefore be more difficult. Indeed, it turned out
that the non-accessible trials took more time to complete
than the accessible trials. However, Szymanik et al. did not
investigate the direct relation between the structural
difficulty of the reduced trees and the reaction times.

The current study builds on the work of Szymanik et al.
(2013). Now for the first time we directly explore the use of
the lambda-difficulty of the reduced trees. In addition, we
introduce an algorithmic-level explanation, namely the
forward reasoning plus backtracking algorithm. The
predictive power of both the structural lambda-difficulty
and forward reasoning plus backtracking strategy are
investigated. Thus, two hypotheses can be formulated.

H;: Is lambda-difficulty of reduced game trees predictive
for the reaction time of the marble drop game?

H,: Is the forward reasoning plus backtracking strategy
predictive for the reaction time of the marble drop game?

Implementation

Forward reasoning + backtracking algorithm

Algorithm 1 shows the implementation of the forward
reasoning plus backtracking strategy as used in the current
study. The algorithm computes the number of attentional
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steps (henceforth referred to as steps). The steps are
computed by counting the number of times a value gets
attended. For example, comparing two values in bins of the
marble drop game would be counted as two steps, because
both values need to be attended for the comparison.

Algorithm 1. The following algorithm computes the
number of forward reasoning plus backtracking steps, where
m is the number of nodes, P, is the pay-off for the player at
node n, and O, is the pay-off for the opponent at node n.

Require: P e {1 : m} and O, € {1 : m}

Ensure: all P, are unique and all O, are unique

01: n « 1 {start with forward reasoning at the first node}

02: Steps — 1

03: while not max P, do

04: n<«—n+1 and Steps « Steps + 1 {While the highest

pay-off is not found continue with the next node}
05: if max P, and max O, then
06: Steps «— Steps + 1 {Do not backtrack if the highest
pay-off of both players is in this node}

07: return Steps

08: endif

09: end while

10: High < n {Remember the node with the highest pay-

off}

11: Back «— m

12: n < m - 1 {Start backtracking at the last two nodes}

13: while Back # High and n > 0 do

14:  if trapdoor(n) = player then

15: if Pg.cc > P, then

16: Back <« Back {Node Back has the highest pay-
off for the player, therefore the nodes can be
substituted by node Back}

17: else if Pg, < P, then

18: Back «<— n {Node n has the highest pay-off for the
player, therefore the nodes can be substituted by
node n}

19: end if

20: else if trapdoor(n) = opponent then

21: if Og.cc > O, then

22: Back < Back {Node Back has the highest score
for the opponent, therefore the nodes can be
substituted by node Back}

23: else if Op, < O, then

24: Back «<— n {Node n has the highest pay-off for the
opponent, therefore the nodes can be substituted
by node n}

25: end if

26: endif

27: nen-1

28: Steps « Steps + 2 {There are two pay-offs being
compared, hence this takes 2 steps}

29: end while

30: return Steps {Return the number of Steps for forward

reasoning plus backtracking}

As an example, we will walk through two items that were
actually presented in the game experiment (see Figure 2).
Item 1 At first, the player attends all leaves until she finds
her highest pay-off. The highest pay-off is in the fourth leaf
(i.e., the right leaf of U), hence it takes 4 steps. Next, the
player needs to compare the pay-off of the opponent in this
leaf with the pay-off of the opponent in the left leaf of T.
Since there are two nodes to compare, this will take 2 steps.
Because the highest pay-off for the opponent is in the left
leaf of node T, the opponent will never let the first player
reach her highest pay-off. Therefore, the highest pay-off is
not accessible. Finally, the player has to compare her pay-
off in the left leaf of T with the pay-off of the left leaf of the
first node (i.e., node S). This comparison also requires
attending to two nodes and thus takes 2 steps. This left leaf
has the highest possible pay-off. In total, the algorithm finds
the highest possible solution in 8 steps.

Item 3 Again, the player attends all leaves until she finds
her highest pay-off. In this case, the highest pay-off is in the
second leaf (the left leaf of node T), and thus it takes 2 steps
to find her highest pay-off. Next, the algorithm computes
the number of steps needed to find out whether the pay-off
is accessible. To that end, the pay-off in both leaves of node
U are compared—this also takes 2 steps. Then, the
opponent’s pay-off in the left leaf of node T is compared to
the opponent’s pay-off in the right leaf of node U. This
comparison also takes 2 steps. A rational opponent would
choose the left leaf at node T, because that is the highest
possible pay-off for the opponent. Thus, for the player, the
highest pay-off is accessible. For this item, the algorithm
computes for a total of 6 steps.

Output

The two different proposed methods were used to describe
the difficulty of the game items as used in the data obtained
by Meijering et al. (2012). The descriptions of the 16 items
that were used in the current dataset are shown in Table 1.

Experimental results

Similarly to Szymanik et al (2013), the experimental data of
Meijering et al. (2012) was used”. To recall, 23 psychology
students participated in the experiment. They were asked to
play a marble drop game, as depicted in Figure 1, in which
they only had to make the first decision (either stop and take
the pay-off or continue to the next trapdoor).

Both the lambda-difficulty (abbreviated as Lambda) and
the number of steps as calculated by the forward reasoning
plus backtracking algorithm (abbreviated as Steps) were
calculated for each trial that the participants had received
during the experiment.

Next, linear mixed-effects models were used to
investigate the predictive power of both the lambda-
difficulty and the forward reasoning plus backtracking
strategy.

? Following Meijering et al. (2012), only reaction times from the
second block were analyzed.
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Table 1: Number of steps when using forward reasoning
plus backtracking (Steps) and the levels of lambda-difficulty
(Lambda) for all 16 items of the marble drop game in the
analyzed dataset. “Attainable” represents whether the
player’s highest possible pay-off 4 is in fact attainable.

W

Item Steps  Lambda (A:)  Attainable
1 8 3 No
2 8 2 No
3 6 2 Yes
4 8 2 No
5 8 2 No
6 8 3 No
7 5 3 Yes
8 6 2 Yes
9 6 2 Yes
10 8 3 No
11 6 3 Yes
12 5 3 Yes
13 8 3 No
14 6 3 Yes
15 6 2 Yes
16 8 2 No

Mixed-effect models

The data was analyzed with linear mixed-effect models
using the LME4 package (Bates, Maechler, Bolker, &
Walker, 2013) available in R Project (Team R Core, 2013).
To find the best model, we formulated a full model based on
theoretical assumptions. We then dredged the model by
systematically leaving out different fixed factors and
interactions (Barton, 2013). This dredge process resulted in
a subset of all possible models that the full model allowed
for. Next, the Akaike information criterion (AIC; Akaike,
1974) was calculated for each model, and the model with
the lowest AIC (i.e., the best model) was selected for further
analyses. The AIC is suitable for this particular procedure,
because it takes into account the trade-off between the
complexity of a model and its fit. Thus, we were able to
select the best model out of our subset of models.
Null-model In order to get a reference for the calculated
AIC for both the forward reasoning plus backtracking model
and the lambda-difficulty model, we calculated a null-model
in which we only put the random effect of participant. The
AIC of this null-model is 1056.

The p-values of the factors in the selected models were
calculated by estimating the degrees of freedom
(Kuznetsova, Brockhoff, & Christensen, 2013).

Forward reasoning + backtracking First, Steps was
entered in the model, because we hypothesized that Steps is
predictive of the reaction times. Secondly, Accuracy was
entered in the model. Accuracy was 0 or 1, corresponding to
an incorrect or correct response, respectively. Furthermore,
an interaction effect between Accuracy and Steps was

? The corresponding trees can be found on the website
http://www.ai.rug.nl/SocialCognition/wp-content/uploads/trees.pdf

entered. Rationale behind this interaction is that we cannot
know what happens when an incorrect response is given,
thus one could expect that Steps is not predictive for
incorrect responses. To account for speed-up effects due to
learning, the sequence in which trials were presented to the
participant was coded as the factor Trial. Thus, the fixed
factors of the full model were entered as follows: Steps +
Accuracy + Steps x Accuracy + Trial. Participant was
entered as random factor. Automatic model selection selects
the full model as the best model with an AIC of 954. The
AIC of this model is lower than the AIC of the null-model
thus the full model is a better model.

The fixed factors of the selected model are listed in Table
2. First, a main effect of Accuracy is found. The negative
estimate B suggests that individuals are faster at correct
trials. Furthermore, the Trial factor reveals the presence of a
learning effect. The more trials an individual does, the faster
he/she responds. The interaction effect Steps x Accuracy
shows that Steps predicts the reaction times of marble drop
games that are correctly solved. The lack of a main effect
for Steps suggests that for incorrect trials, the forward
reasoning plus backtracking does not predict reaction times.
This is due to the algorithm’s incapability to predict errors.

Table 2. The factors of the forward reasoning plus
backtracking model and the corresponding estimate (B), t-
statistics, and p-values.

Factor B t p

Intercept 9.512 20.67  >0.001
Steps -0.060 -0.87 0.387
Accuracy -1.531 -3.27 0.001
StepsxAccuracy 0.209 3.00 0.003
Trial -0.007 -4.02  >0.001

Lambda-difficulty Lambda, Accuracy, Trial, and the
interaction between Lambda and Accuracy were entered in
the full model, following the same rationale as in the before-
mentioned analyses. Thus, the fixed factors of the model
were entered as follows: Lambda + Accuracy + Lambda x
Accuracy + Trial. Participant was entered as random factor.
Automatic model selection preferred the model with factors
Lambda + Trial to the full model. The simpler model has an
AIC of 992, which is higher than the AIC of the forward
reasoning plus backtracking model, but lower than the AIC
of the null-model.

The effects of the fixed factors for the Lambda + Trial
model are shown in Table 3. Both the main effects of Trial
and Lambda significantly predict the reaction time on a
marble drop game. As with the forward reasoning plus
backtracking model, Trial can be interpreted as a learning
effect. The effect of Lambda is more difficult to explain. If
lambda-difficulty positively predicts reaction times (i.e., the
more difficult a trial, the slower the participant), one would
expect a positive estimate. However, the estimate of lambda
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is negative, meaning that participants are faster in solving
trials that are defined as difficult by the lambda-difficulty.

Finally, when we compare the AIC scores of the lambda-
difficulty model to the forward reasoning plus backtracking
model, the latter has a lower AIC score and thus best
explains the data.

Table 3. The factors of the lambda-difficulty model and the
corresponding estimate (B), ¢-statistics, and p-values.

Factor B t p
Intercept 9.684 84.38  >0.001
Lambda -2.263 -7.51 >0.001
Trial -0.008 -3.89 >(0.001
Discussion
Overview

We have investigated two cognitive models of playing a
turn-based game called the Marble Drop Game. Our
computational-level model is based on the logical
description of the game trees in terms of player alternations
and the distribution of highest pay-off. Our more specific
algorithmic-level model proposes a concrete strategy that
can be used by subjects to solve the game trials. The
previous experiments (Szymanik et al., 2013) have not been
able to distinguish between the two modeling approaches, as
both models are consistent with the eye-tracking study of
Meijering et al. (2012). In this paper, by generalizing the
forward reasoning with backtracking algorithm put forward
by Meijering et al. (2012), we have managed to disentangle
the predictions of the two models. We have shown that for
the experimental items of Meijering et al. (2012) only the
forward reasoning plus backtracking model allows to predict
subjects’ behavior: the number of steps that the algorithm
must take for a given marble drop game item predicts the
reaction time subjects will need to correctly solve the trial.

Outlook

In the future we plan to continue the reported research in a
number of directions. First of all, we would like to better
understand why the computational model based on the
structural descriptions has failed. Is it because the lambda-
hierarchy does not take into account the decision of the
other player? And if that is the reason, how could we fix it?
Or maybe, the lambda predictions would approximate the
cognitive difficulty better for a wider variety of game items?
Finally, what is the precise relation between our two
models? To answer the last two questions it would be
necessary to generalize the forward reasoning plus
backtracking algorithm even more, in such a way that it
could be applied to any turn-based game.
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