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Abstract
Some research has suggested that face and object recognition
are independent abilities. Recently, however, it has been shown
that they are not, and that the relationship is moderated by ex-
perience with the object categories (Gauthier et al., in press).
Gauthier et al. suggest that a domain general ability under-
lies face and object recognition that is expressed when people
have sufficient experience in that category. Using the Cam-
bridge Face Memory Test (CFMT) and Vanderbilt Expertise
Test (VET), they showed that as experience with non-face ob-
ject categories grows (averaged over all eight categories of the
VET), the shared variance between the CFMT and VET perfor-
mance increased monotonically. This theory fits with our neu-
rocomputational model (“The Model”, TM, Cottrell and Hsiao
(2011)), since in TM, categories differentiated at the subordi-
nate level are recruited by the face network (Tong, Joyce, &
Cottrell, 2008). We model “domain general ability” as the re-
sources available for the mapping from images to labels (the
number of hidden units), and “experience” as the number of
training epochs with non-face objects. We show that, as in the
data, the shared variance between the performance on faces
and the performance on subordinate-level object categoriza-
tion increases as experience grows. Our results thus suggest
that a potential source for the variance in the “domain general
ability” between individuals is the amount of representational
resources available for fine-level discrimination. One might
have expected that faces and objects compete for this shared
resource, leading to a negative correlation between them. Our
analysis of the hidden unit representations shows that they
share a “spreading” transform, that moves similar objects apart
in representational space, consistent with our previous analy-
ses suggesting that this is why the the Fusiform Face Area is
recruited by new categories of expertise (Tong et al., 2008).
Keywords: face recognition; neural network; individual dif-
ferences; Fusiform Face Area (FFA); object recognition.

Introduction
Extensive progress has been made in discovering how com-
plex objects, particularly human faces, are processed by the
visual cortex. At the same time, there is no consensus
on whether face and non-face object recognition are per-
formed independently. Some fMRI studies of the Fusiform
Face Area (FFA) suggest there is a domain-specific response
to faces compared to other object categories in that region
(Kanwisher, McDermott, & Chun, 1997), while other studies
show that the FFA also responds to non-face objects of exper-
tise, such as cars, birds (Gauthier, Skudlarski, Gore, & Ander-
son, 2000), chessboards (Bilalić, Langner, Ulrich, & Grodd,

2011), and even on novel objects when subjects are suffi-
ciently trained in the lab ( “Greeble” experts, (Gauthier, Tarr,
Anderson, Skudlarski, & Gore, 1999)). Single-cell record-
ings in macaque show highly face-selective cell patches, but it
is unknown whether the macaques had expertise in any other
category (Tsao, Freiwald, Tootell, & Livingstone, 2006).
However, McGugin, Gatenby, Gore, and Gauthier (2012) re-
ported a linear correlation between behavioral car expertise
and a reliable response to cars in the FFA using HR-fMRI,
and suggest experience with a category may be sufficient to
create this activation.

Recently there has been more focus on individual differ-
ences in face and object recognition and the relationship be-
tween them. The development of the Cambridge Face Mem-
ory Test (CFMT) (Duchaine & Nakayama, 2006) has pro-
vided a valid and reliable measure of these differences in
the normal population. In a study on the heritability of face
recognition, Wilmer et al. (2010) assessed the independence
of face recognition by measuring the correlation between the
CFMT and a similar test about abstract art, and found the
correlation is low (less than 0.26). Similarly, Dennett et al.
(2011) designed the Cambridge Car Memory Test (CCMT),
and found it only accounted for 13.6% of the shared variance
in CFMT.

The results above suggest that face recognition is indepen-
dent from non-face object recognition. However, Gauthier
et al. (in press) challenged this idea, arguing that there is a
domain-general visual ability, v, for discriminating visually
similar objects that underlies face and non-face object recog-
nition, and that this ability is only expressed in full within a
category when people have sufficient experience, E, in that
category. I.e., Abilitycat = v ∗Ecat . In order to test this hy-
pothesis, they performed the following experiment: From
256 subjects, they collected three measures. First, the sub-
jects took the CFMT to obtain a measure of their ability with
faces. The CFMT involves studying 6 target faces, and then
discriminating them from other faces. The catch is that at
test time, the target faces and the distractor faces are in dif-
ferent lighting, pose, or both, from the study faces. This is
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followed by a second study phase, and then a discrimination
test where the targets and distractors are embedded in Gaus-
sian noise. Second, the subjects took the Vanderbilt Expertise
Test (VET; McGugin, Richler, Herzmann, Speegle, and Gau-
thier (2012)), a test structured to be similar in format to the
CFMT, but using 8 non-face object categories. This test gives
a measure of their abilities with objects (O-PERF). Finally,
they collected self-ratings from the subjects of their experi-
ence with the 8 categories, on a scale from 1 to 9 (O-EXP).

According to their hypothesis, if there is a common ability
v that is expressed through experience, then their performance
on the VET should be more correlated with their performance
on the CFMT as their experience with the object categories
grows. Hence they divided their subjects into six levels of
experience, based on their standard deviation from the mean
experience (see Figure 2, bottom row). Then for each experi-
ence group, they regressed the CFMT score against the VET
score. They showed that, as predicted, as experience grows,
the shared variance between the CFMT and VET increased
monotonically. When subjects have considerable experience
with objects, if they perform well (poorly) with faces, they
will also perform well (poorly) on non-face objects.

Our model of face processing (“The Model” (TM); Dailey
and Cottrell (1999); Cottrell and Hsiao (2011)) fits well with
this hypothesis, because in TM, as more subordinate-level ex-
perience is gained with a category, the face processing net-
work is recruited for the category. Hence any resources in the
face processing network are shared with expert object pro-
cessing. TM has been successfully used to simulate percep-
tual phenomena such as facial expression perception (Dailey,
Cottrell, Padgett, & Adolphs, 2002), the recruitment of FFA
for other categories of expertise (Tong et al., 2008), and the
development of hemispheric lateralization of face processing
(P. Wang & Cottrell, 2013).

The basic structure is similar to the expert network de-
scribed in Tong et al. (2008), where a two-layer error-driven
artificial neural network is trained after preprocessing the im-
ages with Gabor filters and PCA. We map the domain general
ability, (v), to the number of hidden units in TM, and expe-
rience, (E), to the number of training epochs when we train
on a non-face object category. We train on faces first to sim-
ulate the abilities expressed by the scores on the CFMT, and
then on non-face objects to simulate the abilities tested by
the VET. We apply our model to four different object cate-
gories: faces, butterflies, cars and leaves. We show that, as in
Gauthier et al.’s data, the shared variance between the perfor-
mance on faces and the average performance on non-face ob-
jects increases as experience with the non-face objects grows.

In addition, we make a prediction. Gauthier et al. did not
observe the correlation between scores on the VET and on the
CFMT at the level of experience with one particular category,
but instead, of overall experience with all eight categories.
Here we demonstrate that this correlation with experience on
one category can be observed in our computational model,
given sufficient training data.

Finally, we analyze the hidden unit activations, and show
that the effect of experience is to populate a larger region of
representational space - that is, to spread the representation of
individual objects out. This is the same phenomenon that we
have demonstrated in our model of how the FFA is recruited
for other tasks Tong et al. (2008).

In the next section, we provide a detailed description of
how we use TM to simulate the experiment in Gauthier et al.
(in press). The result section will present our findings and
analysis of the hidden unit activations. We conclude with a
discussion.

Methods
Model Architecture
The version of TM we use is shown in Figure 1. TM’s struc-
ture is layered from low-level visual features to high-level ob-
ject categories. The first layer is a Gabor filter layer (five
scales, eight orientations) that models the response of com-
plex cells in V1 (Daugman, 1985). In the second layer, we
perform Principal Component Analysis (PCA) on the Gabor
filter responses to reduce the dimensionality. PCA can be im-
plemented using Hebbian learning (Sanger, 1989), and simu-
lates the structural encoding level beyond primary visual cor-
tex, up to the lateral occipital region level. The third layer
is a hidden layer in the neural network that learns feature
representations in the service of the task. If the task is face
recognition, the hidden layer will develop representations for
faces adaptively over training, and we assume that the hidden
layer corresponds to the FFA. The last layer is a categoriza-
tion layer, which controls the level of discrimination between
different stimuli, and provides labels for them to perform the
final object recognition task. The last two layers are fully
connected, and are trained using online backpropagation.

Figure 1: Model Architecture

Dataset and Preprocessing
We used four categories of objects in our studies: faces, but-
terflies, cars and leaves. As there is no single dataset that
contains sufficient images for all these four expert categories,
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we collected the images from four different datasets: 1) faces:
NimStim Face Stimulus Set (Tottenham et al., 2009); 2) but-
terflies: Leeds Butterfly Dataset (J. Wang, Markert, & Ever-
ingham, 2009); 3) cars: Multi-View Car Dataset (Ozuysal,
Lepetit, & Fua, 2009); 4) leaves: One-hundred Plant Species
Leaves data Set (Mallah, Cope, & Orwell, in press). For each
category, we randomly selected 16 images each from 10 indi-
viduals to form the training set (12 images per individual) and
test set (4 images per individual). We transformed each image
to grayscale first and cropped them to 64×64 pixels. The Ga-
bor filtering stage consists of passing the image through the
classical Gabor filter bank (Lades et al., 1993) with 5 differ-
ent scales and 8 orientations ranging from 0 to 7π/8. We then
computed the Gabor magnitude, subsampled these vectors to
an 8× 8 grid, and normalized the response across orienta-
tions for each scale. The Gabor filtering process resulted in a
2560-dimensional vector to represent a single image. In order
to extract a small number of features to represent the image
efficiently and separate the response from each scale of the
Gabor filter, PCA is performed separately on each spatial fre-
quency component in the vectors (bandpass PCA). We kept
the eight most significant eigenvectors for each scale, thus
obtaining a 40-dimensional vector to represent each image
prior to training the neural network.

Model Subjects Initialization and Training
There are two key variables in the psychological experiment
performed by Gauthier et al. (in press): the hypothesized do-
main general visual ability, v, and the measured experience
with a category, E. Here we assume that v corresponds to
representational resources for fine-level discrimination, and
hence we map visual ability (v) to the number of hidden units.
With more hidden units, the network is able to generate more
accurate (higher dimensional) features for a given object cat-
egory, thus achieving better performance. Second, we map
experience (E) to the number of training epochs on non-face
object categories. To model the experiment, we make these
two variables a function of the data from the 256 human sub-
jects (see below), with one network per subject.

We first train each network on subordinate-level face
recognition, as this is the first kind of expertise for most
humans. We then train the network on an object class,
subordinate-level classification of butterflies, cars, or leaves.
Hence an extra set of output nodes are added for the sec-
ond task, and error backpropagated from them will change
the hidden unit representation. For Experiment 1, below, this
is performed three times for each network starting with the
same weights learned on faces (i.e., we “xerox” the network
and run three experiments on it). The test set accuracy after
training, averaged across the three tasks, is our model of their
score on the VET. Note that we continue training on faces
during the second task in order to avoid interference between
the tasks. This is reasonable given that humans are nearly al-
ways exposed to faces every day. In the second experiment,
we perform the same kind of analysis, but using only one ob-
ject category, and varied training times, to simulate expertise

with the second category.

Experiments and Analysis
Experiment 1: Modeling Gauthier et al. (in press)
We first modeled the psychological experiment in Gauthier et
al. (in press), described above. In the experiment, they ob-
tained the CFMT performance, VET performance (O-PERF),
and self-rating experience scores (from 1-9, O-EXP) on each
category for each of the 256 human subjects. According to
the average O-EXP scores across the eight categories of the
VET, Gauthier et al. divided the subjects into 6 groups based
on their standard deviation from the mean (see the legend to
Figure 2). In each group, they performed a regression on the
subjects’ CFMT scores against their object performance (O-
PERF), and computed the correlation between them. They
found that as O-EXP increases, the shared variance between
CFMT and O-PERF increases monotonically from 6.2×10−6

to 0.59. This result indicated that people with considerable
experience on VET object categories show a high correla-
tion between their performance with face and non-face ob-
jects. Figure 2(a) shows their result. The bottom of the Figure
shows which level of (self-reported) experience the subjects
in that panel had with the VET objects.

To model these results, we make a one-to-one mapping be-
tween each subject and a network. Since, according to Gau-
thier et al.’s hypothesis, their score on the CFMT represents
the expression of their v (because it is assumed that all sub-
jects have high and relatively similar experience with faces),
we use this score to decide each network’s representational
resources. Hence, for each human subject at each experience
level, we initialize a network with a number of hidden units
based on their CFMT score. For each network subject snet ,
we assign the number of hidden units from its corresponding
human subject shum according to the following formula:

Nhidden(snet) = f loor(8×CFMT (shum)),

where CFMT (s) represents the fraction of correct responses
for the given subject shum. The CFMT scores range from
0.4722 to 1, so the hidden unit numbers range from 3 to 8.
The number “8” in the formula above was chosen arbitrarily,
but 10 (for example) gives similar results.

Similarly, we mapped the self-rated experience (O-EXP) to
a number of training epochs for objects as follows:

Nepoch(snet) = 10×O-EXP(shum)

O-EXP ranges from 1 to 9, so our training epochs range from
10 to 90. Note that while O-EXP is a noisy measure of ex-
perience (being based on self-report), here we are converting
this to an exact measurement.

Stochastic gradient descent (online-backprop) is used to
perform the network training. We set the learning rate to
0.015 and momentum term to 0.01 in all experiments. All
weights between input layer to hidden layer, and hidden layer
to output layer were set randomly between 0 and 1. As noted
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Figure 2: Gauthier at al. results and model results. Subjects are divided into groups according to their self-reported experience
with the VET categories (O-EXP) (bottom row). For example, the first column (top row) shows the data from subjects whose
O-EXP scores fell below 1.5 standard deviations (SD) from the mean. The top row shows the regressions for each group of
their CFMT scores against their VET scores. The second row shows the results of our simulation. Each point in our graphs
corresponds to a single network whose parameters (v and E) are set based on one of the subjects in the graph above them.

above, the training begins with faces. The stopping crite-
ria for face training is either when the training error is be-
low 0.005 (determined by cross-validation), or the number
of training epochs hits 200. Hence, either the network be-
comes an expert at faces and stops training, or it receives 200
passes through the training set if it can’t reach that error cri-
terium. Then training is continued on an object category for
Nepochs(snet). As noted above, this is repeated three times for
each network, once for each category, and the results aver-
aged across the three networks. At the end of training, we
measured the recognition rate for face and non-face objects
for all 256 network subjects and calculated the shared vari-
ance between the performance on faces and averaged perfor-
mance on non-faces. The result is shown in Figure 2(b).

From Figure 2(b), we can clearly see that as experience
(O-EXP) grows, the correlation between the recognition per-
formance on faces and the average non-face scores increases
monotonically from 0.057 to 0.698, which matches the result
from Gauthier et al. (Figure 2(a)) qualitatively. This result
suggests our mapping for E and v to the network are reason-
able, and the potential source for the variance in the “domain
general ability” between individuals is the amount of repre-
sentational resources (hidden units in the neural network).

Experiment 2: Correlation with One Category
One issue with the Gauthier et al. experiment is that the cor-
relation was only found when experience across all categories
of the VET was combined. The same results did not obtain
when the analysis was restricted to a single category. This is
also true of our results in Experiment 1 (data not shown for
lack of space). This is a serious problem if our goal is to show
that face recognition is not independent of any non-face ob-
ject category. We believe that this lack of correlation could
be the result of too small a sample size. Hence in this exper-

iment we use a much larger number of “subjects” and ability
levels. Theoretically, we should see the same result as with
the averaged category experience.

As there is no psychological data corresponding to this ex-
periment, we created the initialization of the networks’ v and
E manually: 1) we map v to a range of hidden unit numbers,
Nhidden ∈ {1,2,3,5,6,8,12,16,20,24,28,32} and 2) we map
E to a set of number of training epochs for non-face objects
Nepoch ∈ {1,5,10,20,40,60}. Instead of having 256 subjects
in Experiment 1, we created 800 samples for each of the three
non-face categories in this experiment, and then assigned the
number of samples at each level of E and v according to a
Gaussian distribution, which is used to simulate the fact more
people should have intermediate level of E and v. The train-
ing procedure is exactly the same as Experiment 1, except
that we computed the correlation based on the performance
on faces and a single non-face category.

The results are shown in Figure 3. As can be seen from
the figure, as experience grows, the correlation between the
performance on faces and the performance on all three non-
face categories increases monotonically, regardless of what
the object category is. We performed the experiment multi-
ple times and the result is stable. This result proves that our
intuition is correct: sufficient data is a critical issue in observ-
ing the experience moderation effect. One phenomena worth
mentioning is the moderation differs for each category at the
end point (last column of Figure 3). For example, the R2 ends
at 0.683 for the car category but ends at 0.307 for the but-
terfly category. The end point distinction indicates the varied
difficulties of different tasks.

Internal Representation Given the results above, we may
wonder how the experience moderation effect occurs during
training. Given that the two processes are competing for the

1757



Figure 3: Experiment result (single category) of shared vari-
ance (R2) between performance of face and non-face expert
(butterflies, cars and leaves) as a function of experience. The
data points are shown as colored dots in each subplot.

same resources, one might expect the correlation between
them to be negative. On the other hand, if the resource was
split in half, then it makes sense that more resources for one
task means more resources for the other. The evidence that it
is neither of these possibilities is based on the analysis used
in Tong et al. (2008). They demonstrated that the hidden
unit representation formed during subordinate-level training
generalizes to new categories. That is, there is a “spreading
transform” that separates similar-looking items on the hid-
den layer, and this transform generalizes to new examples.
To demonstrate this, we visualize the development of internal
representation by applying PCA to the hidden unit activations
of the training data over learning, and plotting the second and
third principal components (PCs) on a two-dimensional sub-
space (the first principal component just represents the mag-
nitude of the activations, which reflects the growth in the
weights).

The results of this analysis with the car category are shown
in Figure 4. The plot clearly illustrates how experience con-
tributes in the discrimination task. For faces, the data points
for each individual become separated after training (left two
columns). For cars, more experience also leads to more sep-
aration (fourth column). This inter-class separation is not
only observed visually, but also statistically. The average
between-class distance (measured using Euclidean distance
between the center of each cluster in the right-hand column)
is 8.448 for the network trained for 200 epochs (bottom row)
and 6.405 for the network trained for five epochs (top row).
This indicates that more experience leads to more separation
between individuals. In addition, the within-class distance
(measured using Euclidean distance between each data point
belonging to a single individual to the average of that individ-
ual’s locations) in the network trained for 200 epochs is 2.849,
much lower than the value 8.496 for the network trained for
5 epochs (top row). This suggests more experience also gen-
erates a more condensed and accurate data distribution, thus

Figure 4: Visualization of hidden unit activations. The figure
shows how the representational space of the hidden units (the
second and third principal components of the activations) de-
velops over network training. We take samples from epochs
1 and 200 of face training (first and second column), epoch 1
of car training (third column). The remaining column shows
the difference between an experience level of 5 epochs of
car training (top row) and 200 epochs of car training (bot-
tom row). Colored dots correspond to different subordinate
categories - in the left two columns, the colors correspond
to individuals, in the right two columns, they correspond to
individual car models.

improving the recognition rate.
For an untrained non-face object category, the performance

must be low, regardless of how many hidden units there are,
so the correlation is low. With more training, performance
improves and become more dependent on the representational
resources, leading to the shared variance increasing. By vi-
sualizing the development of internal representation, we can
see how experience moderates face and object recognition.

At the same time, we can observe that in the third column,
even without training on cars, the projections are already sep-
arated to some extent, especially compared to the first col-
umn, where the network has just start training on faces. As
in our previous work Tong et al. (2008), this shows that the
spreading transform learned for faces generalizes to new cat-
egories. This is an important characteristic of a subordinate-
level classifier.

Conclusion
We showed that by instantiating the theoretical concept of a
shared resource, v, as the number of hidden units in our net-
work, we could replicate the moderation of experience on the
relationship between face and object recognition. Experience
allows the network to express this resource in performance
on the second task. We also used TM to predict that the same
phenomena will be observed at the individual category level,
given sufficient training data. Finally, analysis of the develop-
ing internal representation shows how experience moderates
the visual ability and recognition performance.

One potential critique of this work is that the CFMT and
the VET are memory tests, and we use the recognition rate
of unseen data to model this. However, we believe that if the
recognition rate is high, the internal representation is well-
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developed for the task. In a memory test, this would lead to
better representations in memory as well. In future work, we
intend to evaluate this idea more directly by using the models’
internal representations in an exemplar-based memory model.
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