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Abstract

Formal logic and probability theory are often considered the
most fundamental norms of rational thought, but their
application to psychological tasks has raised serious doubts
about human rationality. A central finding is that people
sometimes judge the probability of a conjunction to be higher
than that of its conjuncts (conjunction fallacies, CFs). Bayes-
ian logic (BL, von Sydow, 2011) formalizes subjective proba-
bilities of noisy-logical explanatory patterns (pattern pro-
babilities) instead of extensional probabilities (relative fre-
quencies), and predicts a system of rational inclusion fal-
lacies. This paper distinguishes a monadic from a dyadic pat-
tern explanation of CFs; it tests two corresponding formaliza-
tions of BL (the former concerned with cells, the latter with
marginals); and it models pattern probabilities in a novel way
(based on acceptance thresholds). In an experiment we varied
observed frequencies and formulations. The results deviate ra-
dically from narrow norms but they corroborate the idea of
monadic and dyadic pattern probabilities.

Keywords: Probability judgment; bias; conjunction fallacy;
inclusion fallacy; inductive Bayesian logics; predication.

Standard propositional logic and standard probability theory
are often considered to be the most fundamental norms of
rational thought. Formalizing what is rational has been the
subject of study over many centuries. Over 2000 years ago,
Aristotle founded formal logic (Analytica Priora and
Posteriora) and basic ideas of probabilistic reasoning (To-
pica). Since logical positivism, the basic calculi of formal
logics (Frege, Wittgenstein, Russell, Whitehead) and proba-
bility theory (Kolmogorov) have been rigidly formalized in
their present form. Yet the standards of rational thought are
still being elaborated. Formal epistemology, logics, and
mathematics have continued to develop non-standard
systems of logic and probability, as either alternatives or
refinements to these calculi (e.g., many-valued logics, non-
monotonic logics, default logics, and belief functions).
Psychology, however, has often been focused solely on
these two basic calculi. This may have contributed to the
view that human judgment is essentially biased. In the well
known Linda task, people make probability judgments about
a person X who is described to be a feminist, often P(X is
bank teller & feminist) > P(X is feminist). This has been
called a ‘conjunction fallacy,” as the probability of a smaller
set (the conjunction) cannot exceed that of the larger (one of
the conjuncts, Kahneman & Tversky, 1982, cf. 1996). In my
view, Gigerenzer (1996) correctly criticized Kahneman and
Tversky’s bias-and-heuristic approach, not only because the
suggested heuristics were underspecified but also because
content-blind application of the “narrow norms” of logics
and probability were misguided in the first place. However,

Kahneman and Tversky’s (1996) warnings against norma-
tive agnosticism seem not without foundation as well.

It is proposed here that in different situations either a
monadic or a dyadic Bayesian inductive logic can explain a
class of conjunction fallacies (CFs). It is generally
suggested, independent of details of the proposed Bayesian
models, that there may be monadic CFs based on a
probabilistic *‘monadic’ interpretation of two conjuncts. That
is, a statement like “X’s are young and Xs are female” is
presumably judged as true if X’s are typically young and X’s
are typically female, even if individual X’s are usually not
both young and female (monadic interpretation involving a
conjunction of two separate monadic propositions). In
contrast, “Xs are young women”, or “Xs are people who are
young and female” seems to refer to the traditional
interpretation of a conjunction as intersection—that is, Xs
are individually usually both young and female (dyadic
interpretation).  Although deterministically a dyadic
interpretation concerned with two marginal probabilities,
and a dyadic interpretation concerned with logical joint
probability distribution (logical patterns) coincide, they can
differ in a probabilistic context. Generally, we pursue a third
way between a simple application of narrow norms and
normative agnosticism by advocating a domain-specific
rational approach linked to Anderson’s rational analysis and
inspired by the Bayesian renaissance in higher cognition (M.
Oaksford, N. Chater, J. Tenenbaum) (cf. von Sydow, 2011).

Truth Table Logics and Probability Theory
— Two Narrow Norms for Predication?

The Narrow Norm of Formal Logic If concerned with the
truth of sentences involving logical connectives between
predicates, such as AND, OR, EITHER OR or NEITHER
NOR, standard logical truth-table definitions provide a truth
criterion applicable even to contingent sentences: “people
from the Linda school become bank tellers AND feminists”
or “ravens are black AND they can fly.” Yet interpreting
such sentences as V(x) B(x) A F(x) presents two problems.
First, the problem of exceptions — predication often involves
exceptions (e.g., white albino ravens). Almost none of the
assertive predications uttered would be justified, based on a
‘deterministic’ logical truth criterion. A significant sugges-
tion to solve this is instead to use a high probability criterion
(cf. Schurz, 2005), where the probability of an empirically
justified proposition surpasses a given threshold ¢. Second,
the problem of interpretation is that normal language con-
nectives (e.g., ‘AND’) do not always correspond to analo-
gous ideal language connectives (e.g., the logical conjunc-
tion). Some conjunction fallacies may indeed be attributed
to misinterpreted connectives (cf. Hilton, 1995, Hertwig,
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Benz, & Kraus, 2008). Hertwig et al. (2008) have shown
that a normal AND may refer to the logical OR (disjunction)
or IF THEN (conditional). Beside distinguishing normal
from ideal language, our distinction of monadic and dyadic
logic suggests two kinds of logical representation.
The Narrow Norm of Extensional Probability If the lo-
gical adequacy criterion for predication is replaced by a high
probability criterion (using standard probabilities), other
problems remain (von Sydow, 2011). The problem of sam-
ple size: One observation or one thousand observations of
A(X)AB(x;) (without exceptions) lead to the same extensio-
nal probabilities (relative frequencies) of “X are A and B”.
This seems inappropriate if our probability is to describe the
belief in a hypothesis. (We use probabilities of probability
patterns instead.) The problem of inclusion: The sentence
“ravens are black or they can fly or both” describes a larger
set than the conjunction. Thus its higher extensional pro-
bability taken as truth criterion implies that we should not
prefer predicating the conjunction. The same holds for the
tautology “Ravens are black or not, and they can fly or can-
not fly,” with Pe(B(r) T F(r))) = 1. It would follow a priori
that one could never prefer any logical hypothesis over the
tautology, irrespective of its meaning. Extensional proba-
bility thus does not seem a reasonable adequacy criterion for
data-based predication, as it is not sensitive to the data.
Pattern Probabilities and Dyadic Bayesian Logic Von
Sydow (2011) has argued that to keep a high probability cri-
terion of predication (Schurz, 2005; Foley, 2009) we have to
supplement extensional probability (with its own fields of
application) with a kind of subjective pattern probability.
Von Sydow has presented a model called Bayesian pattern
logic (BL). It is based on Kolmogrov’s axioms but allows
for conjunction fallacies. It formalizes second-order proba-
bilities of alternative logical hypotheses taken as alternative
explanations of a situation. The logical hypotheses | are
ideal probabilistic truth tables (probability tables, PTs) with
different degrees of noise r (the model can only be sketched
here). The 2x2 PTs are possible logical explanations of the
data D. One first calculates the likelihood P(D|PT,,) and
(based on a prior P(PT,,)) the posterior probability, P(PT,; |
D) using Bayes’ theorem. To calculate the final pattern
probability of a connective | one adds up (over all levels of
r) the posteriors of all PTs corresponding to |. — The model
predicts a system of frequency-based inclusion fallacies
(e.g., conjunction fallacies). Several predictions concerning
probability judgments about logical predications have been
corroborated: pattern sensitivity; a system of inclusion
fallacies; sample-size effects; and trial-by-trial applicability
(von Sydow, 2011, von Sydow & Fiedler, 2012).

In this paper we continue testing this model with several
frequencies and several hypotheses, but also investigate the
(supplementary) model of monadic BL.

The Idea of a Monadic Pattern Logic

Idea of Basic Monadic Pattern Logic Also in propo-
sitional logic, monadic logical connectives relate not to two
atomic propositions (as do standard dyadic connectives), but

to one. Propositional logic contains four monadic connec-
tives: (monadic) affirmation ‘A’ (A: T, Non-A: F), (mon-
adic) negation (A: F, Non-A: T), tautology (A: T, Non-A: T)
and contradiction (A: F, Non-A: F). Again a (monadic)
affirmation (e.g., x are A) cannot have a higher (extensional)
probability than the tautology (x are A or also non-A). Hence
one may apply the same argument that led to dyadic BL to
monadic connectives (particularly the problem of inclusion).
Since the tautology always has the highest probability, ex-
tensional probabilities do not provide a suitable data-based
criterion for adequate predication. A pattern probability
seems to provide such a criterion. Imagine a pub where most
visitors are men (very few women). Thus the sentence “This
pub is (generally) visited by men” (affirmation A) may have
a higher pattern probability than “This pub is visited by
people of both genders” (tautology). The monadic model
should again provide a (frequency-based) similarity-func-
tion between the data and the best explanation. In contrast to
dyadic attributes, monadic predications are only based on
marginals and ignore other attributes (with corresponding
joint probability distribution).

Applying Basic Monadic Logic to Dyadic Relations Basic
monadic pattern probabilities may again be used in dyadic
relations. In “The pub is visited by people (X) who are both
male (M) AND young (Y),” AND seems to refer to the
standard logical conjunction (the intersection). For such
general (but potentially probabilistic) dyadic logical rela-
tions we use a standard notation: ‘(x)M(x) AY(X)’, or briefly
‘M A Y. Yet in the sentence “The pub is visited by people
who are male and it is visited by people who are young,” the
concern may not be the intersection of M and Y, but rather a
combination of two monadic statements, each concerning
marginal cases only (notation: ‘(x)M(x) A (X)Y(x)’, or briefly
‘(M) A (Y)"). Extensionally, Pe((M) v (Y)) = Pe((M) A (Y)),
but the pattern probability Pp((M) A (Y)) may differ from
Po(M A Y) as well as from Pp((M v Y). The experiment
shows that a conjunction of monadic propositions may cor-
respond to different dyadic connectives. We call the pro-
bability of logically combined (basic) monadic pattern
probabilities simply ‘monadic pattern probabilities’ as well.
A New Kind of Model A third innovation concerns a new
way to determine pattern probabilities, different from von
Sydow, 2011. The new formalism is based on establishing
subjective degrees of belief and then varying acceptance
levels rather than noise levels. This may increase coherence
with logical approaches based on acceptance intervals (cf.
Schurz, 2005; Foley, 2009), while adding a subjective belief
and providing a solution to the problem of inclusion.

A New Model of Monadic Bayesian Logic

This model concerns frequency-based monadic predications
based on dichotomous data. Based on individual obser-
vations x; an entity or group of entities X (e.g., a group of
people, such as “the guests at pub X™) can be said to be
(generally) “A” (affirmation), “non-A” (negation) or “A or
non-A” (tautology). A specific observation x; is either A or
Non-A (e.g., a specific visitor of a pub is either male or fe-
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male). f(A(x)), f(non-A(x))) is the data input. The model cal-
culates a posterior probability that combinations of monadic
hypotheses are valid given the data and priors.

1. Posterior Distribution of Generative Probabilities We
assume that x; being A or non-A is a Bernoulli trial, pro-
duced by an unchanging generative probability p. This gen-
erative probability can be differentiated from the observed
extensional probability (relative frequency) (and also from
the resulting pattern probability of a monadic connective, to
be modeled by integrals over acceptance regions for p).
Given an assumed value of p the Binomial distribution then
provides the likelihood of the data P(D|p), the number of k
successes (e.g., A(x;)) in n trials:

n
B(klp.n) = (, ) p*(1 —p)"~*

Applied to all p values, we obtain a likelihood density
function (cf. middle Figure 1), which is the kernel of the
Beta distribution where only a normalizing constant factor is
added. Here the unknown generative probability p is the un-
known parameter with o-1 = f(x = A) and -1 = f(x = —A):

Beta(a,p) = P(p|a,B)=const. - p*~1(1 — p)F~1

Taking another Beta distribution as a prior for p (we
assume flat priors, Beta(1,1)) easily allows to calculate a
Beta posterior distribution for p (Figure 1).

Prior: Beta(1,4), M=0.

P(p)
0 3

0.0 0.2 0.4 0.6 0.8 1.0
p

Likelhood: Binomial, k = .

P(DIp)

0.00
T

Posterior: Beta( 11,6), |

P(p|D)

|

0.0 0.2 0.4 0.6 0.8 1.0
p
Figure 1: Example for the prior for p, the Binomial
likelihood and the Beta posterior distribution over p.

This provides a subjective posterior probability distribution
for the generative probability p of the occurrence of an
event that is sensitive to sample sizes. The mean of this dis-
tribution may be interpreted as a rational point estimate for
the probability of the event A (or, analogously if sampling
was conditional on another event B, as Ps,,(A|B)).

2. Pattern Probabilities Based on Acceptance Intervals
We build on the idea that predications apply as long as the
probability of a sentence is above a threshold (Schurz, 2005;

Foley, 2009), although this does not solve the problem of
inclusion. We start with ideal generative probabilities (affir-
mation: p = 1; negation: p = 0; tautology: p = .5) (cf. von
Sydow, 2011). We then vary for each monadic hypothesis,
Hy, the acceptance threshold r and its resulting acceptance
interval over p. For r = .2 the closed interval for accepting
affirmation A would be [.8, 1]; for the negation [0, .2]; and
for the tautology [.4, .6]. We then calculate for all r and
each Hy the integral from the lower (r;) to the higher
endpoint (r,) of these intervals:

T2
f Posterior distribution(p, Hy)
1

This provides the subjective probability that for a given r
the probability p of Hy, is within an acceptance interval. We
additionally relativized the result by the size of the interval
(otherwise large r trivially would have a high value). Trea-
ting the hypotheses as alternatives, we normalize the out-
comes. The probability of each monadic hypothesis is fin-
ally determined by adding up the results over the different
levels of r. Figure 2 shows an example where the preference
depends on r (for r =.3 Pp(A) > Pp(A or Non-A)).

P(H.r|D)
© 11— A
— o | 7 Non-A
a ~ Aornon-A
z
o <«
d b T
o B
O | -
T T T T T .
0.0 0.2 0.4 0.6 0.8 1.0
r
P(HID), Data: 5, 2
<
o
_ M
o o
=
& s
i
o
e
o
A Non A Both

Figure 2: Pattern prob. for diff. levels of r (upper) and after
integrating over r (lower). (f(A) = 5, f(—A) = 2, flat priors).

3. Logical Combinations of Monadic Probabilities Based
on these monadic pattern probabilities in the narrow sense,
we now calculate the conjunctive combination of two mona-
dic connectives. Since monadic attributes by definition
should be judged independently, we use the product rule:
Pp((A) A (B)) = PpM(A) . PPM(B), Pp((both A or Non'A) A
(Non'B)) = PPM(bOthA) . PPM(Non'B), Pp((bOthA) A (bothB))
= Ppu(bothp) - Ppy(bothg) etc. The dyadic combination of
three monadic propositions leads to 9 possible combinations
including a ‘tautology’ (e.g., visitors are male or female, and
young or old; i.e., everything is possible).
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Predictions
B Dyadic ® Monadic
Probabilities of the diff. Hyp. 1 to 15

Data

Observed
contingencies

(cf. Table on the right: dyadic, monadic BL)

Extensional

Results

Logical hypotheses H that are most or second most
frequently selected to be most probable given the data
and their relative frequency of (C1 to C5)
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100%
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100%
2 ) 75% Dyad. Mona. C1 Cc2 Cc3 Cc4 Cc5
O3 13 114 0% First H 9 15 9 9 15 15 15
% Ao D B ° choise P(H) 99% 38% 95% 95% 27% 64% 95%
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0% Artrtrer Bt e oice P(H) | 4% 18% 41%  32%  30%  36%  23%

1234567 8 9101112131415

*1, 15, 5, 7 Cf. main text

Figure 3: Examples for observed contingencies, predictions of dyadic BL, monadic BL and extensional probabilities;
and the main results in all 5 conditions (cf. main text for details and Figure 4 for some more results).

Experiment

To test dyadic BL as well as a monadic BL, we investigated
which of several alternative sentences involving logical
predictions people held to be most probable, given data in a
summary format (excluding memory effects). The dyadic
and monadic models imply partly different systems of
inclusion fallacies. Our design involved 5 conditions
involving different formulations (between-subject) and 30
frequency patterns (within-subject scenarios).

The 30 partly critical frequency patterns (scenarios) per-
mit detailed testing of several aspects of the models. This
also constitutes a first test of similarities and differences in
the predictions. The patterns were however originally
designed to test dyadic BL against simpler strategies. The
five conditions examine (1) whether one obtains similar
results with different formulations, involving different
usages of AND (a conjunctive vs. a sum meaning), even if
the same model applies; and (2) whether one can use
formulations that elicit either a monadic or a dyadic
interpretation of the hypotheses used. Two conditions

served to elicit answers coherent with dyadic BL (von
Sydow, 2011) (dyadic conditions) and three conditions were
to elicit answers in line with monadic BL (monadic
conditions). Here we aimed to elicit either a purely dyadic
or a purely monadic understanding. We used 15 hypotheses
in the dyadic condition (perhaps a dyadic cue), and 9 in the
monadic condition (Monadic BL can only model these
hypotheses). We used formulations in line with either a mo-
nadic or a dyadic interpretation. Future work may help to
demarcate the role of different cues promoting either
monadic or a dyadic understanding of connectives.
Participants One hundred and eight students of the
University of Heidelberg participated, in return for course-
credit or a recompense of 3 € for 20 minutes.

Method Each scenario concerned the probability of dif-
ferent sentences about a pub X. The pubnames were ran-
domly permutated. People always saw a 2x2 contingency
matrix with frequency information about visitors being male
or female, young or old. In all conditions the task was:
“Which sentence would you regard to be most probably
valid? Please answer intuitively.”
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The tested hypotheses corresponded to all 16 possible
logical connectives (apart from the contradiction): H1 A A
B; H2 A A —B; H3 —A A B; H4 —A A —B; H5 A; 6. —A; H7
B; H8 —B; H9 A<>B; H10 A><B (either or); H11 AvB; H12
Av—B; H13 —AvB; H14 — Av—B; H15 A T B (tautology).

Formulation of the hypotheses in the five conditions (The
hypotheses not mentioned were constructed analogously.)
Dyadic Condition 2 (C2), with conjunctive use of “AND”.
All sentences read: “Pub X is visited by guests who are...”
(“In die Kneipe X gehen...”) and then continued
variously—H1: young and female; H2: young and male; H4:
old and male; H5: young; H9: either female and young or
male and old; H11: young and female, young and male, or
old and female; H15: young and female, young and male,
old and female, or old and male (all combinations).

Dyadic Condition C1, with noun-adjective combinations
and a sum use of “AND”: H1: young women, etc.; H5:
young people (men and women); H9: young women and old
men, etc.; H11: young women, young men, and old men;
H15: young women, young men, old men and old women.

Monadic Condition C3 (in other respects resembling C1):
“The guests of this pub are...” H1: teenagers and women;
H3: adults and men; H5: teenagers (woman or also men);
H9: (later coded as H15) teenagers or also adults, women or
also men; and H16: undecided.

Monadic conditions C4/C5 (with sentences starting like
C2): “X is visited by guests who are, but then used a second
“who”— H1: guests who are young and who are old; H5:
young; H9 (coded H15): are young or old and who are
female or male.

Whereas the contingency table in C1 to C3 gave explicit

information about joint frequencies alone, in C4 marginal
frequencies were added and in C5 the contingency matrix
did not provide the joint frequency distribution, but instead
marginals only. Since the marginals are implied by cell
information, and the cell information is not implied by the
marginals, here the use of dyadic BL makes less sense. The
frequency information in the tables had labelled cells and
marginals. For each of the 30 frequency patterns we used
random rotations as a counterbalancing factor.
Results Space limits us here to presenting a selection of the
30 scenarios, to illustrate the strengths and weaknesses of
the models. To the left of each panel of Figure 4 is the con-
tingency information provided. Column 2 presents (unfitted)
model predictions for monadic BL, dyadic BL and
normalized extensional probability (the latter often implies
H15 answers). The tables in Column 3 first reiterate which
are the most and second most predicted hypotheses and re-
port the corresponding pattern probabilities. Then they show
the results, the most and second most frequently selected
hypotheses and their relative frequencies.

Panel A of Figure 3 show frequencies which are — from
the perspective of dyadic as well as monadic BL — AND
patterns with exceptions. As predicted, participants in all
conditions often selected the conjunction (H1) (or a
corresponding rotation; answers are always re-coded). H11

or H15 (predicted by extensional probability) was rarely
chosen, resulting in many double conjunction ‘fallacies’.

Panel B shows the same phenomenon for the affirmation
(H5). Although monadic and dyadic BL mainly predict H5,
monadic BL favors H2 almost equally. In correspondence,
the results show at least in C4 and C5 increased H2 choices.

Panel C shows a predicted shift from a (probabilistic)
dyadic EITHER-OR (H9) to the monadic tautology (H15).

Panel D shows a different predicted shift form a dyadic
either-or (H9) (selected despite great difference in the
relative frequencies of the non-empty cells) to an increasing
proportion of H1 selections in the monadic conditions. The
preference for H1 (over other hypotheses with equally
predicted subjective probability) suggests that participants
admitted more exceptions than is modelled by our flat prior
for r (cf. upper part of Figure 3). We have not modelled this
yet, but other patterns appear to support this idea.

In Panel E (Figure 4) participants as predicted shifted
from a dyadic or-hypothesis (H11) to the monadic tautology
(H15). Interestingly, Panel F shows that people (as
predicted) can also shift from H11 to H1.

In Panels G and H, the contingencies refer to the same
relative frequencies with differing sample sizes. In Panel G
the results for monadic and dyadic conditions, mostly as
predicted, tended to be undecided between H15 and H5.
Although Panel H then shows too high a number of
selections of the narrower hypothesis in the clearest
monadic condition C5 (H1 cf. Panel D) it corroborates that
H15 in all conditions disappears as the dominant hypothesis
(sample size sensitivity, cf. von Sydow, 2011).

General Discussion

The experiment provides some first evidence for generally
advocating two kinds of pattern probabilities involving two
systems of logical inclusion ‘fallacies’ and specifically
dyadic and monadic BL. Overall the results showed a very
good fit for dyadic BL, ruling out many possible simpler
heuristics which may plausibly mimic pattern probabilities
(e.g., Panel B and D exclude the dyadic strategy of finding
the largest difference between four cells—applicable in
Panel C). Likewise, sample-size effects (Panels G and H)
appear to exclude strategies using probabilities as input.

There were some substantial deviations from monadic
BL. However, the less clear results in C3 than in C5 may be
explicable by a lower number of additional monadic cues
(e.g., no explicit marginal frequencies). Moreover, we sug-
gested resolving further apparent deviations by modelling a
prior for r levels. Based on such considerations this first test
generally appears to support monadic BL as well.

Without modelling the many theories of the conjunction
fallacy (CF) here, the results seem inexplicable by them.
First, many are not formulated generally enough to account
for all logical connectives. Second, the results rule out
theories not concerned with patterns, and those not sensitive
to sample size. Finally, | am unaware of any account distin-
guishing monadic and dyadic predictions. Although for
instance the misinterpretation hypothesis (Hilton, 1995), the
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Figure 4: Continuation of Figure 3.
unclear-set hypothesis (Sloman et al., 2003), or the confir-
mation hypothesis (Tentori et al., 2013) may have their References

domains of application (cf. von Sydow, 2011), it is im-
plausible that they can account for the present results.*

This work sketches a novel approach deserving future ex-
amination by modelling other variants, parameter-settings
and alternative approaches, and refined empirical tests.
Using probability as a criterion for rational predication led
to intensional (pattern) probabilities, and then to the mon-
adic-dyadic distinction of pattern probabilities. A more con-
tent-sensitive model of probability opens the ‘rational tool
box’ of probability measures. Given the multifunctionality
of language, we hope this is not a Pandora’s box.
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! Tentori et al. (2013) show that confirmation can play a role in
producing CFs. Due to the rotation of the data confirmation theory
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