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Abstract

A cognitive model of the visual imagination will produce
“incoherent” results when it adds elements to an imagined
scene that come from different contexts (e.g., “computer” and
“cheese” with “mouse™). We approach this problem with a
model that infers coherence relations from co-occurrence
probabilities of labels in images. We show that this
algorithm’s serial traversal of networks of co-occurrence
relations for a particular query produces greater coherence
than one leading model in the field of computational
coherence: Thagard’s connectionist model.
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Introduction

The imagination is implicated in a wide range of abilities
related to human cognition. The list of abilities includes but
is not limited to planning, problem solving, hypothetical
thinking, counterfactual thinking, theory of mind, and
mental time travel (Davies, Atance, & Martin Ordas, 2011).
Despite a plethora of research on the imagination as a
facilitator for these abilities (see, for example, Markman,
Klein & Suhr, 2012), the generative capacity of the
imagination is an untapped area of research in this domain.
This work focuses on the visual faculty as it is the most
studied.

When someone constructs a visual scene with the
imagination (e.g., a mouse eating a piece of cheese) they
might use visual memories from many different experiences
as the components of the new scene. How these components
are selected from the range of possible experiences is not
obvious. If more than just the mouse and cheese are
included in the scene, it is unclear what makes the selection
of some elements (e.g., a cat, mousetrap, floorboards, or a
countertop) more likely or appropriate than others (e.g., a
rollercoaster, map of Spain, or cruise ship).

What is known is that people do not arbitrarily select the
components for their imaginings, even if those imaginings
are entirely fictional (see Cockbain, Vertolli, Davies, in
press). There is an intuitive coherence imposed on imagined
scenes that inhibits unusual and sometimes even highly
creative combinations.

One way that humans might make this selection is through
the co-occurrence of objects in visual memory (by visual
memory we mean only the memory of visual things, and not
a specific subsystem like the visuo-spatial sketchpad). Thus,
when one is imagining a scene given an environmental
query (e.g., a novel, question, or problem), mental processes

might search visual memory for other objects that often
occur with that query.

Recent research in cognitive neuroscience supports this
co-occurrence view. Under the title of “scene construction
theory,” this research has demonstrated that the
hippocampus plays a primary role in the construction of a
“coherent spatial context” for the integration of the
components of imagined experiences among other cognitive
phenomena (Hassabis & Maguire, 2007; Maguire &
Mullally, 2013). Parallel research on the role of the
hippocampus in the emergence of conceptual knowledge
and knowledge transfer (see Kumaran, Summerfield,
Hassabis & Maguire, 2009) endorses the “memory space”
hypothesis of hippocampal function. In this view, neurons in
the hippocampus encode the co-occurrence of the
components of a given experience or event through their
spatiotemporal associations (Konkel & Cohen, 2009). This
means that objects can co-occur as a consequence of
associations due to spatial relationships (e.g., mice often are
seen next to cheese) or temporal relationships (e.g.,
gunshots are often followed by death or injury). We only
address the former in the current work.

Figure 1. An incoherent scene generated by SOILIE for the
query ‘mouse,” containing elements from both the computer
and animal senses of ‘mouse.’

In sum, when one imagines a mouse eating a piece of
cheese, it is not surprising that mousetraps, cats, etc. are
more likely to come to mind than unrelated elements. They
all often occur together in the world and, thus, are
associated in the brain. In this case, “a mouse eating a piece
of cheese” serves as the query and the other elements are
what are returned by some imagination process. One way to
further explore this idea is through the use of computational
models.
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The Science of Imagination Laboratory Imagination
Engine (SOILIE) is a computational model of a functional
description of processes in the imagination that generate
scenes from an environmental query (Vertolli, Breault,
Ouellet, Somers, Gagné, Davies, 2014). In place of human
‘experiences’ and ‘objects’ SOILIE uses labeled images
from the web. When generating a novel scene, SOILIE must
determine which labels are appropriate to select, given a
particular query. And, in keeping with the descriptions
given above, SOILIE currently uses co-occurrence relations
to make this selection. In this context, co-occurrence is
determined by the frequency with which one label is present
in the same image with another label.

SOILIE derives these co-occurrence relations from the
Peekaboom database of labelled images. With over fifty
thousand images and ten thousand labels, the Peekaboom
database is one of the largest of its kind. The dataset is the
combined result of two online games: the ESP Game and
Peekaboom (Von Ahn, Liu, & Blum, 2006). In the ESP
Game, pairs of players are shown the same image and
without communicating try to enter the same words (Von
Ahn & Dabbish, 2004). Words that both players enter are
associated with the image and, consequently, common
labels are applied to images collected from the internet. To
prevent a narrow set of the most common words, labels
would become unusable after repeated use. This increased
the diversity and size of the resulting label set for each
image.

SOILIE’s dataset comes from a related game, Peekaboom,
which uses ESP game data and results in images with
labelled selections of pixels. Both games are designed to
produce data that can be used in vision research. Thus, they
are particularly relevant for SOILIE’s task.

SOILIE uses co-occurrence probabilities extracted from
the Peekaboom database described above. Co-occurrence
probabilities are calculated by dividing the total number of
images (I) in the Peekaboom database that contain the co-
occurring label (1) and a particular query (q) by the total
number of images with just the query. Using set theory
notation, this yields:

I, N ]
Pl q) = qll—l
q

where N indicates set intersection and || indicates cardinality
(i.e., the total number of elements in the set). One important
feature of this formalization is that it is non-commutative
(i.e., P yields a different value for mouse-cheese than it does
for cheese-mouse). Parallel research on co-occurrence in the
machine learning literature suggests that this is both more
realistic (e.g., most weddings have flowers but most flowers
are not in weddings) but most models do not account for it
(see Huang, Yu & Zhou, 2012; Zhang & Zhou, 2013).
Research in neuroscience suggests that visual working
memory can hold approximately three to five objects of
average complexity (i.e., they leave open the possibility that
very simple objects and very complex objects might be

affected differently; Cowan, 2001; Edin, et al., 2009). Thus,
it is assumed that on average an imagined scene has
approximately three to five elements in it at any given time;
though aggregates (i.e., combining two or more elements
into a single element) are entirely possible. Similarly, four
labels, excluding the query, are retrieved by SOILIE from
the co-occurrence data and five labels in total are selected
for every imagined scene. We decided that this number,
despite being in the upper part of the range, was the most
useful: preliminary research suggested that larger sets of
labels increased the divergence in the success of the
underlying subsystems, five is still in the accepted range,
and the query does not really need to be maintained in
working memory to the same degree (an individual could
always re-query) nor does it need to be retrieved.

However, after working with earlier instantiations of
SOILIE (see Breault, Ouellet, Somers, & Davies, 2013), a
problem became apparent. When images are selected purely
on the basis of their co-occurrence with the initial query,
that is, selecting the labels with the highest co-occurrence or
“top-n,” the scenes produced are often contextually
incoherent in an intuitive sense.

For example, SOILIE was queried with the word ‘mouse,’
which is polysemous (i.e., it has multiple, related meanings;
e.g., a computer mouse and the animal mouse). Each
meaning of a polysemous word is represented by different
images in the database—assuming that a single image
would be highly unlikely to contain both meanings of a
given label (e.g., have the animal on a desk with a
computer). Each of these different images is similarly
associated with a different collection of labels and each set
of labels has a different set of co-occurrence relations.
Problematically, by being reduced to a collection of co-
occurrence probabilities in visual memory, the sets of
images, labels, and co-occurrence relations that separate the
two polysemous meanings of the word “mouse” are no
longer directly detectable. They are collapsed into a single
dimension associating pairs of labels (see Table 1).

The result is that models, like SOILIE’s original “top-n”
model, which act on this single dimension, will be unable to
infer the appropriate contextual distinctions from the
differences in the underlying images. Thus, they will often
produce incoherent images (see Figure 1).

The problem of ‘coherence’ is not exclusive to SOILIE.
Generally, models that address context need to be able to
select coherent combinations (Hullett & Mateas, 2009).
Most models, due to memory limitations, will also need to
reduce the original input (e.g., images) into some form of
compressed data (e.g., co-occurrence probabilities). In this
compression, some of the information will be lost. Thus,
there will almost always be the dual task of 1) finding
compression techniques that are better able to capture
greater quantities of salient information and 2) build
decompression procedures that can re-derive information
that was lost through higher-order patterns of the remaining
data.
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Table 1: Label co-occurrence probability of two images
alone and in SOILIE’s complete database

Image 1 labels:
mouse, eye, rodent, rat, animal, ear, ears

Image 2 labels:
mouse, wires, monitor, screen, headphones, computer

Co-occurrence of each label with query “mouse” given only
those two images: 0.5

Co-occurrence of label with query “mouse” using all images
in the database:

rat 0.29 rodent 0.08
ear 0.19 ears 0.07
computer 0.17 eye 0.06
animal 0.13 headphones  0.01
monitor 0.12 wires 0.01
screen 0.10

Top-4 labels from the two images using co-occurrence from
database:
rat, ear, computer, animal

SOILIE’s coherence subsystem, Coherencer (Vertolli &
Davies, 2013), falls into the second category. Thus, it is not
a memory system, per se, but rather defines a form of
contextual optimization of a given type of memory system,
mainly, one that uses co-occurrence as per SOILIE and the
hippocampus. This characterization is consistent with both
the cognitive neuroscience literature on the hippocampus,
which sees the hippocampus as a system of constructive
integration of memory components and with Paul Thagard’s
(2000) research on coherence.

Thagard (2000) describes the problem of coherence as an
optimization problem. That is, given a particular structure
(e.g., co-occurrence), coherence is the dynamic construction
of the best combination of components to maximize or
minimize a particular set of criteria. Thagard takes these
criteria to be a set of positive constraints (i.e., inclusion of
one component increases the likelihood of inclusion of
another component) and negative constraints (i.e., inclusion
of one component decreases the likelihood of inclusion of
another component). These constraints are optimized by
maximizing the number of positive constraints in a
collection and minimizing the negative constraints.

After formalizing coherence in this way, Thagard
proceeds to outline a number of general classes of
computational models that can resolve this type of problem.
He then dismisses all of them in favour of one: a
connectionist algorithm. His argument, roughly, is that the
parallel approach inherent in these algorithms is both better
at finding the global optimum (i.e., the best coherence for a
given set of constraints) and, for those algorithms that are
comparable, it is more cognitively plausible. Thagard has
implemented a number of such networks in related domains

with success (e.g., Thagard, 1989, 1992, 2000; Eliasmith &
Thagard, 1997). However, before continuing his exploration
of his preferred algorithm, Thagard makes one caveat;
mainly, that incremental algorithms, or what are commonly
referred to as local hill searchers in the machine learning
and optimization literature, might offer valuable insights
into human cognition as both are known to perform sub-
optimally in many domains, including coherence.

In what follows, SOILIE’s Coherencer system will be
compared to one instantiation of Thagard’s connectionist
algorithm in the current domain (i.e., visual coherence in the
human imagination). In previous research, Coherencer was
shown to better capture coherence than SOILIE’s original,
top-n model and a random search (Vertolli & Davies, 2013).
It was also shown that Coherencer falls under Thagard’s
incremental class of algorithms. Thus, this comparison
provides both a more robust test of Coherencer’s efficacy,
and insight into the cognitive implications that Thagard
pointed to in his caveat.

It is worth noting that both Coherencer and Thagard’s
model, in as much as they exist in the brain, are both
necessarily instantiated in neural processes. One should not
confuse the semantic convenience of calling connectionist
models “neural networks” with a literal network of neurons
and Coherencer with “something else.” What is being
tested, then, is whether the higher-order functionality of
hippocampal or similar processes is better replicated with a
serial process or a parallel process, with the corresponding
implications for optimality in the system (in as much as
those implications are in fact accurate). A serial virtual
machine can be implemented on a parallel computational
architecture, neurological or otherwise. Thus, both types of
processes are cognitively plausible when considering only
this aspect.

Implementation

We will proceed by giving a very brief description of
Coherencer (for a more detailed description, see Vertolli &
Davies, 2013) and a detailed description of the current
implementation of Thagard’s connectionist algorithm.
Coherencer operates as follows. First, Coherencer creates
a pool of all labels that co-occur with the query. From this
pool, it initially puts the top-4 labels with the highest co-
occurrence in its memory buffer. Then, a square matrix of
all the labels is created where each cell holds the co-
occurrence probability for the row-column pair or P(row(n),
column(m)). The average of the entire matrix is calculated
and, if it passes a threshold (1)!, the collection is accepted

(ie., if %zgzlzfnzlp(zm 1,)> A). We ignore the
diagonals, where n = m, in this calculation. If it fails to pass

the threshold, the label with the lowest co-occurrence with
all other labels (i.e., for the ith label, the sum of all row(i)

1 We take the threshold to be a coarse representation of a learned
sense of coherence in the world. This means that the number would
vary depending on one’s experiences (i.e., given a different
database) or in different contexts (e.g., when trying to be creative).
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values and column(i) values) is discarded and cannot be
reselected. A new label is then swapped in from the pool
and the process repeats until either the pool is empty or a set
passing the threshold is found. If the pool is empty,
Coherencer fails to create an imagined scene.

The construction of the connectionist model will proceed
as described by Thagard (2000). A node is constructed for
the query and every label co-occurring with the query. For
every positive constraint between two labels, an excitatory
link is constructed between the corresponding nodes with a
weight equal to the co-occurrence probability. For every
negative constraint (i.e., when two labels have a co-
occurrence of 0), an inhibitory connection is constructed
between corresponding nodes with a weight set to the
average co-occurrence of all non-zero values (). An initial
activation (0.01) is assigned to each node with a special
locked activation (1.0) on the query node. All nodes then
have their activation updated in parallel® using the following
formula*:

deyr = d(1—d) + f(m)

where d is a vector of all the node activations at time t with
each label as a cell in that vector, d is a scalar decay
parameter (0.05) that decrements each node at every cycle.
The vector net is computed by matrix multiplication as per:

net = a,w

where W is the weight matrix for the network with its rows
corresponding to the node being updated and the columns
corresponding to the linked nodes (i.e., neighbours of node
i). The values at W;; (i.e., the diagonal of the matrix) are set
to 0 so the activation passed from a node to itself is 0. W
also corresponds to Coherencer’s co-occurrence matrix with
all co-occurrence values of 0 set to ¢. Finally, f from the
original equation is a function that performs element-wise
multiplication with a different number depending on the
elements direction from zero as per this equation:

— xX=a — aq;ifnet; >0
f(net) = net;x { max g '
X = a; — Ay ifnet; <0

where x is the variable multiplier, a; is the ith value of d,
QAmas 1S the maximum activation of a node (1.0), and a,;;,, iS
the minimum activation (-1.0). After the update, each node

2 This was found to be 0.14878295850321488. The rounding
occurred where it naturally does in the Python computer language
(double precision float). As a consequence, different languages
may get slightly different results unless this is controlled.

3 The nodes are updated serially but the results of those updates
are not used until the next serial update of all nodes. Thus, the end
product is a parallel process implemented on a serial machine.

4 All formulas are vectorized implementations of those described
by Thagard (2000). I chose to use row vectors instead of column
vectors as this more closely mirrors Coherencer’s implementation.

is reduced to the maximum and minimum activation values
if it exceeds them.

In the larger process, activations update until the average
change in the sum of all differences is less than a threshold
(6) or until 500 iterations occur. The following equation
illustrates the former:

. 1 t n
Ad, = mzt_mzizoﬂam —ae )<

where Aa is the change in activation over the past 10
iterations, a,; means activation at time t and node i, || here
indicates absolute value, and @ is the threshold. The 4 labels
with the highest activation are selected providing a sort of
top-4 filter.

In what follows, we will describe an outline of the
comparison of these two models.

The Comparison

The comparison followed the basic structure of a memory
task, where a participant is given a collection of data; this
data is compressed in memory, and then it is recalled. In our
abstraction of this structure, each model is given a collection
of images, which are compressed into co-occurrence
probabilities in memory. The models are then tasked with
recalling this information.

Unlike a memory task, the goal is not to test the bounds of
human or animal functionality. Instead, it is to assess the
efficacy of the decompression step that re-generates the
coherence information that was lost during compression in
memory. Thus, the quantity of images remembered is not
what is of interest. It is a certain quality in the generated
images, namely coherence. This quality can be tested
quantitatively by determining if the elements (in this case,
labels) selected by the model when given a particular label
or query do in fact occur in one of the original images. If
they do, then the original coherence information has been
successfully re-generated from the compressed data.

It is worth noting that, outside of the methodological
advantages just outlined, this conceptual method is also
theoretically more plausible than approaches that do not
account for memory. The research in cognitive neuroscience
previously outlined suggests that the imagination, spatial
navigation, and memory are all associated through the
underlying functionality of the hippocampus. Thus, by
testing the models through this sort of generative recall (an
integrated imagination-memory process), one might better
approach the mechanism that underlies all of these
processes: cognitive generation proper.

In either case, we hypothesize that Coherencer will
outperform Thagard’s model in the current comparison. We
anticipate that serial processes better capture the contextual
transitions necessary to appropriately frame a given scene.
And, the advantages of using a parallel, non-linear
optimization process are lost when dealing with a single
feature.
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Method

There are two models that were compared: Coherencer and
Thagard’s model. The entire Peekaboom database was
initially filtered to remove all images with fewer than five
labels and any labels that only occurred on those images. A
total of 8,372 labels and 23,115 images remained after this
filtration. All of the remaining images were compressed to
their corresponding co-occurrence probabilities.

Each of the 8,372 labels was run through both of the
algorithms 100 times and the results were averaged. Each
query plus four returned labels are the elements of a new
generated scene. The results for each of the algorithms were
assessed with regard to the original images. If at least one
image in the test set contained the five labels that were
selected by a particular algorithm, including the query, the
algorithm scored one point. If there were no images
containing the five labels, they did not score a point. The
results on each of the labels were paired for comparison.
The total number of points scored by a model where the
other model failed to score a point (i.e., excluding labels
where both models failed or both models succeeded) were
used to compare Coherencer to Thagard’s algorithm.

Results

As hypothesized, Coherencer had more successful matches
than the connectionist algorithm. The statistical details are
as follows.

McNemar’s  repeated measures  chi-square  test
demonstrates that Coherencer performed significantly better
than Thagard’s algorithm, ¥?(1, N=8372) = 7.80, p = .006,
¢ = 0.44. The average scores in each of the categories are
listed in Table 2. In this test, model runs where Coherencer
and Thagard’s algorithm both fail or both succeed on a
given query (i.e., the models perform identically) are
ignored; thus, the comparison occurs between the runs
where one model failed and the other succeeded and vice
versa. All values are reported for completion and evaluation
purposes. As is standard with chi-square tests, both the
actual number of runs and the statistically expected humber
of runs for a given category are reported. Figure 2 shows the
standard deviation for the 100 model runs for the values that
are used in the comparison (i.e., when the models are not
performing identically). Even when the difference between
the two categories is the smallest, the result is still
statistically significant, p = .031.

Discussion

The results support the idea that Coherencer generates
elements that create a more coherent scene than Thagard’s
model. However, the intent is not to falsify Thagard’s claim
to the formal optimality of connectionist algorithms over
incremental algorithms in the domains he considers, which
are largely about higher-order epistemological relations and
constraints. Co-occurrence probabilities are part of a much
lower system. The fact that Thagard’s theory could

anticipate both categories of systems we believe lends
credence to it.

The purpose of this comparison is to extend the theory in
order to better comprehend the subtle nuances implicated
within it. For example, under what conditions are
incremental algorithms present? Here, the evidence suggests
that low level (i.e., co-occurrence), low dimensionality (i.e.,
just co-occurrence probabilities), with high combinatoric
load (approximately = 3.42x10'"  possible  5-label
combinations) requires incremental, heuristic approaches.
Assuming the connectionist, parallel approach is optimal,
how might that incremental approach switch into a
functionally parallel one? Or, does it only approximate a
parallel approach, which forces sub-optimal solutions in
higher-order domains? Thagard (2000) explicitly mentions
the tendency for humans to make sub-optimal decisions and
the potential association between incremental approaches
and bounded rationality (Simon, 1991). This project
supports this association.

Table 2: McNemar »? calculation between Coherencer and
Thagard’s model.

Coherencer  Coherencer

. Total
failure success
Thagard’s  Actual 2099.0 1166.0 3265.0
algorithm
failure
Expected 1222.2 2042.8
Thagard’s  Actual 1035.0 4072.0 5107.0
algorithm
Success
Expected 1911.8 3195.2
Total Count 3134.0 5238.0 8372.0
1200 SD =18.19
%
2 1100 1 sD=10.23
5 ., 1000 -
o c
€ 3
3 < 900 -
g Thagard Failure and Thagard Success and
e Coherencer Success  Coherencer Failure
>
<

Success to Failure Comparison Between Models

Figure 2: Failure-Success and Success-Failure average
scores with standard deviation bars for 100 model runs

Research in working memory has also described a
limited, serial system—the episodic buffer—that roughly
matches what Thagard is describing (Baddeley, 2000). The
episodic buffer is believed to be the means of integration for
the different sense modalities as well as the retrieval
mechanism for long-term memories. That is, it is mapped to
a roughly identical, functional domain as the hippocampus.
The limitations of these systems might result in downstream
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limitations, and this suggests a rather simple explanation for
bounded rationality.

In the current research, these observations suggest
interesting implications for Coherencer. With respect to
human cognition, Coherencer might better model the
bounds of human rationality than the alternatives, including
Thagard’s connectionist models. Local hill searchers (i.e.,
incremental algorithms) might be optimal if the compression
in memory reduces the feature space to a low dimensionality
where non-linear techniques like Thagard’s model give too
little advantage for their increased cost in time and
resources. The parallels with both the hippocampus and the
episodic buffer suggest that Coherencer might also provide
a functional model and computational implementation that
better describes contemporary research in these domains
than the competitors. Additionally, it can provide a means
for cross-pollination and integration across the domains of
cognitive neuroscience, working memory, computational
modelling, and artificial intelligence (or at least heuristic
optimization, for the latter). Both of these parallels give
credence to Coherencer as a useful model of certain
processes in human cognition. Future research will focus on
more advanced thresholds and feature spaces (e.g., spatial
relations in addition to co-occurrence), comparisons with
other heuristic optimization models, and decreasing the
divide between the formalization and research in cognitive
neuroscience.
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