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Abstract

This paper examines people’s subjective beliefs about probabil-
ity distributions arising from repeated events, such as the num-
ber of heads in ten coin flips. Across elicitation methods and
decision scenarios, people express beliefs that are systematical-
ly biased relative to the actual distribution, over-estimating the
tails and under-estimating the shoulders of the distribution.
While experts are relatively more accurate than novices, both
show significant bias.
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This paper poses a simple but fundamental question. When
people know the probabilities of specific events, how accurate
are their beliefs about the distribution of repeated events, rela-
tive to the actual probability distributions? For example, how
well can people predict the distribution of the number of
heads in ten coin flips, relative to the binomial distribution?

Study 1

Study 1 collected data on people’s prospective beliefs about
the Binomial distribution, with 10 outcomes and an equal
probability of both outcomes: B(10 , 0.5). In the study, each
participant read one of four real-world scenarios and then
indicated their beliefs about the distribution using one of three
different elicitation methods. Participants also estimated a
distribution of height as a control task, and were paid an in-
centive for accuracy in the tasks.

Method

Adult online participants completed 821 surveys. Partici-
pants were told that they were eligible to receive a bonus
payment, such that providing the most accurate answer would
earn them $1, providing an answer that was no better than
guessing at random would earn $0, and answers of intermedi-
ate accuracy would earn the corresponding intermediate
amount.

Each participant initially read one of four estimation sce-
narios, summarized below:

1. Coin Flip Game. You would flip a coin 10 times and
show the experimenter the result each time. Each time
that it comes up heads, you win $1, and each time it
comes up tails, you get nothing.

2. Survey Sampling. In a population exactly half of the
people prefer Coke to Pepsi, half prefer Pepsi to Coke,
and no one is indifferent. You conduct a survey with 10
people, and there is no sampling bias (everyone has an
equal probability of completing the survey).

3. Soccer Practice. You would kick a soccer ball into a
goal, with the difficulty of the game adjusted for you
personally. You would kick the ball from far away
enough that, on any given kick, you have a 50% chance
of getting the ball in. You would try 10 kicks.

4. Estimating Height. Thinking only of men in the U.S.
who are 18 years old or older, how common do you
think each of the heights below is? Indicate the propor-
tion of men in the U.S. 18 or older who are in each
height range.

Participants then estimated 11 quantities which added up to
100: probability of earning from $0 to $10 in (1), the number
of people out of 100 earning from $0 to $10 (1), probability
of surveying from 0 to 10 people who prefer a given soda in
(2), probability of making between 0 to 10 of the kicks in (3),
or the proportions of heights in each of 11 intervals in (4).

The quantities were estimated either with an adjustable his-
togram, by filling in 11 numeric values which were forced to
add up to 100 or by choosing between one of six predefined
histograms. The order of the response choices or histograms
was fully counterbalanced.

After the primary task, participants who had estimated one
of the non-height tasks (scenarios 1-3) then also did the height
estimate task. The study therefore had a 5 (scenario tasks) x 3
(elicitation methods) between-subjects design, as well as a
repeated measure (tasks 1-3 followed by the height estima-
tion) for a subset of participants.

Participants answered several demographic questions and
finished the survey. Later that week, participants’ bonuses
were calculated based on their accuracy and paid.

Results and Discussion

Accuracy of beliefs for elicited distributions.

The first three scenarios, which are represented by the same
binomial distribution (under the assumption that each of the
ten outcomes is independent) are analyzed first. Combining
all the data for the open-ended elicitation methods (histogram
and numeric), we have 418 completes. The mean estimates
for each outcome are plotted below, in Figure 1, using a solid
line, along with the binomial distribution using a dashed line,
for comparison.
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Figure 1: All Continuous Binomial Estimates

Figure 2: Subset of Monotonic Binomial Estimates
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Error bars represent 95% confidence intervals.

As can be seen in Figure 1, the estimates diverge substan-
tially from the binomial distribution. The estimates have sig-
nificantly more mass in the tails and peak of the distribution,
and less mass in the shoulders of the distribution.

The mean of the average estimated distribution was not bi-
ased (5.04 vs. 5, t=0.72, p=.47). However, on average, the
estimated distributions had a significantly higher variance
than the binomial (4.93 vs. 2.5, t=14.3, p<.001) and more
kurtosis (.09 vs. -.20, t=3.54, p<.001).

There are several interpretations of the difference between
peoples’ estimates and the actual binomial distribution that
are important to consider. One possibility is that uninformed
or unmotivated participants may have used a simple heuristic
to solve the problem, perhaps even one they did not really
believe. Could heterogeneity among participants, and specifi-
cally a preponderance of clearly unrealistic distributions, ac-
count for the observed divergence between the estimates and
the binomial distribution?

One possibility is that they guessed randomly or fundamen-
tally misunderstood the question. Participants were coded as
monotonic if their responses were monotonically decreasing
from a maximum at 5, on both sides of the distribution. A
majority of participants (n=291, 71%) gave distributions sat-
isfying this criteria. The mean of the average estimated dis-
tribution was not biased (5.00 vs. 5, t=0.18, p=.86). However,
on average, the estimated distributions still had a significantly
higher variance than the binomial (4.17 vs. 2.5, t=10.7,
p<.001) and more kurtosis (.15 vs. -.20, t=4.23, p<.001).

Another heuristic would be to provide a uniform (or near-
uniform) distribution. This was the case for approximately
15% of the total participants. Some participants (6% of the
total) simply put all the mass on one outcome.

Eliminating non-monotonic, near-uniform and single-point
distributions yielded 231 responses, 55% of the sample. The
mean of just these distributions is shown below in Figure 2,
plotted with a solid line, with the binomial distribution plotted
using a dashed line for comparison.

0 1 2 3 4 5 6 7 8 9 10
Error bars represent 95% confidence intervals.

The results in Figure 2 are similar to those in Figure 1, sug-
gesting that the observed divergence from the binomial distri-
bution cannot be explained by a subset of participants provid-
ing non-monotonic distributions. The estimates have signifi-
cantly more mass in the tails and peak of the distribution, and
less mass in the shoulders of the distribution.

The mean of the average estimated distribution was not bi-
ased (5.00 vs. 5, t=0.64, p=.53). However, on average, even
these estimated distributions pre-screened for the plausibility
of their shape had a significantly higher variance than the
binomial (3.55 vs. 2.5, t=9.14, p<.001) and more kurtosis (.42
vs. -.20, t=7.00, p<.001).

A final possibility to consider is that individual estimates
were based on the actual amount plus random error (Erev,
Wallsten and Budescu 1994). This could explain over-
estimation of the low probabilities in the tails, due to trunca-
tion of estimates at zero. However, this would not explain the
lack of underestimation and actual overestimation of the
highest probability outcome.

Accuracy of beliefs for chosen distributions.

The results shown thus far are based on having participants
generate probability distributions, using either a graphical or
numeric interface. It is possible that the observed misestima-
tion might be specific to elicited, and therefore constructed,
distributions. To test this, a total of 239 participants were
instead shown six distributions (order counterbalanced and
distributed across the scenarios) and asked to choose which
was the most accurate, second most accurate and least accu-
rate. Choices of the most and least accurate are shown below
in Figure 3.
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Figure 3: Choices Among Histograms

Figure 4: Regression on Error of Estimate (RMSE)
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Chart D was the most accurate, but was only chosen as the
most accurate by 26% of the participants. While this rate is
significantly above chance (Z=3.14, p=.002), it’s a fairly low
proportion. Only 12% correctly identified the second most
accurate chart (Graph C) and only 8% identified the least
accurate chart (Graph B), both significantly below chance
(Z=2.38, p=.02 and Z=4.63, p<.001, respectively).

Treating each person’s choice for the most accurate distri-
bution as their estimate, the average estimated distribution
was calculated. The average of the chosen distributions sig-
nificantly overestimated the share of the tails (0, 1, 2, 8, 9 and
10), and significantly underestimated the share of the shoul-
ders (3, 4, 6 and 7). However, the proportion of the most
likely outcome (5) was unbiased. The average variance was
significantly higher than in the true distribution (4.21 vs. 2.5,
t=12.09, p<.001). The average kurtosis, however, was lower
than in the true distribution (-0.33 vs. -0.2, t=8.13, p<.001),
unlike for elicited distributions.

Heterogeneity of distributions.

In this study, both the elicitation methods and the underly-
ing scenarios were varied, in order to test the robustness of
the results. A regression analysis, shown below, was con-
ducted to test whether these task differences affected the ac-
curacy of the estimated distribution, as measured by the root
mean-squared error between the estimated and actual distribu-
tion. The baseline categories for the regression were choos-
ing among the six graphs in the coin probability task.

Having participants choose from among a set of sample
graphs was the most accurate elicitation method, while hav-
ing participants generate a histogram or provide numeric es-
timates were both significantly less accurate. There was no
significant difference in accuracy between the histogram and
numeric elicitation methods.

The results were largely consistent across scenarios. Partic-
ipants were the most accurate when estimating the probabili-
ties of each outcome in the coin flip scenario. Accuracy was
similar, but not improved, when the scenario was reframed in
frequentist terms, and they instead estimated the proportion of
a 100 people who they expected to have each of the out-
comes. There was also no significant difference with esti-
mates in the soccer scenario.

Participants were the least accurate in the survey scenario,
primarily due to an even higher over-estimation of the middle
option (an equal number of Coke and Pepsi preferers). This
may be due to the salience of the fact that the proportions are
equal in the population, which is emphasized in the scenario.

An additional analysis was conducted to compare estimates
in the two coin scenarios (a luck domain) with the estimates
in the soccer scenario (a skill domain). Prior research on both
sequential predictions and estimates of the randomness of
sequences (see Oskarsson et al 2009 for a review) has docu-
mented negative recency in beliefs about random or luck-
based outcomes (i.e., the gambler’s fallacy, Tune 1964) and
positive recency in beliefs about skill-based outcomes (i.e.,
the hot hand, Gilovich et al 1985). In the current context, a
spontaneously applied negative recency belief should general-
ly result in under-estimating the tails of the distribution (i.e.
believing that 10 heads in a row are even less likely to occur
than is true). Conversely, positive recency beliefs should
result in higher estimates of the tails of the distribution, as
players who are doing particularly well or badly will accumu-
late many or few goals.

While the participants’ estimates were not made in se-
quence, and are therefore not a direct test of recency beliefs,
both the coin flip and soccer scenarios yielded estimates that
were more consistent with a positive recency belief. The lack
of underestimation of the tails, and therefore of “runs” in the
data, for coin flips is particularly surprising given the large
literature on misperceptions of randomness. These results
call into question the generality of beliefs in negative recency
and use of the representativeness heuristic (Tversky and
Kahneman 1971) when anticipating random outcomes.
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Estimated distribution of height as a control.

The results presented thus far suggest a persistent distortion
in people’s beliefs about the distributions of anticipated re-
peated events. It is not clear, however, whether the bias occurs
due to a specific bias in compounding repeated probabilistic
events, or a more general difficulty in reasoning about distri-
butions in general. Some recent work (Goldstein and Roth-
schild 2014) has suggested that people’s beliefs about experi-
enced distributions of events can be highly accurate, particu-
larly when elicited through a graphical interface.

To test this, the current study included a distribution esti-
mation task based on commonly experienced knowledge and
involving no statistical inference. Participants were asked to
estimate the proportion of men in the United States aged 18 or
older who are in one of 11 categories: either below 5’17, be-
tween 5°1” and 6’7" (asked in nine 2” incremented catego-
ries) or 6’7" and above. Based on a sample of 3981 male
adults, these categories yield a discrete distribution that is
quite similar (within 1 percentage point for all categories) to
the binomial distribution with 11 outcomes used here.

A total of 539 participants estimated the height distribution
(either using a histogram or estimating the amounts directly).
The averages of their estimates are shown below in Figure 4
(gray line) and compared with the actual distribution of height
(gray dashes), estimates of binomial processes (black line,
from Figure 1) and the binomial distribution (gray line).

Figure 5: Height vs. Repeated Probability Estimates
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Data for height is shown in gray, binomial processes in black.
Estimates are solid lines and actual values are dashed lines.

A total of 539 participants estimated the height distribution
(either using a histogram or estimating the amounts directly).
The averages of their estimates are shown below in Figure 5
(gray line) and compared with the actual distribution of height
(gray dashes), estimates of binomial processes (black line,
from Figure 1) and the binomial distribution (gray line).

As can be seen in the figure, the estimates of height are
much more similar to the actual distribution for height than
are the estimates of binomial processes. Based on the 418
participants who made an estimate for both one of the bino-

mial processes (scenarios 1-3) and the height distribution, the
estimates of the height distribution were significantly more
accurate (RMSE=19.8 vs. 29.6, t=9.80, p<.001). This was
driven primarily by differences in the variance of the distribu-
tions (1.97 vs. 3.46, t=4.54, p<.001), although there was a
direction difference in kurtosis as well (1.28 vs. 1.63, t=1.92,
p=.055).

Some participants (N=282) were instead asked to choose
among six histograms. In comparison with the binomial pro-
cesses, where only 25% of participants were able to identify
the most accurate distribution, 43% of participants were able
to identify the most accurate distribution of heights. Thus,
across the elicitation methods used, people were substantially
more accurate at estimating height than estimating the out-
comes of repeated probabilistic events. This suggests that the
biases in estimating probability distributions documented in
this study cannot be solely attributed to the difficulty of re-
sponding to distributional questions. Rather, the data sug-
gests a novel and systematic bias in reasoning about the dis-
tribution of outcomes that arises even from simple and intui-
tive events such as coin flips, soccer kicks and survey sam-

pling.

Study 2

The participants in Study 1 constitute a novice population.
Only 45% held a Bachelor’s degree or higher, and only 5%
considered themselves knowledgeable in statistics. Neither
variable significantly moderated the accuracy of their results,
although those who reported knowing more statistics were
directionally more accurate. However, this raises a question
about the generality of the findings.

It is important to note that expertise in statistics is not trivi-
al to develop. People invest significant monetary and time
resources in order to learn how to conduct statistical infer-
ence, and such education typically involves both instruction
and practice in working with probability distributions. Would
people who have more expertise show less bias (or even no
bias) in their estimates?

Method

Eighty seven MBA students enrolled in a graduate Market-
ing Research course, all of whom had completed at least one
statistics course, participated in an in-class exercise prior to a
discussion of survey sampling. The students completed a
one-page pencil-and-paper version of the survey scenario
from Study 1 with numeric elicitation. Unlike in Study 1,
where participants received computerized feedback to ensure
that their estimates summed to 100, 21% of the participants’
estimates summed to a different total and were normalized to
100.

Results and Discussion

The MBA student estimates demonstrated significant bias.
As shown in Figure 6, the average MBA estimates signifi-
cantly diverged from the binomial distribution for all the out-
comes. While the mean of the distribution was estimated
accurately, the MBA students’ estimated distribution had
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higher variance (3.68 vs. 2.5, t=5.65, p<.001) and more kurto-
sis (.43 vs. -.20, t=2.89, p=.005) than the actual distribution.

Figure 6: Expert vs. Non-Expert Estimates
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MBA students (black line) vs. Study 1 participants (gray line)
Error bars represent 95% confidence intervals.
Nevertheless, the MBA student estimates for most of the
outcomes were significantly different from the estimates in
Sample 1 made using the same scenario and elicitation proce-
dure (N=61, shown as the gray line Figure 6), and closer to
the actual distribution. Overall, the MBA students were sig-
nificantly more accurate (RMSE=16.0 vs. 33.5, t=11.63,
p<.001).

Study 3

While the MBA students in Study 2 were more accurate
than the novice population, they still demonstrated a signifi-
cant bias in their estimates. Study 3 compared a population
with even more expertise, PhDs and PhD students, with a
novice population, undergraduate students from commuter
colleges in Chicago.

Method

Ninety three attendees at the 2013 Society for Judgment
and Decision Making conference (the “expert” sample) com-
pleted a paper-and-pencil survey in exchange for a large To-
blerone candy bar. In addition, 127 students at a research lab
in downtown Chicago (the “novice” sample) completed the
same survey in exchange for $2.

In addition to unrelated items, the survey included a de-
scription of the probability estimation version of the coin flip
scenario in Study 1. There were two elicitation conditions. In
the elicitation condition (N=62 expert; N=64 novice), the
survey had a pre-printed template for a histogram with an
unlabeled y-axis, shown below. Participants were asked to
shade in each bar, such that the height of the bar represented
the probability of the associated outcome. The bars drawn by
participants were measured in millimeters, and the values
were rescaled to add up to 100.

Figure 7: Elicitation Task Stimuli Used in Study 3
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Not shown to scale.

In the choice condition (N=31 expert; N=63 novice), par-
ticipants read the same scenario, and were shown the same six
histograms as in Study 1, and were asked to choose which
was the most accurate, second most accurate and least accu-
rate.

Results and Discussion

Both the novice and expert samples provided distributions
that diverged significantly from the correct distribution, as
shown in Figure 8 below. Both the expert and novice distri-
butions reflected the correct mean (4.96 and 4.73 vs. 5.0).
However, the variance was higher for both the expert distribu-
tion (5.30 vs. 2.5, t=2.45, p=.017), and the novice distribution
(5.82 vs. 2.5, t=2.13, p=.037).

Figure 8: Expert vs. Non-Expert Freehand Histo-
grams
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Expert (black line) vs. novice (gray line) samples
Error bars represent 95% confidence intervals.

Once again, the expert distribution, while significantly bi-
ased, was more accurate than the novice distribution
(RMSE=17.0 vs. 33.3, t=5.18, p<.001). In part, this reflected
the greater difficulty the novice sample had with the task.
Even among the experts, differences in experience seemed to

1656



matter, as faculty were marginally more accurate than non-
faculty (RMSE=13.0 vs. 18.7, t=1.69, p=.096).

The freehand histogram was clearly difficult for partici-
pants, particularly the novices. We observed large standard
errors and while 82% of experts provided a monotonic distri-
bution, only 39% of novices did. A separate subset of partici-
pants were presented with a much easier task, simply select-
ing which of six graphs represented the correct distribution.
The experts directionally outperformed the novices, choosing
the correct graph directionally more often (42% vs. 26%,
p=.163). However, even the experts chose the correct graph
less than half of the time.

General Discussion

These findings demonstrate a robust bias in judgments of
outcome distributions from repeated probabilistic events. The
observed bias is moderated by but robust to differences in
elicitation methods, scenario contexts and level of expertise.
These findings have potential implications for several differ-
ent aspects of decision research.

This bias, demonstrated in simple and realistic settings,
poses a challenge for economic and psychological theories
which presume that people are able to make near-optimal
decisions, because of the ability to efficiently integrate in-
formation into accurate probabilistic beliefs. For example,
Griffiths and Tenenbaum (2006) argue that everyday cogni-
tive judgments follow optimal statistical principles, and that
people have accurate distributional knowledge and then
accurately infer conditional probabilities from prior beliefs.
Such sophisticated inferences require constructing concep-
tual distributions from what is known, similar to what the
experiments in this paper test explicitly. The difficulty that
participants had in constructing the distribution of outcomes
from repeated simple probabilistic events presents a reason
for caution in assuming that people can do so efficiently.

Beliefs about prospective probabilistic events are an input
into an important but understudied kind of decision. Prior
work has contrasted decisions among options with explicit
probabilistic information from those with probabilities
learned from experience (Hertwig and Erev 2009). Rare
events are overweighted in decisions when probabilities are
explicitly known and underweighted when inferred from
experience (Hertwig et al 2004). However, a third type of
choice exists, such as betting on the outcome of a sports
game. Here, people may have information about the proba-
bilistic inputs into an outcome distribution (i.e likelihood of
scoring), but still must prospectively infer the relevant prob-
abilities (without experience) in order to use them in making
choices.

The findings in this paper suggest that in these settings,
misbeliefs about the resulting probability distribution may
provide an additional cause of over-weighting small proba-
bilities, precisely because the probabilities are not known.
This is in contrast with popularly-accepted views that un-
likely future events, particularly those arising from a con-
fluence of factors (e.g. “black swans”, Taleb 2010) are un-
der-estimated. In fact, the task used in this paper is similar

to prospective forecasting tools which elicit discrete distri-
butions of beliefs about mutually exclusive events (e.g.,
Federal Reserve Bank inflation forecasts, Goldstein and
Rothschild 2014). The findings suggest that these forecasts
may instead over-estimate the likelihood of rare events, aris-
ing from low-probability independent joint events.

The tasks used in this paper may also be useful in future
research on subjective probabilistic beliefs. Research on per-
ceived probability tends to investigate isolated judgments,
which measure absolute rather than relative probability.
However, such judgments are prone to a series of biases, such
as unpacking and subadditivity (Tversky and Koehler 1994)
precisely because they are about isolated events. The distri-
bution-elicitation approach explored here, in contrast, pro-
vides a test of subjective relative probability. This allows re-
searchers to test whether external factors (e.g., wishful think-
ing, Krizan and Windschitl 2007) systematically distort the
relative probability of one outcome versus another, and to
quantify resulting differences in errors.
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