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Abstract

A critical aspect of human cognition is the ability to effec-
tively query the environment for information. The ‘real’
world is large and noisy, and therefore designing effec-
tive queries involves prioritizing both scope — the range
of hypotheses addressed by the query — and reliability —
the likelihood of obtaining a correct answer. Here we de-
signed a simple information-search game in which partic-
ipants had to select an informative query from a large set
of queries, trading off scope and reliability. We find that
adults are effective information-searchers even in large,
noisy environments, and that their information search is
best explained by a model that balances scope and re-
liability by selecting queries proportionately to their ex-
pected information gain.

Keywords: exploration; information search; active learn-
ing; information gain.

Introduction

As scientists, we sometimes encounter (or conduct)
experimental work that is stunning in its breadth but dis-
appointing in its rigor, or work that is categorically deci-
sive but disappointingly narrow in scope. As child or
adult intuitive scientists searching for information, we
often deal with these epistemic virtues — scope and rigor
— as well; we can make general queries that drastically
narrow the hypothesis space of answers or make nar-
rower ones, and we can seek information from reliable
sources that are more likely to give us correct answers,
or from sources that are less so. Our success, whether
as professional or intuitive scientists, hinges on our abil-
ity to balance these two dimensions in order to produce
queries whose answers will be informative.

Early work on information search seemed to show that
people fail to make rational decisions when it comes to
information acquisition; in the Wason (1968) selection
task, with a fairly small (12) action set, only 4% of sub-
jects made the normative information-acquisition selec-
tion. However, as Oaksford & Chater (1994) pointed
out, the selection made most often by participants in the
original Wason task was normative when environmental
statistics were taken into account. Specifically, partici-
pants’ decisions were best explained as maximizing ex-
pected information gain in the service of helping them to
decide between competing hypotheses.

More recent work on information search has shown
that children have strong intuitions about questions’ use-
fulness and search adaptively (Nelson et al., 2013) and
that adults can value information over explicit reward

when the two are put in opposition (Markant & Gureckis,
2012).

Our interest is in whether these trends persist when
people are confronted with the large, noisy information
spaces characteristic of the real world. As we explore
the world and its affordances, we must select queries that
have scope, in that they rule out large numbers of hy-
potheses at once. And, inasmuch as we can help it, we
should minimize noise by querying reliable sources. In
the real world, these are often in opposition. So, we ask:
how do people trade off scope and reliability when ex-
ploring large, noisy information spaces? And when the
potential questions are many, do they ask the right ones?

Information-search task

To begin to answer these questions, we designed a
novel information-search task. Our goal was for it to
be as simple as possible, while having as many features
approaching natural exploration as possible. Thus we
paired a very simple game — identifying a hidden number
on a number line — with a relatively complex search pro-
cedure. In playing the game, participants make queries
that vary in the abstract features of scope and reliabil-
ity. Additionally, at each point in the game, partici-
pants are faced with a very large number of potential
specific queries to choose from. Our task is similar to
the Markant & Gureckis (2012) task in that it involves
exploring a geometric space to test particular hypothe-
ses, but we wanted to make explicit the abstract features
of questions, rather than have these be implicit as a func-
tion of the hypotheses at hand.

Participants play by asking ‘questions’ about the hid-
den number’s location, using ‘scanners’ that turn blue if
the number is under the scanned region and red if the
number is not. In each trial, a participant is given four
scanners (Fig. 1). In some conditions, the scanners vary
in size. Larger scanners can cover larger regions of the
number line, ruling out (or in) a larger set of hypotheses
than a smaller scanner. Thus, in the context of this study,
the ‘scope’ is directly related to the length of the scan-
ner. However, the scanners are not deterministic; they
also vary in their reliability, which is the probability of
providing an accurate signal about the presence of the
hidden number (false positives and false negatives are
equally likely).

To efficiently find the hidden number, participants
have to select scanners that provide a good trade-off be-
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Figure 1: A screenshot of the task. The four green rectan-
gles are the scanners. The player has scanned three times
and received one positive and two negative answers, as
shown by the blue and red scanner outlines on the num-
ber line.

tween length and reliability, and then place them in infor-
mative regions on the number line. The optimal trade-off
between these factors (length, reliability, location) can
be captured by expected information gain, as described
in the next section. Actions that are optimal in the sense
of expected information gain minimize uncertainty about
the location of the hidden number.

Model

Let I denote the number line (in our case, integers
ranging from 0 to 100), and let & € I denote a hypoth-
esis about the hidden number. On each trial, participants
choose an action a (placing a particular scanner over a
portion of the number line) and observe a binary outcome
d (1 if the number was detected by the scanner, 0 if the
number was not detected). There are almost 500 possi-
ble actions, since each of the four scanners can be placed
anywhere as long as some part overlaps with the number
line. The posterior distribution over 4 is updated on each
trial according to Bayes’ rule:

P(h|d,a,D) o P(d|h,a)P(h|D), (1)

where D denotes the history of actions and outcomes
prior to the current trial.

Intuitively, participants should choose actions that
maximally reduce their uncertainty about the location of
the hidden number; this corresponds to taking actions
that maximally reduce posterior uncertainty, which can
be quantified by the entropy:

H[P(h|d7a7D)} = 7Zp(h|d7a7D)10gP(h|d7a>D) )
h

Minimizing posterior entropy is equivalent to maximiz-
ing information gain (the reduction of entropy after tak-
ing action a and observing d):

IG(a,d) = H|P(h|D)| — H[P(h|d,a,D)].  (3)

Because the outcome d is not available at the time of
choosing a, the best that a participant can do is maximize
expected information gain:

EIG(a) = Y P(d|a,D)IG(a,d), 4)
d

where the posterior predictive distribution is given by
P(d|a,D) =Y, P(d|a,h)P(h|a,D).

Let o denote a scanner’s error probability and I, de-
note the range covered by the scanner. The game gener-
ates signals according to:

True positive: Pr(d =1 | {I,NI} #0)=1—oq.

True negative: Pr(d =0 | {[,NI} =0)=1—o.

False positive: Pr(d =1 | {I[,NI} =0) = o.

False negative: Pr(d =0 | {I,NI} #0) = o.

Roughly speaking, conditioned on a scanner choice, par-
ticipants should bisect the interval that has the highest
posterior probability of containing the scanner. This cor-
responds to the split-half heuristic discussed by Navarro
& Perfors (2011) and Nelson et al. (2013). However,
because in this game signals are stochastic, there may
not be a single contiguous interval of highest posterior
probability, and thus no reasonable interval on which to
precisely perform the split-half heuristic. Nevertheless,
actions can still be ranked according to their expected in-
formation gain.!

To help hone our own intuitions about the task and
about participants’ actions, we created a display (Fig. 2)
that in this case shows a vignette of four sequential ac-
tions from one particular user’s trial. The normative pos-
terior distribution over the location of the hidden num-
ber (in grey at the bottom) is displayed for each trial,
along with the scaled expected information gain® of each
of the 500 available actions (the colored arcs; each dot
represents the center of the range at which the scanner
could be placed); these are the evaluations of the nor-
mative model. The same recommendations are shown as
posterior-predictive entropies in the insert (the red dot in
the insert shows the posterior-predictive entropy of the
action actually chosen by the participant), along with the
participant’s action at that point (the flat blue or red bar at
the bottom), and the result of that action (blue indicates
‘yes’ and red indicates ‘no’).

Experiment 1
Method

Participants. 26 participants completed the experiment for pay
on Amazon Mechanical Turk.

Materials. We used a base set of scanner reliabilities in
the set, {0.51,0.62,0.75,0.87}, and of lengths in the set,

{0.0625,0.125,0.25,0.5}.3 From these we created scanners as
follows for the following conditions:

Reliabilities: One scanner in each of the four reliabilities
above; all are of length 0.25.
Lengths: One scanner in each of the lengths above; all are of

! Actions are being ranked according to their one-step infor-
mation gain; see the discussion section for a comment on this.

2Scaled expected information gain is obtained by dividing
the expected information gain of an action by the highest ex-
pected information gain available at that decision point.

3The indicated length is as a proportion of the length of the
number line.
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Figure 2: Analysis of one participant’s four sequential
actions in the information-search game. All the scanners
were of reliability=0.87 and varied only in length. A: The
participant uses the length=.5 scanner and receives a re-
sponse of ‘yes’. The arcs correspond to the scaled infor-
mation gain of each candidate action; note that the partic-
ipant selects one of the highest-rated actions. This fact is
also indicated in the insert, which shows the posterior-
predictive entropies of all candidate actions (lower is
better); the red dot indicates the posterior-predictive en-
tropy of the action chosen by the participant. B: The
participant employs the ‘split-half” heuristic to test half
the remaining space. Note that all of the highest-ranked
model recommendations involve testing exactly half of
the highest-posterior-probability region. C: The partic-
ipant continues to use ‘split-half’. D: The participant
re-tests the entire region of highest posterior probabil-
ity. This is highly rated, but not as much as it would be
had they tested half the remaining space.

reliability 0.87.

Crossed: We wanted to see whether people could choose
well when reliability and length were put in opposition, so
we crossed them to create the following [length, reliability]
pairings: [0.5,0.51],[0.25,0.62],[0.125,0.75],[0.0625,0.87].
Each participant performed 6 trials: 4 ‘crossed’ trials, 1
‘reliabilities’ trial, 1 ‘lengths’ trial; the order of these was
randomized.

Procedure. Each participant read a short sequence of interac-
tive instructions. They were told that with each round of the
game a number would be hidden at a random location on the
number line, told that they could use scanners to find the num-
ber, introduced to the scanners, shown that scanners glowed
blue to indicate that the number was in that region and red to
indicate that it was not, and given experience with the fact that
the scanners could produce both false positives and false nega-
tives. Finally, participants were told that once they thought they
knew where the hidden number was located, they should use a
provided set of crosshairs to indicate its location.

Following the end of the ‘instructions’ session, participants
played six rounds of the game. Each game (trial) presented
them with four scanners whose lengths and reliabilities were
determined by the condition of the trial. As they played each
round, the history of their queries was visible to them as the red
or blue glow produced by each scanner remained in its place af-
ter the scanner was removed; this was to ensure that memory
load did not differentially affect participants’ decisions. After
a scanner was used, it returned to its original position. Us-
ing multiple scanners simultaneously was not allowed by the
interface. Participants were allowed to make as many queries
as they wanted as they went through a trial; trials ended only
when participants indicated their believed location of the hid-
den number by using the provided crosshairs.

Our main interest was to see how participants would con-
front a trade-off between scope and reliability. Before examin-
ing this, however, we tested each separately as proof of concept.

Results

Lengths condition First we tested whether partici-
pants were sensitive to the fact that different queries had
more or less coverage of the hypothesis space. We gave
them four scanners which varied only in their lengths;
the scanners all had reliabilities of 0.87, and lengths
of [0.5,0.25,0.125,0.0625]. For each decision point
reached by a participant (that is, before each scanning
action), we calculated the expected information gain af-
forded by centering each available scanner at the cen-
ter of the region actually queried by the participant.
We then ranked those scanners according to this ex-
pected information gain. Participants picked the best
scanner most often — 45% of the time — showing that
they were sensitive to the imperative to cover as much
ground of the hypothesis space as possible. A repeated-
measures one-way ANOVA showed that choice propor-
tions differed significantly across scanners [F(3,25) =
16.55, p < 0.0001]. A post-hoc t-test showed that the dif-
ference between the first and second scanner ranks was
significant [£(25) = 5.80, p < 0.0001].

Reliability condition Next we tested whether partici-
pants were sensitive to the imperative to reduce noise;
that is — did participants make reliable queries when they
were given a chance to do so?
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Participants were given four scanners which var-
ied only in reliability; the provided reliabilities were
[0.87,0.75,0.62,0.51], and all scanners were of length
0.25.

Across all subjects and all trials of this condition, par-
ticipants were strikingly sensitive to reliability, as they
selected the best scanner 89% of the time. A repeated-
measures one-way ANOVA showed that choice propor-
tions differed significantly across scanners [F(3,25) =
52.88, p < 0.0001]. A post-hoc t-test showed that the dif-
ference between the first and second scanner ranks was
significant [£(25) = 8.88, p < 0.0001].

Crossed condition When confronted with a choice of
questions that might either greatly reduce the size of the
hypothesis space or provide reliable answers, how did
participants choose?

We constructed a condition in which these two dimen-
sions were in direct opposition: we offered an array of
scanners such that the more coverage of the hypothe-
sis space a scanner provided, the less reliable it would
be. We used four scanners whose [lengths, reliabilities]
were [0.0625,0.87],]0.125,0.75],[0.25,0.62],[0.5,0.51].
Participants were clearly sensitive to length/reliability
tradeoffs, as they selected the best scanner 57% of the
time. A repeated-measures one-way ANOVA showed
that choice proportions differed significantly across scan-
ners [F(3,25) = 56.91,p < 0.0001]. A post-hoc t-test
showed that the difference between the first and second
scanner ranks was significant [¢(25) = 5.82, p < 0.0001].

While we found these results encouraging, we were
concerned that the particular length/reliability trade-offs
we provided were such that one dimension might have
contributed significantly more to expected information
gain than the other. If this were the case, participants
might have made what looked like normative decisions
driven by both length and reliability, even though in re-
ality they were driven only by length (or by reliability).

To examine this possibility, we ran a second experi-
ment in which we provided participants with a large ar-
ray of scanners of different [length, reliability] pairings.
Length and reliability would trade off in terms of their
relative contributions to a scanner’s expected information
gain, and therefore good performance in this condition
would indicate an actual sensitivity to both dimensions.

Experiment 2
Method

Participants. 26 participants completed the experiment for pay
on Amazon Mechanical Turk.

Materials. The same base set of lengths and reliabilities de-
scribed in Experiment 1 was used to construct a new ‘mixed’
condition: We selected 8 of the 16 possible pairings of
the 4 lengths and 4 reliabilities so as to cover a reason-
able range of possibilities for available scanners. Specifi-
cally, participants were provided with scanners whose lengths
and reliabilities were semi-randomly paired using the original

[0.5,0.25,0.125,0.0625] lengths and [0.87,0.75,0.62,0.51] re-
liabilities. They then played the game in the same way as in
Experiment 1.

We also ran a ‘deterministic’ condition in which scanners
varied in length but were all of reliability = 1, randomly inter-
leaved with the ‘mixed’ conditions. The results were similar to
those reported in Experiments 1 and 2, and are left out for the
sake of brevity.

Participants performed 6 trials (4 ‘mixed’, 2 ‘deterministic’);
the order of these was randomized for each subject.
Procedure. The procedure was identical to Experiment 1, ex-
cept that in the instruction phase, participants were additionally
provided an opportunity to use a scanner of each reliability as
many times as they wanted, on a number line in which the target
number was not hidden, in order to become fully familiar with
the scanners they would later use. The intent was to have par-
ticipants learn about the reliabilities, so for this familiarization
stage, all scanners were of equal length.

Results

Scanner choice: length + reliability First we exam-
ine whether participants are able to select questions with
the best abstract features — that is, do they select scan-
ners whose length and reliability combine to provide the
highest expected information gain?

As in Experiment 1, we computed the expected in-
formation gain for each of the four scanners, condi-
tioned on the placement actually chosen by each partici-
pant; we then ranked the scanners according to this EIG
and examined where each participant’s scanner choice
fell in these rankings. A repeated-measures one-way
ANOVA showed that choice proportions differed signif-
icantly across scanners [F'(3,25) = 61.66, p < 0.0001].
A post-hoc t-test showed that the difference between the
first and second scanner ranks was significant [¢(25) =
7.94, p < 0.0001].

Figure 3A shows the distribution over all scanner
choices for the ‘mixed’ condition, together with the pre-
dictions of a softmax version of the EIG model, to be
explained later. Participants frequently chose the best
scanner, roughly 60% of the time across a wide range
of length/reliability trade-offs, which suggests that they
are sensitive to the expected information gain of both
the scope and reliability of queries rather than to ei-
ther of these factors alone. Across the 8 sub-conditions
that comprised the ‘mixed’ condition, the probability
that participants chose the best scanner also correlated
with the EIG model’s choice probabilities (Fig. 3B,
p = 0.606).

Joint choices of scanner and placement Having de-
termined that participants correctly weigh the trade-off
between the abstract features of scope and reliability to
select the best-available scanners, we can examine how
well they select the specific queries they make.

Given a choice of scanner, how sensitive are partic-
ipants to the expected information gain of where they
place the scanner along the number line? For each de-
cision, we ranked the expected information gain of each
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Figure 3: A: The ‘mixed’ condition reveals that partic-
ipants are able to select the best scanner across a wide
variety of reliability/length trade-offs. B: The proportion
of times participants chose the most informative scanner
(x axis) versus predictions of the EIG model (y axis), for
each of the 8 sub-conditions in the ‘mixed’ condition.

possible placement of the scanner chosen by participants.
Participants chose a placement in the top 10th percentile
38% of the time, and in the top 20% almost 60% of the
time. A repeated-measures one-way ANOVA showed
that choice proportions differed significantly across per-
centile bins [F(9,25) = 55.43, p < 0.0001]. A post-hoc
t-test showed that the difference between the first and
second bins was significant [r(25) =7.11, p < 0.0001].

We can also ask about the overall quality of the queries
made, over all possible choices of query scope, reliabil-
ity, and location. Participants are highly sensitive to ex-
pected information gain in this space, selecting queries
in the top 10% of the available set more than 50% of the
time (Fig. 4). A repeated-measures one-way ANOVA
showed that choice proportions differed significantly
across percentile bins [F(9,25) = 71.4,p < 0.0001]. A
post-hoc t-test showed that the difference between the
first and second bins was significant [#(25) = 7.24,p <
0.0001]. They are also decreasingly likely to select an
action in each of the subsequent percentiles, with a pro-
file very well fit by the EIG model (p = 0.994).

< 06 M Humans
2 HEG
o
5 0.4
S
§ 02
O
90-100 70-80 50-60 30-40 10-20
80-90 60-70 40-50 20-30 0-10
Percentile
Figure 4: In their overall query choices (combining

scanner scope, reliability, and location), participants are
highly sensitive to expected information gain; note also
the tight fit of the EIG model (p = 0.994).

Model comparisons

The above results suggest that participants are sensitive
to expected information gain (EIG), rather than mak-
ing selections on the basis of reliability or length alone.
To test this claim more rigorously, we fit five alterna-
tive models in addition to EIG, which make decisions
according to the following criteria: length, reliability,

length + reliability, EIG-length, EIG-reliability. Each
model computes a ‘value’ of an action, V(a), as a linear
function of the stated parameters: V(a) = Y; B; f;, where
fi is some feature of the current trial/action (i.e., EIG,
length, or reliability) and P; is a coefficient fit to each
participant by maximum likelihood (when all features
share the same coefficient, B is often referred to as the
inverse temperature). This value is then transformed to
a choice probability according to the softmax function,
P(a) o< exp{V (a)}.

The reliability, length, and reliability+length models
test the hypothesis that participants are sensitive to these
features of scanners without using them to compute ex-
pected information gain. The EIG-reliability and EIG-
length models test the hypothesis that participants are
sensitive to expected information gain but insensitive to
one or another feature of queries. Specifically, in the
EIG-reliability model, decisions are made according to
the expected information gain that arises from consid-
ering the reliabilities of the scanners, but ignoring their
lengths.* The EIG-length model, on the other hand, takes
the correct scanner lengths into account but assumes a re-
liability of 1.0 for each scanner. The original EIG model
tests the hypothesis that participants are sensitive to ex-
pected information gain with no qualifications.

For each model, we computed the (participant-
specific) Bayesian Information Criterion approximation
to the marginal likelihood, and then submitted the mod-
els to the Bayesian model selection algorithm of Stephan
et al. (2009), which estimates the group-level exceedance
probability for each model (the probability that a given
model is more likely than all other models considered).
The exceedance probabilities for the models are as fol-
lows: EIG: 0.9982, EIG-reliability: 0.0000, EIG-length:
0.0004, reliability: 0.0068, reliability+length: 0.0000,
length: 0.0000.
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Figure 5: Log likelihoods assigned by each model to par-
ticipants’ joint choices of scanner type and placement.

How do the models predict participants’ actions, in
general? We computed the average log likelihood for

4There is no way to ignore length in these calculations while
still computing EIG, so to model ignorance in this case we set
the length of each scanner equal to the average length of the
available scanners.
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participants’ joint choices of scanner (length and reliabil-
ity) and placement (the specific location on the number
line queried) under each model (Fig. 5) and find that
the full EIG model, sensitive to all three factors, per-
forms best. The EIG-length and EIG-reliability models
do not fare well, as they operate on incorrect assumptions
(that all scanners were deterministic, or that all scanners
were of the same average length, respectively) which dis-
tort the EIG calculation. The reliability and reliability +
length models do fairly well here, but looking at scanner
placements conditioned on scanner choices, they predict
no better than chance; this is the main reason they fare
worse than the full EIG model in predicting overall ac-
tions choice.

Discussion

The ability to search efficiently for information in
large and noisy environments is critical for real-world
learning and discovery. Constructing scientific theo-
ries or their intuitive analogues hinges on being able to
successfully test competing hypotheses, which often re-
quires balancing the epistemic virtues of scope — to deal
with the world’s enormity — and reliability — to deal with
the world’s noise. In this paper we have shown that adults
can appropriately balance these trade-offs, effectively
conducting the most informative tests when conducting
information search with large action spaces. This result
is consistent with previous work on information search
(cf. Nelson et al., 2013), but more closely resembles nat-
ural exploration because of the large action spaces used
and the fact that participants had to confront unreliable
information sources and the scope-reliability tradeoff.

In our attempt to understand how humans deal with
this trade-off, we compared several alternative computa-
tional models. Three were sensitive to the abstractions
of scope and reliability without any regard for the way in
which these factored into a query’s expected information
gain; three others calculated expected information gain
and used scope and reliability either explicitly or implic-
itly. We found that human actions were best explained by
a model that selects actions according to their expected
information gain, using both scope and reliability along
with the precise location of a proposed test in the EIG
calculation.

While this study was designed to capture abstract fea-
tures of information search in many natural environ-
ments, one might be concerned that our results are spe-
cific to visuospatial or physical domains in which the
target exists at some location and participants might be
able to deploy geometric intuitions that may not hold for
more abstract forms of information search. To some ex-
tent our study is less prone to this objection than other
recent work using spatially organized tasks (Markant &
Gureckis, 2012), because of the added complexity in-

troduced by varying reliability, which does not have an
immediate spatial component. Still, in future work we
plan to extend both our modeling and our experimen-
tal paradigm to entirely nonspatial domains, where scope
and location have more abstract interpretations.

One salient feature of our computational model is that
it evaluates actions only on their one-step information
gain; it is “'myopic’, in Al terms. Perhaps human infor-
mation search can effectively look further ahead than one
step, considering EIG over the many possible outcomes
of multiple sequential choices. It is also possible that
myopic EIG describes human search best. We plan to
test this in future work.

Recently Markant & Gureckis (2012) showed that
adults engage in ‘disinterested’, rather than ‘interested’,
search; their actions are more consistent with a model
that maximizes information gain than with one that aims
to maximize tangible rewards. But in both their work and
ours, the information sought is still arguably tied to some
reward: in both cases, participants were given the goal of
obtaining some specific chunk of information. Our ulti-
mate goal is to explain pure curiosity as rational infor-
mation search, and so we are exploring extensions of our
current studies and models in environments that trigger
curiosity naturally, without the need for any explicitly
posed search goal, that appeal to children as much as to
adults.
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