
Comparing Global and Limited sampling Strategies in Size-averaging a Set of Items 
 

Midori Tokita (Tokita.Midori@ocha.ac.jp) 
Department of Letters and Education,  

Ochanomizu University, Otsuka, Tokyo 112-8610 Japan  
  

Akira Ishiguchi (Ishiguchi.Akira@ocha.ac.jp) 
Department of Human Developmental Sciences,  

Ochanomizu University, Otsuka, Tokyo 112-8610 Japan  
 
 

Abstract 

Many studies have shown that our visual system may 
construct a “statistical summary representation” over groups 
of visual objects. Although there is a general understanding 
that human observers can accurately represent sets of a 
variety of features, many questions on how the statistical 
summary is computed still remain unanswered. This study 
investigated sampling properties of visual information used 
by human observers in deriving an average representation of a 
set of items. We presented three models of ideal observers to 
perform a size averaging task: a global averaging model 
without item noise (GAM1), a global averaging model with 
item noise (GAM2), and a limited sampling model (LSM). 
We compared the performance of the ideal observer of each 
model to the performance of human observers using statistical 
efficiency analysis. Our results suggest that average size of 
items in a set may be computed without representing 
individual items, discarding the limited sampling model.  

Keywords: statistical summary representation; Ideal observer 
analysis; size averaging; attention 

Introduction 
Many studies have shown that people accurately 

perceive and estimate the statistical properties of a set of 
items or events. For example, the visual system may 
construct a “statistical summary representation” over groups 
of visual objects (e.g., Alvarez, 2011; Ariely, 2001, 2008; 
Chong & Treisman, 2003). It has been shown that observers 
are able to quickly and accurately extract average values 
over a range of visual properties, including size (Chong & 
Treisman, 2005；Oriet & Brand, 2013), brightness (Bauer, 
2009), orientation (Parkes, Liend, Angelucci, Solomon & 
Morgan, 2001), emotional expression (Haberman & 
Whitney, 2009, 2011), and others. Moreover, this ability is 
not limited to static and simultaneous events; it is observed 
in sequentially presented events （Oriet & Corbett, 2008; 
Whiting  & Oriet, 2011）and dynamic objects, such as 
expanding and contracting circles (Albrecht & Scholl, 2010). 
In recent studies, it has been shown that the ability of 
representing statistical properties is not limited to visual 
properties but is also observed in auditory mechanisms such 
as extracting frequency information from sequences of 
sounds (Piazza, Sweeny, Wessel, Silver, & Whitney, 2013). 

Although there is a general understanding that human 
observers can accurately represent sets of features, many 
questions on how the statistical summary is computed still 
remain unanswered. Three possibilities have been proposed: 

1) representations of individual items are computed first and 
then combined to form a summary representation, 2) 
summary representations are computed without computing 
individual items, or 3) Only a couple of items in a set are 
sampled and included in the calculation of the average size. 
The first and second proposals predict that there are 
specialized statistical summary representation mechanisms 
that are separate from the mechanisms mediated to represent 
individual objects. Conforming to this argument, many 
studies have provided evidence that, when attention is 
distributed across a set of similar items, people can extract 
the average size of all the items without relying on focused 
attention to the individual items in the set (e.g., Chong & 
Treisman, 2003, 2005; Im & Halberda, 2013; Treisman, 
2006). The third proposal claims that it is possible to 
accurately estimate the average size by sampling a couple of 
items in a set using focused attention. Modeling research 
has shown that a sampling strategy reasonably predicts the 
approximate levels of performance exhibited by observers in 
studies of average size perception (Myczek & Simons, 
2008; Marchant, Simons & Fockert, 2013). 

Neither the proponents of the summary representation 
mechanisms nor those of the limited sampling strategy have 
excluded or refuted the opposing argument. Rather, they 
prompt the necessity for further investigation on the 
processes of human performance of statistical summary 
mechanisms (Ariely,	
 2008;	
 Simons & Myczek, 2008). 
Overall, it is necessary to examine if people estimate the 
average size by using the global information of all items in a 
set or of the limited number of items in a set. 

The present study investigated sampling properties of 
visual information used by human observers in deriving an 
average representation of items in a set using the ideal 
observer (IO) analysis. We measured performance on a size	
 
averaging task for each ideal observer model and for human 
observers. Next, we compared the performance of the ideal 
observer of each model to the performance of human 
observers to evaluate which model could predict how 
human observers derive the average size of items in a set. 
While comparing, we used a statistical efficiency analysis 
that allows direct comparison of efficiencies among 
different models that represent different uses of information. 
Statistical efficiency is a relative index for the sampling rate 
of information in a given task. Many studies have utilized 
the efficiency to investigate how the visual system uses 
available information and revealed the characteristics of 
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human performance (e.g. Tanaka & Ishiguchi, 2006; Ikeda 
& Ishiguchi, 2004; Watamaniuk, 1993). The fluctuation of 
efficiency has been also useful to explore the characteristics 
of the human sampling strategy. 

Based on the three proposals mentioned above, we 
presented three models of ideal observers to perform the 
task: a global averaging model without item noise (GAM1), 
a global averaging model with item noise (GAM2), and a 
limited sampling model (LSM).  

First, we described three ideal observer models and the 
statistical efficiency analysis in detail. Second, we tested the 
size discrimination threshold of human observers in each 
experimental condition to determine values for free 
parameters used in simulating the performance of the ideal 
observer models. Next, we conducted the size averaging 
task to the human observers and calculated the efficiency of 
the human observers to the ideal observers to evaluate the 
model appropriate for the averaging process. 
 
Ideal observer models  
An ideal observer is a theoretical device that performs a 
given task in an optimal manner with the available 
information and some specified constraints (e.g., Geisler, 
2003; Yakushijin, 2007). We presented three ideal observer 
models to perform the size averaging task: a global 
averaging model without item noise (GAM1), a global 
averaging model with item noise (GAM2), and a limited 
sampling model (LSM).  Figure 1 shows diagrams of each 
model. Each model comprises a sampling process, a 
summary representation process, and a decision process. 
There are two types of noises involved in a given process: 
an item noise added to each item in a set prior to summary 
representation (σItem) and a late noise added to an estimated 
average size (σLate).  

GAM1 posits that summary representations are 
computed without computing individual items and used for 
calculating their average size. Thus no noise added to each 
item in a set and only late noise added to representation of 
average size. GAM2 posits that representations of individual 
items are computed first and then combined for forming a 
summary representation and subsequent calculation of their 
average size. At the representation of individual items, the 
noise is added to each item prior to form the summary 
representation. The value of the noise may depend on the set 
size, since it has been predicted the noise with which each 
individual item is represented increases as the number of 
items increases since each item receive less attention 
(Palmer, 1990; Franconeri, Alvarez, & Enns, 2007). A late 
noise is added to the average size of items in a set and 
compared to the test item. 
    LSM posits that people sample a couple of items 
randomly chosen from a set to calculate their average size. 
In this study, we randomly sampled two items from a set 
since it has been shown that the average of the set could be 
accurately estimated by sampling two items, estimating the 
average of those items alone (Myczek & Simons, 2008). 
The item noise added to each item prior to form the 

summary representation and then the late noise added to the 
average size prior to the decision process. 

The performance of each model, discriminability d′Ideal, 
was derived using the Monte Carlo method. Free parameters 
of the models, SD for an item noise of each set size (σItemN) 
and the late noise (σLate), were determined by the experiment. 
 
 
 
(a) 

 
 
 
 
(b) 

  
 
 
 
(c) 

 
 
 
 
 
Figure 1: Description of three ideal observer models; Global 
Averaging Model without item noise (GAM1); Global 
Averaging Model with item noise (GAM2); Limited 
Sampling Model (LSM). 
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Calculation of statistical efficiency 
We calculated statistical efficiencies using the following 
method. First, we prepared two stimuli: a set of multiple 
items and a single test item. Both stimuli consisted of solid 
circles with a given diameter. The diameter of the test item 
was larger or smaller than the average size of items in a set. 
We added independent lognormal noise lnN(0, σc

2) to the 
diameter of individual items in the set. No noise was added 
to the test item. The observer’s task was to determine which 
item, the average size of items in a set or the test item, was 
lager in size, using the two alternative forced choice (2AFC) 
procedure. Ideal observer of each model sampled the values 
of information available in each model. The discriminability 
for each ideal observer (d′Ideal) is obtained by performing 
monte carlo simulation. The discriminability for human 
observer (d′H) was determined by performing the same 
2AFC task and calculated as follows:  
 

d′H = √2zc,          (1) 
 

where zc is the z-value transformed from the observer’s 
percent correct. The statistical efficiency F was defined by 
the square of the ratio of these two scores as 
 
     F = (d′H / d′Ideal)2.  (2) 
 
The details of calculation of statistical efficiency were 
discussed in Barlow (1978) and Watamaniuk (1993).  

Many studies have found that the sampling capacity of 
visual system is limited. If the statistical efficiency is larger 
than 100%, we could infer that the model may not describe 
the appropriate process to perform the task. 

Size Discrimination Experiment 
The purpose of this experiment is to obtain the value of free 
parameters σItemN and σLate. We measured accuracies for size 
discrimination in a single item condition and four set size 
conditions. The discrimination threshold in a single item 
condition corresponds to σLate; those of four set size 
condition correspond to the σItemN. Figure 2 shows examples 
of stimuli presentation in each condition and a schematic 
view of a trial sequence.	
 	
 	
 	
 	
 	
 	
 	
 	
 	
  

Method 
Participants There were four observers, author MT and 
three experienced psychophysical observers, TT, YA, and 
SU. All had normal or corrected-to-normal vision.	
 
 
Design There are five conditions: a single item and four 
item set sizes, 2, 4, 9, and 16. A set of items was presented 
in the first interval and a test item was presented in the 
second interval. One of the items was a target item, which 
needed to be compared with the test item. The QUEST 
procedure (Watson & Pelli, 1983) adaptively determined the 
JND at which the observer was 75% correct. Thus, the size 
of the target in each trial was calculated by QUEST.	
 

Apparatus The stimuli were presented on the screen of a 
Mitsubishi 17 in. Monitor. The monitor was driven by a 
Mac Pro computer which also performed all timing 
functions and controlled the course of the experiment.	
 
Display resolution was 1024 × 756 pixels. Participants 
viewed the screen with both eyes and were seated 
approximately 115 cm from the monitor, fixed with in 
position with a chin rest.  
 
Stimuli The items consisted of light gray dots on a dark 
gray background. The set of items, consisting of given 
number of dots was presented in the first temporal interval 
of two intervals trial.  The test item, consisting of one dot, 
was presented in the second interval. In each trial, all of the 
dots shown were randomly scaled by a small multiplicative 
factor to discourage the participants from basing their 
judgments on previously seen stimuli. Three multiplicative 
factors (1, 1.1, 1.2) were used and the same factor scaled all 
items in any one trial.   

The items were arranged on the array. The array was 
divided into m × m matrix: 2 × 2 (set size=2, 4), 3 × 3 (set 
size=9), and 4 × 4 (set size=16). Each item was displayed at 
the center of each cell with a position jitter. A lognormal 
Gaussian noise lnN(0, σc

2) was added to the diameter of 
each item of a set independently. It has been assured that a 
lognormal distribution of circle diameters will produce a 
Gaussian distribution of discriminable sizes after 
logarithmic transduction (Solomon, Morgan & Chubb, 
2011). Thus, in attempt to create normal distributions of 
transduced size, we use lognormal distributions of circle 
diameter. In this experiment, σc was set to 0.2. 

	
 	
 	
 	
  

 
 
Figure 2: Example of item set of each set size (above) and 
schematic view of a trial sequence in Size Discrimination 
Experiment. 
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Figure 3: Means of size discrimination threshold as a 
function of the set size in Size Discrimination Experiment. 
Error bars represent standard deviations. 
 

Procedure Each trial started with a fixation cross for 500ms. 
The items in a set were presented first for 500 ms. A red dot 
position cue, indicating the target, was presented for 200 ms 
after the item set. The test item was presented for 500ms 
after the ISI of 400 ms. The observers’ task was to decide 
which item, the target item in a set or the test item, was 
larger in size. A 2AFC procedure was used. When they 
thought that the target item in a set was larger than the test 
item, they pressed ‘1’. When they thought that the test item 
was larger than the target item, they pressed ‘3’. No 
feedback about the correctness of responses was provided. 

Results 
Results are shown in Figure 3. The mean discrimination 
threshold for a single item condition was 0.043. This value 
was used for the parameter of the late noise (σLate). The 
mean discrimination threshold for target in each set size, 2, 
4, 9, and 16 was 0.09, 0.12, 0.17 and 0.21, respectively. 
Each value was used for the parameters of the item noise 
(σItem) for each set size. 

Size Averaging Experiment 
In this experiment, we measured the discrimination 
performance between the estimated average size of a set and 
a test item. A schematic view of the stimulus presentation is 
shown in Figure 4. The observers, apparatus and stimuli 
were the same as in Size Discrimination Experiment except 
that no position cue was presented between the item set and 
following test item.  

Method 
Design	
 There were two independent variables in the 
experiment that were varied within participants. The first 
variable was the number of items in a set; there are four set 
size, 2, 4, 9, and 16. The second variable was the level of 
difference between average size of a set and the test item. 

There were two levels:  ± 0.08 (hard) and ± 0.12 (easy) 
relative to the average diameter. A set of items was 
presented in the first interval and a test item was presented 
in the second interval.  

Each condition had 200 trials, resulting in 1600 trials in 
total. Each block had 160 trials (10 repetitions × 4 set size ✕ 
2 levels ✕ 2 directions of test size (smaller or larger)) with 
10 blocks in total. The participants performed five blocks in 
each experimental session, two sessions in total. The set size 
and the level of difference were blocked and the order of 
trials were randomly mixed. There were trials in the practice 
blocks.  
 
Procedure Each trial started with a fixation cross for 500ms. 
The items in a set were presented first for 500 ms and the 
test item for 500ms after the intermission of 400 ms. The 
observers’ task was to decide whether the test item was 
larger or smaller than the average size of item in a set. A 
two-alternative (larger or smaller) forced choice procedure 
was used. When they thought that the test item is smaller 
than the average size of items in a set, they pressed ‘1’. 
When they thought that the test item is larger than the mean 
size of a target set, they pressed ‘3’.  No feedback about the 
correctness of responses was provided.  

Results 
The performance of each observer is shown in figure 5. The 
discriminability d′H were calculated using the equation (1) 
and plotted as a function of the set size. As shown in the 
figure 5, the discriminability appeared to be unaffected by 
the number of items in a set, being consistent with the 
findings in previous studies.	
 All	
 observers showed 
higher discriminability when the difference between the 
average size of items and the test item is larger, which is  
±0.12.  

 
 
 

 
 
 

Figure 4: schematic view of a trial sequence in Size 
Averaging Experiment. 
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Figure 5: Discriminability of each observer as a function of 
the set size in Size Averaging task.  
 
 

Statistical Efficiencies and evaluation of models 
The ideal observer’s discriminabilities of each model were 
shown in Figure 6 (top left). We calculated statistical 
efficiencies for the mean data of four observers using the 
equation (2). The efficiencies are presented in Figure 6 as a 
function of the set size. The efficiencies of Global 
Averaging Model without item noise (GAM1) were varied 
across set sizes. When the set sizes are 2 and 4, the 
efficiencies approximated 100%, whereas when they are 9 
and 16, the efficiencies approximated 70%. The efficiencies 
of Global Averaging Model with item noise (GAM2) 
exceeded 100%, especially when the difference between set 
average and test size was smaller, indicating that the human 
observers did not adopt these strategies. The efficiencies of 
the LSM far exceeded 100%, indicating that the 
performance of human observers was higher than those of 
the models. This means that the human observers did not 
adopt this strategy.   

Discussion 
This study investigated sampling properties of visual 
information used by human observers in deriving an average 
representation of item set introducing three ideal observer 
models. We measured the performance of the Size 
Averaging Task for each ideal observer model and for 
human observers. Then, we compared the performance of 
the ideal observer of each model to the performance of 
human observers to evaluate which model could predict the 
human behavior.   

 As the statistical efficiencies of GAM2 and LSM far 
exceeded 100% and that the performance of human 
observers was higher than those of the models, we could 
assume that the human observers did not adopt these 
strategies.  On the other hand, the efficiencies of GAM1 
(Global Averaging model without item noise) approximated 
100% when they are two and four and approximated they 
70% when they are 9 and 16. Thus, we could assume that 
GAM1 may be appropriate model for the human observers 
in deriving the average of item sets. This suggests that the 
statistical summary representation might derive average size 
of items in a set without representing the size of individual 
items. The results were consistent with the claim that 
observers can estimate with high accuracy the average size 
of a set of items, even when they seem unable to report the 
size of individual items in the set (e.g, Airely, 2001). In 
other words, the results disagree with the claim that the 
average of the set could be accurately estimated by sampling 
as few as one or two items, and estimating the average of 
those items; observers are not strategically subsampling 
when they compute the mean size, especially in the case that 
the number of items is large such as 9 and 16.  

There might be individual differences in the way 
observers access averages. Some observers are inclined to 
use a global process, whereas others a limited sampling 
process. A further study of how the sampling strategy is 
determined and whether the precision in the averaging could 
be improved should be conducted.  

 
 
 

   
 

   
 
Figure 6: The ideal observer’s discriminabilities (top left) 
and human efficiencies of each model as a function of the 
set size. The efficiency score is reported in a percentage. 
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   Our results imply that the strategy depend on the 
number of items in a set, since the efficiencies of GAM1 
fluctuate across set size. The implication is consistent with 
the finding of Tanaka & Ishiguchi (2006). In their study, the 
sampling strategy is varied across the number of items in a 
set; the efficiency decreased at the number of lines increase 
until a range of stable efficiency.  

This study provides the evidence for the statistical 
summary representation mechanisms may not necessarily 
require the focused attention and the representation of 
individual objects. The processes of extracting statistical 
summary of number of items are relevant to the possible 
cognitive mechanisms of categorization, recognition, 
learning, and others. Further investigation is necessary to 
reveal the averaging process in more detail. 
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