Comparing Global and Limited sampling Strategies in Size-averaging a Set of Items

Midori Tokita (Tokita.Midori@ocha.ac.jp)
Department of Letters and Education,
Ochanomizu University, Otsuka, Tokyo 112-8610 Japan

AKkira Ishiguchi (Ishiguchi.Akira@ocha.ac.jp)
Department of Human Developmental Sciences,
Ochanomizu University, Otsuka, Tokyo 112-8610 Japan

Abstract

Many studies have shown that our visual system may
construct a “statistical summary representation” over groups
of visual objects. Although there is a general understanding
that human observers can accurately represent sets of a
variety of features, many questions on how the statistical
summary is computed still remain unanswered. This study
investigated sampling properties of visual information used
by human observers in deriving an average representation of a
set of items. We presented three models of ideal observers to
perform a size averaging task: a global averaging model
without item noise (GAM1), a global averaging model with
item noise (GAM2), and a limited sampling model (LSM).
We compared the performance of the ideal observer of each
model to the performance of human observers using statistical
efficiency analysis. Our results suggest that average size of
items in a set may be computed without representing
individual items, discarding the limited sampling model.

Keywords: statistical summary representation; Ideal observer
analysis; size averaging; attention

Introduction

Many studies have shown that people accurately
perceive and estimate the statistical properties of a set of
items or events. For example, the visual system may
construct a “statistical summary representation” over groups
of visual objects (e.g., Alvarez, 2011; Ariely, 2001, 2008;
Chong & Treisman, 2003). It has been shown that observers
are able to quickly and accurately extract average values
over a range of visual properties, including size (Chong &
Treisman, 2005 ; Oriet & Brand, 2013), brightness (Bauer,
2009), orientation (Parkes, Liend, Angelucci, Solomon &
Morgan, 2001), emotional expression (Haberman &
Whitney, 2009, 2011), and others. Moreover, this ability is
not limited to static and simultaneous events; it is observed
in sequentially presented events (Oriet & Corbett, 2008;
Whiting & Oriet, 2011) and dynamic objects, such as

expanding and contracting circles (Albrecht & Scholl, 2010).

In recent studies, it has been shown that the ability of
representing statistical properties is not limited to visual
properties but is also observed in auditory mechanisms such
as extracting frequency information from sequences of
sounds (Piazza, Sweeny, Wessel, Silver, & Whitney, 2013).
Although there is a general understanding that human
observers can accurately represent sets of features, many
questions on how the statistical summary is computed still
remain unanswered. Three possibilities have been proposed:

1) representations of individual items are computed first and
then combined to form a summary representation, 2)
summary representations are computed without computing
individual items, or 3) Only a couple of items in a set are
sampled and included in the calculation of the average size.
The first and second proposals predict that there are
specialized statistical summary representation mechanisms
that are separate from the mechanisms mediated to represent
individual objects. Conforming to this argument, many
studies have provided evidence that, when attention is
distributed across a set of similar items, people can extract
the average size of all the items without relying on focused
attention to the individual items in the set (e.g., Chong &
Treisman, 2003, 2005; Im & Halberda, 2013; Treisman,
2006). The third proposal claims that it is possible to
accurately estimate the average size by sampling a couple of
items in a set using focused attention. Modeling research
has shown that a sampling strategy reasonably predicts the
approximate levels of performance exhibited by observers in
studies of average size perception (Myczek & Simons,
2008; Marchant, Simons & Fockert, 2013).

Neither the proponents of the summary representation
mechanisms nor those of the limited sampling strategy have
excluded or refuted the opposing argument. Rather, they
prompt the necessity for further investigation on the
processes of human performance of statistical summary
mechanisms (Ariely, 2008; Simons & Myczek, 2008).
Overall, it is necessary to examine if people estimate the
average size by using the global information of all items in a
set or of the limited number of items in a set.

The present study investigated sampling properties of
visual information used by human observers in deriving an
average representation of items in a set using the ideal
observer (I0) analysis. We measured performance on a size
averaging task for each ideal observer model and for human
observers. Next, we compared the performance of the ideal
observer of each model to the performance of human
observers to evaluate which model could predict how
human observers derive the average size of items in a set.
While comparing, we used a statistical efficiency analysis
that allows direct comparison of efficiencies among
different models that represent different uses of information.
Statistical efficiency is a relative index for the sampling rate
of information in a given task. Many studies have utilized
the efficiency to investigate how the visual system uses
available information and revealed the characteristics of
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human performance (e.g. Tanaka & Ishiguchi, 2006; Ikeda
& Ishiguchi, 2004; Watamaniuk, 1993). The fluctuation of
efficiency has been also useful to explore the characteristics
of the human sampling strategy.

Based on the three proposals mentioned above, we
presented three models of ideal observers to perform the
task: a global averaging model without item noise (GAM1),
a global averaging model with item noise (GAM?2), and a
limited sampling model (LSM).

First, we described three ideal observer models and the
statistical efficiency analysis in detail. Second, we tested the
size discrimination threshold of human observers in each
experimental condition to determine values for free
parameters used in simulating the performance of the ideal
observer models. Next, we conducted the size averaging
task to the human observers and calculated the efficiency of
the human observers to the ideal observers to evaluate the
model appropriate for the averaging process.

Ideal observer models

An ideal observer is a theoretical device that performs a
given task in an optimal manner with the available
information and some specified constraints (e.g., Geisler,
2003; Yakushijin, 2007). We presented three ideal observer
models to perform the size averaging task: a global
averaging model without item noise (GAMI1), a global
averaging model with item noise (GAM?2), and a limited
sampling model (LSM). Figure 1 shows diagrams of each
model. Each model comprises a sampling process, a
summary representation process, and a decision process.
There are two types of noises involved in a given process:
an item noise added to each item in a set prior to summary
representation (o) and a late noise added to an estimated
average size (Opae)-

GAMI1 posits that summary representations are
computed without computing individual items and used for
calculating their average size. Thus no noise added to each
item in a set and only late noise added to representation of
average size. GAM?2 posits that representations of individual
items are computed first and then combined for forming a
summary representation and subsequent calculation of their
average size. At the representation of individual items, the
noise is added to each item prior to form the summary
representation. The value of the noise may depend on the set
size, since it has been predicted the noise with which each
individual item is represented increases as the number of
items increases since each item receive less attention
(Palmer, 1990; Franconeri, Alvarez, & Enns, 2007). A late
noise is added to the average size of items in a set and
compared to the test item.

LSM posits that people sample a couple of items
randomly chosen from a set to calculate their average size.
In this study, we randomly sampled two items from a set
since it has been shown that the average of the set could be
accurately estimated by sampling two items, estimating the
average of those items alone (Myczek & Simons, 2008).
The item noise added to each item prior to form the

summary representation and then the late noise added to the
average size prior to the decision process.

The performance of each model, discriminability d'zzeq;
was derived using the Monte Carlo method. Free parameters
of the models, SD for an item noise of each set size (Gyemn)
and the late noise (0L.), were determined by the experiment.
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Figure 1: Description of three ideal observer models; Global
Averaging Model without item noise (GAMI); Global
Averaging Model with item noise (GAM2); Limited
Sampling Model (LSM).
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Calculation of statistical efficiency

We calculated statistical efficiencies using the following
method. First, we prepared two stimuli: a set of multiple
items and a single test item. Both stimuli consisted of solid
circles with a given diameter. The diameter of the test item
was larger or smaller than the average size of items in a set.
We added independent lognormal noise nN(0, o)) to the
diameter of individual items in the set. No noise was added
to the test item. The observer’s task was to determine which
item, the average size of items in a set or the test item, was
lager in size, using the two alternative forced choice (2AFC)
procedure. Ideal observer of each model sampled the values
of information available in each model. The discriminability
for each ideal observer (d'jzq) is obtained by performing
monte carlo simulation. The discriminability for human
observer (d'y) was determined by performing the same
2AFC task and calculated as follows:

d'y= 2z, (1)

where z. is the z-value transformed from the observer’s
percent correct. The statistical efficiency F was defined by
the square of the ratio of these two scores as

F= (d’H / dl[deal)z- (2)

The details of calculation of statistical efficiency were
discussed in Barlow (1978) and Watamaniuk (1993).

Many studies have found that the sampling capacity of
visual system is limited. If the statistical efficiency is larger
than 100%, we could infer that the model may not describe
the appropriate process to perform the task.

Size Discrimination Experiment

The purpose of this experiment is to obtain the value of free
parameters Oyenn and op ... We measured accuracies for size
discrimination in a single item condition and four set size
conditions. The discrimination threshold in a single item
condition corresponds to Op.e; those of four set size
condition correspond to the oyenn. Figure 2 shows examples
of stimuli presentation in each condition and a schematic
view of a trial sequence.

Method

Participants There were four observers, author MT and
three experienced psychophysical observers, TT, YA, and
SU. All had normal or corrected-to-normal vision.

Design There are five conditions: a single item and four
item set sizes, 2, 4, 9, and 16. A set of items was presented
in the first interval and a test item was presented in the
second interval. One of the items was a target item, which
needed to be compared with the test item. The QUEST
procedure (Watson & Pelli, 1983) adaptively determined the
JND at which the observer was 75% correct. Thus, the size
of the target in each trial was calculated by QUEST.

Apparatus The stimuli were presented on the screen of a
Mitsubishi 17 in. Monitor. The monitor was driven by a
Mac Pro computer which also performed all timing
functions and controlled the course of the experiment.
Display resolution was 1024 x 756 pixels. Participants
viewed the screen with both eyes and were seated
approximately 115 cm from the monitor, fixed with in
position with a chin rest.

Stimuli The items consisted of light gray dots on a dark
gray background. The set of items, consisting of given
number of dots was presented in the first temporal interval
of two intervals trial. The test item, consisting of one dot,
was presented in the second interval. In each trial, all of the
dots shown were randomly scaled by a small multiplicative
factor to discourage the participants from basing their
judgments on previously seen stimuli. Three multiplicative
factors (1, 1.1, 1.2) were used and the same factor scaled all
items in any one trial.

The items were arranged on the array. The array was
divided into m x m matrix: 2 x 2 (set size=2, 4), 3 x 3 (set
size=9), and 4 x 4 (set size=16). Each item was displayed at
the center of each cell with a position jitter. A lognormal
Gaussian noise nN(0, o.”) was added to the diameter of
each item of a set independently. It has been assured that a
lognormal distribution of circle diameters will produce a
Gaussian  distribution of discriminable sizes after
logarithmic transduction (Solomon, Morgan & Chubb,
2011). Thus, in attempt to create normal distributions of
transduced size, we use lognormal distributions of circle
diameter. In this experiment, . was set to 0.2.
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Figure 2: Example of item set of each set size (above) and
schematic view of a trial sequence in Size Discrimination
Experiment.

1606



0.25¢

0.2¢

a0

0.05} 4

Thresholc

0 5 10 15
set size
Figure 3: Means of size discrimination threshold as a

function of the set size in Size Discrimination Experiment.
Error bars represent standard deviations.

Procedure Each trial started with a fixation cross for 500ms.

The items in a set were presented first for 500 ms. A red dot
position cue, indicating the target, was presented for 200 ms
after the item set. The test item was presented for 500ms
after the ISI of 400 ms. The observers’ task was to decide
which item, the target item in a set or the test item, was
larger in size. A 2AFC procedure was used. When they
thought that the target item in a set was larger than the test
item, they pressed ‘1°. When they thought that the test item
was larger than the target item, they pressed ‘3°. No
feedback about the correctness of responses was provided.

Results

Results are shown in Figure 3. The mean discrimination
threshold for a single item condition was 0.043. This value
was used for the parameter of the late noise (Gr.). The
mean discrimination threshold for target in each set size, 2,
4,9, and 16 was 0.09, 0.12, 0.17 and 0.21, respectively.
Each value was used for the parameters of the item noise
(O1em) for each set size.

Size Averaging Experiment

In this experiment, we measured the discrimination
performance between the estimated average size of a set and
a test item. A schematic view of the stimulus presentation is
shown in Figure 4. The observers, apparatus and stimuli
were the same as in Size Discrimination Experiment except
that no position cue was presented between the item set and
following test item.

Method

Design There were two independent variables in the
experiment that were varied within participants. The first
variable was the number of items in a set; there are four set
size, 2, 4, 9, and 16. The second variable was the level of
difference between average size of a set and the test item.

There were two levels: + 0.08 (hard) and + 0.12 (easy)
relative to the average diameter. A set of items was
presented in the first interval and a test item was presented
in the second interval.

Each condition had 200 trials, resulting in 1600 trials in
total. Each block had 160 trials (10 repetitions x 4 set size x
2 levels x 2 directions of test size (smaller or larger)) with
10 blocks in total. The participants performed five blocks in
each experimental session, two sessions in total. The set size
and the level of difference were blocked and the order of
trials were randomly mixed. There were trials in the practice
blocks.

Procedure Each trial started with a fixation cross for 500ms.
The items in a set were presented first for 500 ms and the
test item for 500ms after the intermission of 400 ms. The
observers’ task was to decide whether the test item was
larger or smaller than the average size of item in a set. A
two-alternative (larger or smaller) forced choice procedure
was used. When they thought that the test item is smaller
than the average size of items in a set, they pressed ‘1°.
When they thought that the test item is larger than the mean
size of a target set, they pressed ‘3°. No feedback about the
correctness of responses was provided.

Results

The performance of each observer is shown in figure 5. The
discriminability d'y were calculated using the equation (1)
and plotted as a function of the set size. As shown in the
figure 5, the discriminability appeared to be unaffected by
the number of items in a set, being consistent with the
findings in previous studies. All observers showed
higher discriminability when the difference between the
average size of items and the test item is larger, which is
+0.12.
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Figure 4: schematic view of a trial sequence in Size
Averaging Experiment.
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Figure 5: Discriminability of each observer as a function of
the set size in Size Averaging task.

Statistical Efficiencies and evaluation of models

The ideal observer’s discriminabilities of each model were
shown in Figure 6 (top left). We calculated statistical
efficiencies for the mean data of four observers using the
equation (2). The efficiencies are presented in Figure 6 as a
function of the set size. The efficiencies of Global
Averaging Model without item noise (GAM1) were varied
across set sizes. When the set sizes are 2 and 4, the
efficiencies approximated 100%, whereas when they are 9
and 16, the efficiencies approximated 70%. The efficiencies
of Global Averaging Model with item noise (GAM2)
exceeded 100%, especially when the difference between set
average and test size was smaller, indicating that the human
observers did not adopt these strategies. The efficiencies of
the LSM far exceeded 100%, indicating that the
performance of human observers was higher than those of
the models. This means that the human observers did not
adopt this strategy.

Discussion

This study investigated sampling properties of visual
information used by human observers in deriving an average
representation of item set introducing three ideal observer
models. We measured the performance of the Size
Averaging Task for each ideal observer model and for
human observers. Then, we compared the performance of
the ideal observer of each model to the performance of
human observers to evaluate which model could predict the
human behavior.

As the statistical efficiencies of GAM2 and LSM far
exceeded 100% and that the performance of human
observers was higher than those of the models, we could
assume that the human observers did not adopt these
strategies. On the other hand, the efficiencies of GAMI1
(Global Averaging model without item noise) approximated
100% when they are two and four and approximated they
70% when they are 9 and 16. Thus, we could assume that
GAMI1 may be appropriate model for the human observers
in deriving the average of item sets. This suggests that the
statistical summary representation might derive average size
of items in a set without representing the size of individual
items. The results were consistent with the claim that
observers can estimate with high accuracy the average size
of a set of items, even when they seem unable to report the
size of individual items in the set (e.g, Airely, 2001). In
other words, the results disagree with the claim that the
average of the set could be accurately estimated by sampling
as few as one or two items, and estimating the average of
those items; observers are not strategically subsampling
when they compute the mean size, especially in the case that
the number of items is large such as 9 and 16.

There might be individual differences in the way
observers access averages. Some observers are inclined to
use a global process, whereas others a limited sampling
process. A further study of how the sampling strategy is
determined and whether the precision in the averaging could
be improved should be conducted.
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Figure 6: The ideal observer’s discriminabilities (top left)
and human efficiencies of each model as a function of the
set size. The efficiency score is reported in a percentage.
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Our results imply that the strategy depend on the
number of items in a set, since the efficiencies of GAMI1
fluctuate across set size. The implication is consistent with
the finding of Tanaka & Ishiguchi (2006). In their study, the
sampling strategy is varied across the number of items in a
set; the efficiency decreased at the number of lines increase
until a range of stable efficiency.

This study provides the evidence for the statistical
summary representation mechanisms may not necessarily
require the focused attention and the representation of
individual objects. The processes of extracting statistical
summary of number of items are relevant to the possible
cognitive mechanisms of categorization, recognition,
learning, and others. Further investigation is necessary to
reveal the averaging process in more detail.
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