Bidimensional regression: Issues with interpolation
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Abstract

We investigated the interpolation of missing values in data
that were fit by bidimensional regression models. This
addresses a problem in spatial cognition research in which
sketch maps are used to assess the veracity of spatial
representations. In several simulations, we compared samples
of different sizes with different numbers of interpolated
coordinate pairs. A genetic algorithm was used in order to
estimate parameter values. We found that artificial inflation in
the fit of bidimensional regression models increased with the
percent of interpolated coordinate pairs. Furthermore, samples
with fewer coordinate pairs resulted in more inflation than
samples with more coordinate pairs. These results have
important implications for statistical models, especially those
applied to the analysis of spatial data.
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Introduction

Bidimensional regression is a statistical technique for
assessing the relationship between two configurations of
related, two-dimensional data. The method was originally
introduced by Tobler (1965, 1994) for the analysis of
geographical data. More recently, the method has been
adopted by psychology (Friedman & Kohler, 2003) and
computer science (Kare, Samal, & Marx, 2010).
Bidimensional regression has been used for the geometric
analysis of ancient and modern maps (Tobler, 1994),
fictional maps (Louwerse & Benesh, 2012), and mental
maps with sighted (Schinazi, Nardi, Newcombe, Shipley, &
Epstein, 2013; Weisberg, Schinazi, Newcombe, Shipley, &
Epstein, 2013) and blind or visually impaired individuals
(Jacobson, 1998; Jacobson & Kitchin, 1995; Schinazi,
2008). The method has also been successfully used in
conjunction with eye tracking studies (Fourtassi et al.,
2013), in the assessment of face familiarity (Kare et al.,
2010), and in the comparison of shapes of skulls and leaves
(Tobler, 1994).

Similar to unidimensional regression, bidimensional
regression uses changes in one (predictor) variable to
predict changes in the other (criterion) variable. This
relationship is invariant to global transformations in terms

of scale, rotation, and translation. Bidimensional regression
is also characterized by a statistical model for which an
equivalent number of predictor and criterion coordinate
pairs are necessary. However, this requirement can
sometimes be difficult to fulfill for situations in which the
criterion variable is missing values.

Missing values can be particularly problematic for
situations in which the fit of the regression model is
considered as a proxy for the veracity of spatial
representation. In order to account for such possibilities,
participants are often given a fixed list with all the
landmarks that have to be drawn (Giannopoulos, Kiefer, &
Raubal, 2013; Guzman-Mufioz & Johnson, 2008; Ishikawa,
2013; Lloyd, 2005; Uttal, Friedman, Hand, & Warren,
2010) or small cardboard pieces representing landmarks that
have to be placed on blank, grid paper (Waller, Loomis, &
Haun, 2004; Waller, Loomis, & Steck, 2003). These
approaches have had the advantage of producing balanced
sets of landmarks that can be analyzed using bidimensional
regression. One possible disadvantage is that the concept of
“landmark™ can be defined differently depending on the
situation and the individual (Raubal & Winter, 2002). In
addition, these methods may constrain the data provided by
participants (Kitchin & Blades, 2002) and thus inflate the
overall fit of the regression model. In other studies,
researchers have tried to account for the issue of missing
values (representing missing landmarks) in sketch maps by
developing customized algorithms that categorically or
metrically evaluate landmark placement (Gardony, Brunyé,
Mahoney, & Taylor, 2013). Here, we used several
simulations in order to investigate the conditions under
which another type of interpolation may or may not be
appropriate for bidimensional regression.

One possible method for interpolating missing spatial data
is to replace them with values that maximize the fit of a
regression model. This is essentially the same as using the
predicted values of one variable given the observed values
of another variable. This method of interpolation has
several advantages over other methods (e.g., eliminating
participants with a large amount of missing data; Schafer
and Graham, 2002). For example, interpolation maintains
statistical power and uses all of the available data (Schafer
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& Graham, 2002). However, this interpolation of missing
values may also lead to an artificial inflation of the fit of the
regression model.

For the present simulations, we used sets of coordinate
pairs with numbers of values that corresponded to those
typically seen in spatial cognition research (Guzman-Muiioz
& Johnson, 2008; Ishikawa & Montello, 2006; Ishikawa,
2013; Lloyd, 2005; Schinazi, 2008; Uttal et al., 2010). We
predicted that the artificial inflation of the fit of the
bidimensional regression models would increase as the
number of values in each coordinate set decreased (given an
equal proportion of interpolated values). A bidimensional
regression model that is used to fit fewer points may be
more flexible because of the coarseness of the “fit surface”
(i.e., the shape of the function relating parameter values to
the overall fit of the model). Alternatively, if each
interpolated value is considered a freely varying parameter,
then the model with more points may be more flexible
(Lewandowsky & Farrell, 2010). Similarly, given an equal
number of values overall, we expected a greater proportion
of interpolated values to result in more inflation in the fit of
the bidimensional regression models.

To anticipate, we found a very large, artificial inflation in
the fit of bidimensional regression models after the
interpolation of varying numbers of values. The number of
free parameters (in terms of the number of interpolated
values) did affect the extent of this inflation. However,
models to which fewer values were submitted fit better than
models to which more values were submitted, even though
the latter models contained more free parameters. This
pattern of results was also replicated using data from a real
world study (see Weisberg et al., 2013).

Method

Bidimensional regression models were fit to (different)
randomly generated sets of coordinate pairs using a program
written in MATLAB (MathWorks®, Natick, MA, USA).
Each individual number was randomly generated from a
uniform distribution between -1 and 1. The first set of
coordinate pairs represented the two-dimensional predictor
coordinates, and the second set of coordinate pairs
represented the two-dimensional criterion coordinates. One
variable, “number of coordinates,” was manipulated
between simulations and represented the number of
coordinate pairs within each set. Either 10 or 40 coordinate
pairs were used for each set. The predicted values for the
criterion coordinates were calculated using the following
equation (Friedman & Kohler, 2003; Tobler, 1994):

(5)=()+ (s ) @)

Equation 1

Note that we use the four-parameter, Euclidean version of
the bidimensional regression equation. Here, A’ and B’
represent the predicted values for the criterion coordinates,
X and Y represent the randomly generated values for the
predictor coordinates, a; and o, represent the intercepts for
the bidimensional regression model, and ; and B, represent
the slopes for the bidimensional regression model. The fit of
each bidimensional regression model was evaluated by
comparing the predicted and the given (i.e., randomly
generated) values for the criterion coordinates and
maximizing R

2[(A-A4)"+ (B -B)%
2I(A —My)? + (B — Mp)?]

Equation 2

R>?=1-

where M, and Mg represent the mean values for A and B
(the criterion coordinates), respectively.

We used a genetic algorithm to estimate the best fitting R?
value because of the large number of freely varying
parameters in some conditions. The estimated parameters
included a;, oy, Bi, B2, and parameters representing any
missing coordinates. For the most part, genetic algorithms
have the advantage of allowing the modeler to move toward
the optimal solution while inserting enough randomness to
avoid local minima (Hassan et al., 2004). Previous work has
also demonstrated the performance advantages of genetic
algorithms over more commonly used hill-climbing
algorithms (Thrash & Thomas, 2013). In our case, the
genetic algorithm began by pseudo-randomly generating
1000 “organisms” (i.e., combinations of parameter values).
The starting values for the missing coordinates were
constrained to [-1, 1]. The starting values for o, and a, were
constrained to [-1, 1], and the starting values for B, and 3,
were constrained to [-10, 10]. Next, we determined the fit of
every organism by calculating the R? value (as described
above). Only the best-fitting organism (out of every eight
successive organisms) was selected for reproduction (i.e.,
“tournament selection”; Goldberg and Deb 1991). During
the reproduction stage, each organism was converted to
binary code and a random crossover point was determined.
These organisms were then randomly paired, and each pair
of organisms randomly exchanged the bits that occurred
before the randomly determined crossover point. For each
bit, the probability of mutation (or switching from 0 to 1 or
1 to 0) for each organism was 0.5%. This procedure was
repeated 100 times. In the end, the best-fitting organism
over all iterations was maintained and used to calculate the
R? value for each pair of coordinate pairs. Throughout the
genetic algorithm, each parameter was represented by 17
bits (corresponding to a precision of approximately
+0.0001).

After estimating R? for the original sets of coordinate
pairs, some of the criterion coordinates were randomly
selected for deletion. Deleted coordinate pairs were then
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# coordinates % interpolated Myetore  SDpefore ~ Mater SD . gcer t SE df p
10 10 0.1076 | 0.0938 | 0.1849 | 0.1048 | 5.4949 0.0141| 195.6008 | <.0001
10 20 0.0920 | 0.0846 | 0.2247 | 0.0999 | 10.1360 | 0.0131| 192.7549 | <.0001
10 30 0.0966 | 0.0881 | 0.3118 | 0.1189 | 14.5396 | 0.0148 | 182.4707 | <.0001
10 40 0.0903 | 0.0787 | 0.3709 | 0.1200 | 19.5491 | 0.0144| 170.8757 | <.0001
40 10 0.0303 | 0.0271 | 0.0929 | 0.0365 13.7616 | 0.0045| 182.7430 | <.0001
40 20 0.0260 | 0.0267 | 0.1444 | 0.0409 | 24.2383 | 0.0049| 170.3885 | <.0001
40 30 0.0248 | 0.0251 | 0.2044 | 0.0542 | 30.0643 | 0.0060| 139.6256 | <.0001
40 40 0.0259 | 0.0264 | 0.2516 | 0.0552 | 36.8878 | 0.0061 | 141.9366 | <.0001

Table 1: Descriptive and inferential statistics for comparisons corresponding to every combination of the variables “number
of coordinates” and “percent interpolated.” Myefore and M,ger represent the mean R’ for sets of coordinate pairs before and
after interpolation, respectively. SDypefore and SD,ge, represent the standard deviation of R? for sets of coordinate pairs before
and after interpolation, respectively. Welch’s t-tests were used to compare Mperore t0 Muger for every condition.

replaced by wvalues that maximized the fit of the
bidimensional regression model. These coordinates were
then considered additional free parameters and were
estimated using the genetic algorithm as described above.
The starting values for each of these coordinates were
constrained to fall between -1 and 1. This procedure allowed
us to compare the relationship between the original sets of
coordinate pairs and the relationship between sets of
coordinate pairs after interpolation.

Different numbers of coordinate pairs were deleted and
replaced for each of four levels of another variable, “percent
interpolated.” The four levels of this variable corresponded
to the deletion and replacement of 10%, 20%, 30%, and
40% of the criterion coordinates for each set of coordinate
pairs.

For every factorial combination of the variables “number
of coordinates” and “percent interpolated,” one hundred sets
of coordinate pairs were generated and manipulated in the
manner described above. Two-tailed, Welch’s t-tests for the
comparison of samples with unequal variances (Welch,
1947) were used in order to compare the mean R? for each
condition after interpolation to the mean R® for the
corresponding condition before interpolation. Before
comparing different conditions, we subtracted the mean R’
before interpolation from the mean R” after interpolation.
We then tested for main effects of and interaction between
the number of coordinate pairs and percent interpolated
using a 2 x 4 ANOVA.

We also replicated our pattern of results using real-world
data from a model building task (see Weisberg et al, 2013).
The data represented 8 predictor and criterion coordinate
pairs for each of 48 participants. We eliminated one
participant from consideration because of a missing data
point. One, two, or three data points were randomly
selected, deleted, and interpolated, representing three
different conditions of the variable “percent interpolated”
(i.e., 12.5%, 25%, and 37.5%). Two-tailed, Welch’s t-tests
were used to compare the mean R? for each condition after
interpolation to the mean R? for the corresponding condition
before interpolation.

In order to validate the use of the genetic algorithm in the
above simulations, we also evaluated the genetic

algorithm’s ability to estimate known parameter values for
bidimensional regression models. Initially, one set of
coordinate pairs was randomly generated from uniform
distributions between -1 and 1. The number of coordinate
pairs in each set corresponded to the variable “number of
coordinates” specified above. Then, starting values for a;,
oy, Pi, and P, were randomly generated from uniform
distributions. The parameters a; and o, were constrained to
fall between -1 and 1, and the parameters ; and B, were
constrained to fall between -10 and 10. Note that these
constraints correspond to those placed on the starting values
in the other simulations described above. Values for another
set of coordinate pairs were then generated using these
randomly generated parameter values and the initial set of
coordinate pairs. We then estimated the known (previously
generated) parameter values using the genetic algorithm and
these two sets of coordinate pairs. The genetic algorithm
was conducted in the same manner as for the other
simulations (i.e., with 1000 organisms and 100 iterations).
This procedure was repeated 100 times. Finally, we
evaluated the genetic algorithm in terms of bias and
variability in the parameter estimates. Bias in the parameter
estimates was assessed by determining the degree of skew in
the distribution of estimates for each parameter.

Results

As predicted, interpolation led to an artificial inflation of the
bidimensional regression models (see Figure 1). For every
condition, the mean R after interpolation was significantly
higher than the mean R? before interpolation (see Table 1).
Given that all the initial comparisons were significantly
different from chance (all ps < 0.0001), it is informative to
investigate differences between conditions. The interaction
between number of coordinate pairs and percent interpolated
was marginally significant, F(3,792) = 2.61, MSE = 0.007, p
= .0504. It appears that the rate of inflation was higher for
the 10 coordinate pairs when compared to the 40 coordinate
pairs.

We then investigated two specific patterns among the
conditions: the difference between 10 and 40 coordinate
pairs per sample in terms of inflation, and the linear
relationship between percent interpolated and inflation
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(separately for 10 and 40 coordinate pairs). The fit of the
bidimensional regression models were significantly higher
with 10 coordinate pairs (M = 0.18; SD = 0.13) than with 40
coordinate pairs (M = 0.15; SD = 0.08), F(1,792) = 24.70,
MSE = 0.007, p < .0001. In this case, additional parameters
did not result in a better fit. Both linear contrasts were also
found to be significant. For 10 coordinate pairs, F(1,792) =
53.87, MSE = 0.007, p < .0001. For 40 coordinate pairs,
F(1,792) = 19.54, MSE = 0.007, p <.0001.

——10 coordinate pairs 40 coordinate pairs

0.3

0.2

RZ

0.1

0 10 20 30 40
Percent interpolated

Figure 1: A graph depicting the relationship between
number of coordinate pairs, percent interpolated, and the fit
of the bidimensional regression models. Error bars represent
the standard error of the mean R? for each condition.

A similar pattern of results emerged from the
interpolation of data points from a real world study. Welch’s
t-tests found that the interpolation of one coordinate pair did
not significantly inflate the R? value, #(89.82) = 0.33, SE =
0.035, p = .74; the interpolation of two coordinate pairs did
significantly inflate the R? value, #88.62) = 3.34, SE =
0.035, p < .001; and the interpolation of three coordinate
pairs also significantly inflated the R value, #(87.02) = 4.59,
SE =0.037, p <.0001.

before interpolation ——after interpolation
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Figure 2: A graph depicting the relationship between
percent interpolated and the fit of the bidimensional
regression models before and after interpolation. Error bars
represent the standard error of the mean R* for each
condition

10 coordinate pairs 40 coordinate pairs

50 50

50 50

B2 5 I 25 I

R 0 5 03 0 3
Figure 3: Histograms representing the distributions of
parameter estimates by the genetic algorithm for two
different levels of “number of coordinates” (i.e., 10 and 40).
The x-axes represent z-scores for the (signed) difference

between each parameter estimate and that parameter’s
known value.

Variance Skew
10 CP 40 CP I 10 CP 40 CP
o 0.050 0.053 0.102 0.060
o 0.073 0.046 -0.063 -0.183
B1 0.106 0.127 0.363 -0.259
B2 0.141 0.136 0.322 -0.475

Table 2: Variance and skew from the distributions of the
differences between the original parameter values and those
estimated by the genetic algorithm. CP refers to the number
of coordinate pairs in each sample.
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We also examined the distributions of parameter
estimates for 10 and 40 coordinate pairs separately in order
to validate the use of the parameter estimation algorithm
(see Figure 2). Table 2 lists the skew and variability for the
unstandardized differences between estimated and original
parameter values. The lack of skew indicates a lack of bias
in the parameter estimates, and low variability in the
parameter estimates indicates consistency. Bias and/or
inconsistency in the parameter estimates would have
allowed for the possibility that our patterns of results were
attributable to problems with the parameter estimation
algorithm.

Discussion

In the present work, we investigated the effects of
interpolation on the artificial inflation of the fit of
bidimensional regression models. We generated random
data representing various situations that are often
encountered in spatial cognition research such as the
analysis of incomplete sketch maps. In order to relate to
situations with differently sized data sets, we manipulated
the number of coordinate pairs per sample. We also
manipulated percent interpolated in order to establish the
conditions under which interpolation may not be
appropriate. Using a genetic algorithm, we interpolated the
missing data while ensuring unbiased and consistent
parameter estimates for the bidimensional regression
models.

Two primary effects emerged. First, there was a linear
relationship between percent interpolated and the amount of
inflation in the fit of the bidimensional regression models.
Specifically, inflation was higher when a greater percent of
the coordinate pairs were interpolated. Second, smaller data
sets produced more inflation than larger data sets despite
having fewer free parameters.

These results highlight a major limitation in using
interpolation as a method for compensating for missing
values when using bidimensional regression. For example,
the interpolation of only one coordinate pair out of ten
resulted in an artificial inflation of approximately 8% on
average. Such effects should be considered in spatial
cognition research, given that the analyses of most sketch
maps involve only a limited number of points (i.c.,
landmarks; Guzman-Mufioz & Johnson, 2008; Ishikawa &
Montello, 2006; Ishikawa, 2013; Lloyd, 2005; Schinazi,
2008; Schinazi et al., 2013; Uttal et al., 2010). Future
studies that compare the fits of multiple regression models
should also attend to the possibilities that one or more of
those fits were inflated. This situation can be problematic
because the precise extent to which a fit was inflated would
be unknown. Thus, a comparison could artificially shift in a
positive or negative direction.

These results also indicate that a larger number of
coordinate pairs allows for a more reliable interpretation of
a model’s performance. This was evident in the significant
difference between the samples with 10 and 40 coordinate
pairs. Researchers are encouraged to design studies in such

a way as to maximize the number of measured points. For
example, this may be achieved by providing longer learning
periods that allow for the acquisition of a larger number of
landmarks.

We also assessed whether genetic algorithms are
appropriate for fitting bidimensional regression models. The
utility of this algorithm was evidenced by low skew and
variance in the distribution of the parameter estimates.
Additional simulations should be conducted in order to
compare genetic algorithms to others that are commonly
used to fit bidimensional regression models (e.g., other hill-
climbing algorithms).

Future research should also consider alternative methods
of interpolation that have been employed in the analysis of
unidimensional data. For example, Bayesian multiple
imputation (Schafer & Graham, 2002) may be useful for
bidimensional data. Using assumptions such as normality of
the underlying population, this method may allow for a
more veridical solution to the missing data problem.

Our results may also have an interesting implication
regarding the relationship between the number of coordinate
pairs and the smoothness of the fit surface. One difference
between 10 and 40 randomly generated coordinate pairs that
are constrained to be within the same range (e.g., between -1
and 1 for the present case) is that the lower number of
coordinate pairs can be more distributed. Because of this
greater distribution, the movement of any one of these
coordinate pairs (considered a free parameter) may have a
greater effect on the prediction of a bidimensional
regression model than the movement of an equivalent
percent of coordinate pairs from the larger sample.
Depending on the size of the difference in variability
between the differently sized samples, this can override the
flexibility typically afforded by the additional free
parameters. Thus, a sample consisting of a larger number of
coordinate pairs may result in a smoother function relating
parameter values to overall model fit.

In summary, we have demonstrated artificial inflation of
the fit of bidimensional regression models after
interpolation for both randomly generated and real-world
data sets. We have also highlighted the conditions under
which this inflation is more likely to occur. The conditions
that were most affected also represented those that are
commonly applied in spatial cognition research.
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