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Abstract

Children's number-line estimation has produced a lively
debate about representational change, supported by
apparently incompatible data regarding the descriptive
adequacy of logarithmic (Opfer et al,, 2011) and power
models (Slusser et al., 2013). To test whether methodological
differences might explain discrepant findings, we created a
fully crossed 2x2 design and assigned 96 children to one of
four cells. In the design, we crossed sampling (over-, even-)
and supervision (with feedback, without feedback), which
were candidate factors to explain discrepant findings. In three
conditions (over-sampling/unsupervised-83%, even-
sampling/unsupervised-67%, and over-sampling/supervised-
58%), the majority of children provided estimates better fit by
the logarithmic than by the power function. In the last
condition (even-sampling/supervised-30%), the reverse was
found. Overall, a reliable association (p < .0001) was found
between proportion best fit by the power function and
supervision. Results suggest that the fit of the power function
to children's estimates is likely an artifact of supervision.
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Introduction

we attempt to reconcile seemingly
incompatible data (Barth & Paladino, 2011; Opfer &
Siegler, 2007; Opfer, Siegler, & Young, 2011; Slusser,
Santiago, & Barth, 2012) regarding the psychophysical
functions that link numbers to children's estimates of
numerical magnitude.

The psychophysical functions that link numbers to
subjects' estimates of numerical magnitude are both
theoretically and practically important. Of theoretical
interest, the functions generating young children's numerical
magnitude estimates have been observed in the non-
symbolic number discrimination of a wide range of species
(for review, see Nieder and Dehaene, 2009), to change
abruptly with limited experience (Opfer & Siegler, 2007,
Izard & Dehaene, 2008), and to closely track abilities to
deal with numbers in other contexts (Booth & Siegler, 2006;
Thompson & Siegler, 2010). Thus, just as an animal can
better discriminate 1 and 10 objects than 101 and 110
objects, so too do children estimate the magnitudes of the
symbols 1 and 10 to differ more than 101 and 110. These
results suggest that (1) over the course of development,
numerical symbols are linked to an innate "mental number
line" that allows infants and other animals to discriminate
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numbers and match them across modalities (see Fig. 1) and
(2) the linking between symbolic numbers and mental
magnitudes is plastic and undergoes qualitative change
(Opfer & Siegler, 2012).

The psychophysical functions linking numbers and
estimates of numerical value have emerged as practically
important as well. Specifically, the functions generating
children's numerical estimates correlate highly with real-
world behavior, including children's memory for numbers,
their ability to learn arithmetic facts, their math grades in
school, and their math achievement scores (Booth &
Siegler, 2006, 2008; Fazio, Bailey, Thompson, & Siegler,
2014; Siegler & Thompson, 2014; Siegler, Thompson, &
Schneider, 2011). These findings suggest that children's
representations of numerical magnitude play an important
role in development of mathematical ability and should be a
target for educational interventions.
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Figure 1. Model of early numerical magnitude
representations (from Opfer & Siegler, 2012).
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What psychophysical functions then are the most likely
ones to generate estimates of numerical value? Across a
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wide range of tasks and age groups (for review, see Opfer &
Siegler, 2012), we have observed two functions as being the
most likely contenders: the logarithmic function given by
Fechner's Law (y =k In x + b) and a standard linear function
(y = mx + b). For example, on number line estimation tasks,
children are shown a blank line flanked by two numbers
(e.g., 0 and 1000) and asked to estimate the position of a
third number on the line. Because line length itself is not
psychophysically compressive or expansive (Lu & Dosher,
2013), the task provides a relatively straightforward method
for assessing compression in numerical magnitude
representations.

In many studies using the number-line estimation task, a
logarithmic-to-linear shift has been observed. For example,
on a 0-1000 task, second graders' median estimates were
best fit by a logarithmic function, whereas sixth graders' and
adults median estimates were best fit by the linear function;
similarly, over 90% of individual second graders' estimates
were better fit by the logarithmic than linear function,
whereas the reverse was true of sixth graders and adults
(Siegler & Opfer, 2003). This developmental sequence has
been observed to occur at different ages with different
numerical ranges. It occurs between preschool and
kindergarten for the 0-10 range, between kindergarten and
second grade for the 0-100 range, between second and
fourth grade for the 0-1,000 range, and between third and
sixth grade for the 0-100,000 range (Berteletti, Lucangeli,
Piazza, Dehaene, & Zorzi, 2010; Opfer & Siegler, 2007;
Siegler & Booth, 2004; Thompson & Opfer, 2010). The
same transition occurs roughly a year later for children with
mathematical learning difficulties (Geary, Hoard, Byrd-
Craven, Nugent, & Numtee, 2007). The timing of the
changes corresponds to periods when children are gaining
extensive exposure to the numerical ranges: through
counting during preschool for numbers up to 10, through
addition and subtraction between kindergarten and second
grade for numbers through 100, and through all four
arithmetic operations in the remainder of elementary school.

Against the idea of a logarithmic-to-linear shift, however,
Barth and colleagues have recently presented evidence that
estimates of numerical value may follow cyclical power
functions rather than being truly Fechnerian logarithmic
functions or arithmetically correct linear functions. For
example, on a 0-100 number line task, estimates of 7-year-
olds were found to follow a 2-cycle power function
originally described by Hollands & Dyre (2000). Indeed, the
fit of the 2-cycle power function was strongest for 7-year-
olds' (R* = .968) and 8-year-olds' (R* = .995) estimates on
the 0-1000 number line task, which we examine in our
present study. Further, rather than observing an abrupt,
single-trial increase in linearity (as Opfer & Siegler, 2007,
reported), Barth and colleagues observed a gradual, age-
related increase in the value of the exponent of the power
function. If true, these quantitative findings are theoretically
important. First, they suggest that the commonalities
between estimates of symbolic and non-symbolic magnitude
are mostly illusory, with estimates of symbolic magnitude

being affected by children's prior knowledge of proportions
(e.g., that 500 is half of 1000). Second, they suggest that
changes in numerical magnitude estimates are quantitative
(in the sense that one parameter in the same function
changes over time) rather than qualitative (in the sense that
different functions are needed to describe younger versus
older children's estimates).

Why Different Functions? Sampling versus Supervision.
To illustrate the difference between the data cited in support
of the logarithmic-to-linear shift account and the proportion-
judgment account, it is useful to compare 7- and 8-year-olds'
number line estimates on the 0-1000 task (Fig. 2), where
Slusser et al. (2012) found a better fit for the 2-cycle power
function over the logarithmic, despite the logarithmic
function providing a better fit in the data collected by Opfer
and Siegler (2007). Given that the ages of the children and
the numeric ranges were the same, something must explain
these discrepant findings.
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Figure 2. Discrepant results in 0-1000 number line
estimation: Left, Pretest number line estimates from Opfer
& Siegler, 2007; Right, number line estimates from Slusser

etal., 2012.

One potential cause of the discrepancy is methodological
differences in sampling (Barth, Slusser, Cohen, & Paladino,
2011; Slusser et al., 2012), with the fit of the logarithmic
function being an artifact of sparsely sampling at the upper
ranges (e.g., obtaining few estimates for numbers 750-1000)
and heavily sampling at the lower ranges (e.g., obtaining
many estimates for numbers 0-250). As Slusser et al. (2012)
write, "there is a resounding tendency for researchers to
sample heavily from the lower end of the number line and
scarcely from the upper end. This is because most studies
aim specifically to distinguish between logarithmic and
linear fits in the context of the representational-shift
hypothesis.... This practice focuses on participants’
propensity to overestimate small numbers, but yields little
data to reveal the details of underestimation patterns for
larger numbers" (p. 4). This observation has potential force.
As can be seen in Fig. 2, Opfer and Siegler (2007) collected
estimates for 13 numbers in the 0-250 range and 3 numbers
in the 750-1000 range, whereas Slusser et al. (2012)
collected estimates for 7 numbers in each of the two ranges.

Another potential cause of the discrepancy is
methodological differences in supervision (Opfer, Siegler,
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& Young, 2011), with the fit of the 2-cycle power function
being an artifact of experimenters supervising children's
estimate of 500. In the typical number line task (Siegler &
Opfer, 2003; Siegler & Booth, 2004; Booth & Siegler, 2006;
Laski & Siegler, 2007; Opfer & Siegler, 2007; Opfer &
Thompson, 2008; Thompson & Opfer, 2008; Opfer &
Martens, 2012), children are given no supervision in any of
their number line placements. In contrast, in all studies
finding a superior fit of the 2-cycle power function,
children's estimate of the halfway point is supervised. For
example, in Slusser et al. (2012), children were told,
"Because 500 is half of 1000, it goes right in the middle
between 0 and 1000. So 500 goes right there, but it’s the
only number that goes right there." Given previous training
studies (Opfer & Siegler, 2007; Opfer & Thompson, 2008;
Thompson & Opfer, 2008), such supervision seems highly
likely to affect children's estimates.

While these two potential causes of the discrepancy in
findings are not mutually exclusive, each cause has different
theoretical implications. From the perspective of the
logarithmic-to-linear-shift account, differences in sampling
are predicted to be minor because oversampling has only a
small impact on the absolute fit of the logarithmic and linear
regression models. In contrast, from the perspective of the
proportion-judgment account, differences in supervision are
predicted to be minor because if the child already represents
numbers as proportions (e.g., 500 as half of 1000),
supervision tells the child nothing new. Thus, in addition to
helping to explain the discrepancy in previous results, an
effect of either sampling or supervision is meaningful.

The Current Study. To test the impact of supervision and
sampling on the fit of the logarithmic and 2-cycle power
functions to children's number line estimates, we created a
fully crossed 2x2 design and assigned 96 children to one of
four conditions.

In the design, we crossed sampling (over-sampling, even-
sampling) and supervision (supervised, unsupervised). Two
conditions were direct replication attempts of previous
findings:  over-sampling/unsupervised was a direct
replication of Opfer and Siegler (2007), and even-
sampling/supervised was a direct replication of Slusser et al.
(2012). In these two cells, we expected to replicate previous
findings (i.e., best fit by the logarithmic function for the
over-sampling/unsupervised condition and best fit by the 2-
cycle power function for the even-sampling/supervised
condition as in Fig. 2). The remaining two conditions have
not been tested previously. Both the logarithmic-to-linear-
shift and proportion-judgment account expect slightly worse
fits of their preferred models in the over-
sampling/supervised cell (though for different reasons).
Thus, the most interesting condition is the even-
sampling/unsupervised cell. If the fit of the logarithmic
function is simply an artifact of over-sampling, estimates in
this condition are expected to be best fit by a 2-cycle power
function. In contrast, if the fit of the power function is an
artifact of supervision, estimates are expected to be best fit
by a logarithmic function.

Method

Participants

Participants were 96 first and second grade students (M =
7.62 years, SD = 0.59 years; 55% females; 74% Caucasian,
8% Biracial, 6% Asian, 5% African American, 4% Native
American, and 2% Hispanic) who attended one of five
public elementary schools in Norman, OK. On average,
45% of students at these five schools were eligible for free
or reduced-price lunches; Oklahoma’s state average is 61%.
Two female research assistants presented the procedure.

Procedure and Design

All children completed the estimation task one-on-one
with a trained experimenter in a quiet room in their school.
For each problem, children were shown a line 21.8-cm long,
with the left endpoint labeled 0 and the right endpoint
labeled 1000. The child's task was to estimate the position
of a third number by making a hatch mark on the number
line corresponding to its location.

Children differed in the numbers that they estimated and
the instructions they received. Specifically, children were
randomly assigned to one of four fully-crossed experimental
conditions that differed with respect to the numbers that
were estimated on number lines (over-sampling/even-
sampling conditions) and whether corrective feedback was
given about the location of 500, the midpoint of the 0-1000
number line (supervised/unsupervised conditions).

In the oversampling conditions, children were asked to
estimate the positions of 2, 5, 18, 34, 56, 78, 100, 122, 147,
150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 818,
and 938. These numbers had been used in Opfer and Siegler
(2007). In the even sampling conditions, children were
asked to estimate the positions of 3, 7, 19, 52, 103, 158,
240, 297, 346, 391, 438, 475, 525, 562, 609, 654, 703, 760,
842, 897, 948, 981, 993, and 997. These numbers had been
used in Slusser et al. (2012).

In the supervised conditions, children received the
following instructions (adapted from Slusser, Santiago, &
Barth, 2012): “This task is with number lines. There will be
a number up here. [Researcher pointed to the top left corner
of the blank number line data sheet where the to-be-
estimated number was located.] Your job is to show me
where that number goes on a number line like this one.
Each number line will have a 0 at this end [Researcher
pointed to 0.] and 1000 at the other end [Researcher pointed
to 1000.]. When you decide where the right place for the
number is, I want you to make a mark through the line like
this. [Researcher made a vertical hatch mark in the air in
front of the child.] Can you show me where 0 goes? Great!
Now, can you show me where 1000 goes? [Researcher
provided corrective feedback if the participant did not mark
the right location for these two numbers.] So if this is 0, and
this is 1000, where would you put 5007 [Researcher
provided corrective feedback on the location of 500.]
Because 500 is half of 1000, it goes right in the middle
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between 0 and 1000. So 500 goes right there [Researcher
pointed to vertical hatch mark that indicated the correct
location of 500], but it’s the only number that goes there. 1
am going to show you a lot of numbers, so just mark where
you think each one should go. Don’t spend too long thinking
about each one. I will read you the number above the line,
and then you should decide where that number goes. Are
you ready to give it a try?”

Children assigned to the no supervision conditions
received the same instructions except these children were
not asked to estimate 500, and thus were not given feedback
about the correct location of the midpoint of the 0-1000
number line.

Results

To ensure that our random assignment to condition resulted
in equivalent groups, we first confirmed that age did not
differ significantly by experimental condition, F(1, 92) =
41, p > .05.

Over-sampling/Unsupervised. As in all analyses, we
regressed children's median estimates against number using
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both the logarithmic and 2-cycle power function (Fig. 3).
While the logarithmic function accounted for 95% of
variation in children's estimates, the 2-cycle regression
function accounted for only 4%. To interpret this difference
in R? values, we calculated differences in AICc scores.
Although this model selection tool is somewhat biased for
models with parameters having greater flexibility of form
(e.g., favoring power models over logarithmic ones; Pitt,
Myung, & Zhang, 2002), AICc scores were used by Slusser
et al. (2012) and so we used them here as well. In this case,
we observed an AICc difference of 62.89, meaning that
there was a greater than 99.99% probability that the data-
generating function was logarithmic rather than a 2-cycle
power function. To ensure that these results were not
artifacts of averaging data over subjects, we also fit the
logarithmic and 2-cycle power function to each individual
child's estimates, with the result that 84% of children were
better fit by the logarithmic regression function than by the
2-cycle power function. Thus, as expected, we replicated
results from Opfer and Siegler (2007) when using their
combination of numbers and no supervision.
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Figure 3. Estimates by experimental condition.
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Even-sampling/Supervised. We next analyzed results from
the condition using the numbers and supervision provided
by Slusser et al. (2012). In this condition, we found that the
fit of the 2-cycle power model (R* = .93) was greater than
the fit of the logarithmic model (R* = .70). To interpret this
difference, we calculated differences in AICc scores, and we
found a difference of 35.84, meaning that the probability
that the 2-cycle power function is the data-generating model
is >99.99%. We also fit the logarithmic and 2-cycle power
function to each individual child's estimates, with the result
that 70% of children were better fit by the logarithmic
regression function than by the 2-cycle power function.
Thus, as expected, we replicated results from Slusser et al.
(2012) when using their combination of numbers and
supervision.

Over-sampling/Supervised. Results from the condition
using the numbers tested by Opfer & Siegler (2007) and the
supervision provided by Slusser et al. (2012) were examined
next. In this condition, we found that the fit of the
logarithmic model (R* = .83) was greater than the fit of the
2-cycle power model (R” = .81). To interpret this difference,
we calculated differences in AICc scores, and we found a
difference of .31, meaning that the probability that the
logarithmic function is the data-generating model is 46.1%.
We also fit the logarithmic and 2-cycle power function to
each individual child's estimates, with the result that 58% of
children were better fit by the logarithmic regression
function than by the 2-cycle power function. Thus, whether
because over-sampling penalized the power function (as
suggested by Slusser et al., 2012) or because supervision
increases the linearity of estimates (Opfer & Thompson,
2008; Thompson & Opfer, 2008), the absolute fit of both
models was less than had been previously observed and the
relative differences between the models were less as well.

Even-sampling/Unsupervised.  Finally, we analyzed
results from the condition using the numbers tested by
Slusser et al. (2012) but with no supervision (as in Siegler &
Opfer, 2003; Siegler & Booth, 2004; Booth & Siegler, 2006;
Laski & Siegler, 2007; Opfer & Siegler, 2007; Opfer &
Thompson, 2008; Thompson & Opfer, 2008; Opfer &
Martens, 2012). In this condition, we found that the fit of
the logarithmic model (R* = .83) was greater than the fit of
the 2-cycle power model (R* = .73). To interpret this
difference, we calculated differences in AICc scores, and we
found a difference of 8.73, meaning that the probability that
the logarithmic function is the data-generating model is
98.74%. We also fit the logarithmic and 2-cycle power
function to each individual child's estimates, with the result
that 67% of children were better fit by the logarithmic
regression function than by the 2-cycle power function.
Thus, rather than the fit of the logarithmic function being an
artifact of the numbers tested, numerical magnitude
estimates -- when unsupervised -- appear to follow a
logarithmic function.

Why might supervision raise the relative fit of the 2-cycle
power function over the logarithmic function? One
possibility is that supervision simply causes children to

improve their estimates, thereby increasing the fit of the
linear function. To test this idea, we re-analyzed results to
determine whether they might be better explained by a
linear rather than 2-cycle function. For median estimates,
the linear function provided a better fit than the 2-cycle
function across all four conditions (AICc's > 12; prob. of lin
> 99%). However, the proportion of individual children best
fit by logarithmic versus linear functions varied with age
and supervision. Among the 24 7-year-olds, 75% of children
in the unsupervised conditions were best fit by log, whereas
only 43% were best fit by lin, > = 5.49, p = .019. Among

the 24 8-year-olds, 33% of children in the unsupervised
conditions and 30% of children in the supervised condition
were best fit by log. Thus, as in Opfer and Siegler (2007),
both supervision and age increased the proportion of
children generating estimates best fit by the linear function.

Discussion

In this paper, we sought to reconcile seemingly
incompatible data (Barth & Paladino, 2011; Opfer &
Siegler, 2007; Opfer, Siegler, & Young, 2011; Slusser,
Santiago, & Barth, 2012) regarding the psychophysical
functions that link numbers to children's estimates of
numerical magnitude. Specifically, we sought to identify the
influence of sampling and supervision on the relative fits of
the 2-cycle and logarithmic functions.

The results of our study indicate that young children's
unsupervised estimates of numerical magnitude tend to
increase logarithmically with the actual value of the
numbers estimated. This finding held regardless of whether
the numbers that were presented to children oversampled
the low end of the range or sampled all numbers equally.
This result is not consistent with the speculation of Barth et
al. (2011) and Slusser et al. (2012) that the superiority of the
fit of the logarithmic function to the power function is an
artifact of sampling. This was an important issue to test
because the only previous study examining the relative fits
of the two models to unsupervised estimates (Opfer, Siegler,
& Young, 2011) had relied on data that used over-sampling
and found that over 90% of individual children's estimates
were best fit by the linear and logarithmic functions.

Results also suggest that it is not very likely that young
children spontaneously make use of numerical proportions
when estimating the positions of numbers on number lines.
This is a key claim of the proportion-judgment account, and
it guides the choice of models for testing. Against this view,
however, few second graders know that the number that is
half of 1000 is 500. Thus, telling them this fact in the
context of number line estimation is likely to have a large
effect on their estimates. Consistent with this idea, 67% of
children making unsupervised estimates (with even
sampling) were best fit by the logarithmic function, whereas
only 30% of children making supervised estimates (with
even sampling) were best fit by the logarithmic function.
This result would not be expected if children already knew
the proportions being given by Slusser et al. (2012) in their
instructions to children.
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Most generally, however, the results suggest that
supervision has a powerful effect on children's number line
estimates. We found that the largest impact of supervision
was to increase the linearity of estimates (regardless of
sampling), not to cause children's estimates to follow a 2-
cycle power function. This result is consistent with a
number of training studies of children's number-line
estimates (Opfer & Siegler, 2007; Opfer & Thompson,
2008; Thompson & Opfer, 2008). An important conclusion
from these and the present study is that representations of
symbolic numeric magnitude are plastic and modifiable by
experience. Given that linearity of children's numerical
estimates correlate highly with real-world behavior,
including children's memory for numbers, their ability to
learn arithmetic facts, their math grades in school, and their
math achievement scores (Booth & Siegler, 2006, 2008;
Fazio, Bailey, Thompson, & Siegler, 2014; Siegler &
Thompson, 2014; Siegler, Thompson, & Schneider, 2011),
the present results suggest that supervision of numerical
magnitude judgments could have an important effect on
children's general math proficiency as well.
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