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Abstract 
Children's number-line estimation has produced a lively 
debate about representational change, supported by 
apparently incompatible data regarding the descriptive 
adequacy of logarithmic (Opfer et al., 2011) and power 
models (Slusser et al., 2013). To test whether methodological 
differences might explain discrepant findings, we created a 
fully crossed 2x2 design and assigned 96 children to one of 
four cells. In the design, we crossed sampling (over-, even-) 
and supervision (with feedback, without feedback), which 
were candidate factors to explain discrepant findings. In three 
conditions (over-sampling/unsupervised-83%, even-
sampling/unsupervised-67%, and over-sampling/supervised-
58%), the majority of children provided estimates better fit by 
the logarithmic than by the power function. In the last 
condition (even-sampling/supervised-30%), the reverse was 
found. Overall, a reliable association (p < .0001) was found 
between proportion best fit by the power function and 
supervision. Results suggest that the fit of the power function 
to children's estimates is likely an artifact of supervision.  

Keywords: numerical cognition; estimation; learning; 
cognitive development 

Introduction 
In this paper, we attempt to reconcile seemingly 

incompatible data (Barth & Paladino, 2011; Opfer & 
Siegler, 2007; Opfer, Siegler, & Young, 2011; Slusser, 
Santiago, & Barth, 2012) regarding the psychophysical 
functions that link numbers to children's estimates of 
numerical magnitude.  

The psychophysical functions that link numbers to 
subjects' estimates of numerical magnitude are both 
theoretically and practically important. Of theoretical 
interest, the functions generating young children's numerical 
magnitude estimates have been observed in the non-
symbolic number discrimination of a wide range of species 
(for review, see Nieder and Dehaene, 2009), to change 
abruptly with limited experience (Opfer & Siegler, 2007; 
Izard & Dehaene, 2008), and to closely track abilities to 
deal with numbers in other contexts (Booth & Siegler, 2006; 
Thompson & Siegler, 2010). Thus, just as an animal can 
better discriminate 1 and 10 objects than 101 and 110 
objects, so too do children estimate the magnitudes of the 
symbols 1 and 10 to differ more than 101 and 110. These 
results suggest that (1) over the course of development, 
numerical symbols are linked to an innate "mental number 
line" that allows infants and other animals to discriminate 

numbers and match them across modalities (see Fig. 1) and 
(2) the linking between symbolic numbers and mental 
magnitudes is plastic and undergoes qualitative change 
(Opfer & Siegler, 2012). 

The psychophysical functions linking numbers and 
estimates of numerical value have emerged as practically 
important as well. Specifically, the functions generating 
children's numerical estimates correlate highly with real-
world behavior, including children's memory for numbers, 
their ability to learn arithmetic facts, their math grades in 
school, and their math achievement scores (Booth & 
Siegler, 2006, 2008; Fazio, Bailey, Thompson, & Siegler, 
2014; Siegler & Thompson, 2014; Siegler, Thompson, & 
Schneider, 2011). These findings suggest that children's 
representations of numerical magnitude play an important 
role in development of mathematical ability and should be a 
target for educational interventions. 

Figure 1. Model of early numerical magnitude 
representations (from Opfer & Siegler, 2012). 

 
What psychophysical functions then are the most likely 

ones to generate estimates of numerical value? Across a 
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wide range of tasks and age groups (for review, see Opfer & 
Siegler, 2012), we have observed two functions as being the 
most likely contenders: the logarithmic function given by 
Fechner's Law (y = k ln x + b) and a standard linear function 
(y = mx + b). For example, on number line estimation tasks, 
children are shown a blank line flanked by two numbers 
(e.g., 0 and 1000) and asked to estimate the position of a 
third number on the line. Because line length itself is not 
psychophysically compressive or expansive (Lu & Dosher, 
2013), the task provides a relatively straightforward method 
for assessing compression in numerical magnitude 
representations.  

In many studies using the number-line estimation task, a 
logarithmic-to-linear shift has been observed. For example, 
on a 0-1000 task, second graders' median estimates were 
best fit by a logarithmic function, whereas sixth graders' and 
adults median estimates were best fit by the linear function; 
similarly, over 90% of individual second graders' estimates 
were better fit by the logarithmic than linear function, 
whereas the reverse was true of sixth graders and adults 
(Siegler & Opfer, 2003). This developmental sequence has 
been observed to occur at different ages with different 
numerical ranges. It occurs between preschool and 
kindergarten for the 0-10 range, between kindergarten and 
second grade for the 0–100 range, between second and 
fourth grade for the 0–1,000 range, and between third and 
sixth grade for the 0–100,000 range (Berteletti, Lucangeli, 
Piazza, Dehaene, & Zorzi, 2010; Opfer & Siegler, 2007; 
Siegler & Booth, 2004; Thompson & Opfer, 2010). The 
same transition occurs roughly a year later for children with 
mathematical learning difficulties (Geary, Hoard, Byrd-
Craven, Nugent, & Numtee, 2007). The timing of the 
changes corresponds to periods when children are gaining 
extensive exposure to the numerical ranges: through 
counting during preschool for numbers up to 10, through 
addition and subtraction between kindergarten and second 
grade for numbers through 100, and through all four 
arithmetic operations in the remainder of elementary school. 

Against the idea of a logarithmic-to-linear shift, however, 
Barth and colleagues have recently presented evidence that 
estimates of numerical value may follow cyclical power 
functions rather than being truly Fechnerian logarithmic 
functions or arithmetically correct linear functions. For 
example, on a 0-100 number line task, estimates of 7-year-
olds were found to follow a 2-cycle power function 
originally described by Hollands & Dyre (2000). Indeed, the 
fit of the 2-cycle power function was strongest for 7-year-
olds' (R2 = .968) and 8-year-olds' (R2 = .995) estimates on 
the 0-1000 number line task, which we examine in our 
present study. Further, rather than observing an abrupt, 
single-trial increase in linearity (as Opfer & Siegler, 2007, 
reported), Barth and colleagues observed a gradual, age-
related increase in the value of the exponent of the power 
function. If true, these quantitative findings are theoretically 
important. First, they suggest that the commonalities 
between estimates of symbolic and non-symbolic magnitude 
are mostly illusory, with estimates of symbolic magnitude 

being affected by children's prior knowledge of proportions 
(e.g., that 500 is half of 1000). Second, they suggest that 
changes in numerical magnitude estimates are quantitative 
(in the sense that one parameter in the same function 
changes over time) rather than qualitative (in the sense that 
different functions are needed to describe younger versus 
older children's estimates). 

Why Different Functions? Sampling versus Supervision. 
To illustrate the difference between the data cited in support 
of the logarithmic-to-linear shift account and the proportion-
judgment account, it is useful to compare 7- and 8-year-olds' 
number line estimates on the 0-1000 task (Fig. 2), where 
Slusser et al. (2012) found a better fit for the 2-cycle power 
function over the logarithmic, despite the logarithmic 
function providing a better fit in the data collected by Opfer 
and Siegler (2007). Given that the ages of the children and 
the numeric ranges were the same, something must explain 
these discrepant findings. 

 
Figure 2. Discrepant results in 0-1000 number line 

estimation: Left, Pretest number line estimates from Opfer 
& Siegler, 2007; Right, number line estimates from Slusser 

et al., 2012. 
 

One potential cause of the discrepancy is methodological 
differences in sampling (Barth, Slusser, Cohen, & Paladino, 
2011; Slusser et al., 2012), with the fit of the logarithmic 
function being an artifact of sparsely sampling at the upper 
ranges (e.g., obtaining few estimates for numbers 750-1000) 
and heavily sampling at the lower ranges (e.g., obtaining 
many estimates for numbers 0-250). As Slusser et al. (2012) 
write, "there is a resounding tendency for researchers to 
sample heavily from the lower end of the number line and 
scarcely from the upper end. This is because most studies 
aim specifically to distinguish between logarithmic and 
linear fits in the context of the representational-shift 
hypothesis…. This practice focuses on participants’ 
propensity to overestimate small numbers, but yields little 
data to reveal the details of underestimation patterns for 
larger numbers" (p. 4). This observation has potential force. 
As can be seen in Fig. 2, Opfer and Siegler (2007) collected 
estimates for 13 numbers in the 0-250 range and 3 numbers 
in the 750-1000 range, whereas Slusser et al. (2012) 
collected estimates for 7 numbers in each of the two ranges. 

Another potential cause of the discrepancy is 
methodological differences in supervision (Opfer, Siegler, 
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& Young, 2011), with the fit of the 2-cycle power function 
being an artifact of experimenters supervising children's 
estimate of 500. In the typical number line task (Siegler & 
Opfer, 2003; Siegler & Booth, 2004; Booth & Siegler, 2006; 
Laski & Siegler, 2007; Opfer & Siegler, 2007; Opfer & 
Thompson, 2008; Thompson & Opfer, 2008; Opfer & 
Martens, 2012), children are given no supervision in any of 
their number line placements. In contrast, in all studies 
finding a superior fit of the 2-cycle power function, 
children's estimate of the halfway point is supervised. For 
example, in Slusser et al. (2012), children were told, 
"Because 500 is half of 1000, it goes right in the middle 
between 0 and 1000. So 500 goes right there, but it’s the 
only number that goes right there." Given previous training 
studies (Opfer & Siegler, 2007; Opfer & Thompson, 2008; 
Thompson & Opfer, 2008), such supervision seems highly 
likely to affect children's estimates.  

While these two potential causes of the discrepancy in 
findings are not mutually exclusive, each cause has different 
theoretical implications. From the perspective of the 
logarithmic-to-linear-shift account, differences in sampling 
are predicted to be minor because oversampling has only a 
small impact on the absolute fit of the logarithmic and linear 
regression models. In contrast, from the perspective of the 
proportion-judgment account, differences in supervision are 
predicted to be minor because if the child already represents 
numbers as proportions (e.g., 500 as half of 1000), 
supervision tells the child nothing new. Thus, in addition to 
helping to explain the discrepancy in previous results, an 
effect of either sampling or supervision is meaningful. 

The Current Study. To test the impact of supervision and 
sampling on the fit of the logarithmic and 2-cycle power 
functions to children's number line estimates, we created a 
fully crossed 2x2 design and assigned 96 children to one of 
four conditions.  

In the design, we crossed sampling (over-sampling, even-
sampling) and supervision (supervised, unsupervised). Two 
conditions were direct replication attempts of previous 
findings: over-sampling/unsupervised was a direct 
replication of Opfer and Siegler (2007), and even-
sampling/supervised was a direct replication of Slusser et al. 
(2012). In these two cells, we expected to replicate previous 
findings (i.e., best fit by the logarithmic function for the 
over-sampling/unsupervised condition and best fit by the 2-
cycle power function for the even-sampling/supervised 
condition as in Fig. 2). The remaining two conditions have 
not been tested previously. Both the logarithmic-to-linear-
shift and proportion-judgment account expect slightly worse 
fits of their preferred models in the over-
sampling/supervised cell (though for different reasons). 
Thus, the most interesting condition is the even-
sampling/unsupervised cell. If the fit of the logarithmic 
function is simply an artifact of over-sampling, estimates in 
this condition are expected to be best fit by a 2-cycle power 
function. In contrast, if the fit of the power function is an 
artifact of supervision, estimates are expected to be best fit 
by a logarithmic function. 

Method 

Participants 

Participants were 96 first and second grade students (M = 
7.62 years, SD = 0.59 years; 55% females; 74% Caucasian, 
8% Biracial, 6% Asian, 5% African American, 4% Native 
American, and 2% Hispanic) who attended one of five 
public elementary schools in Norman, OK. On average, 
45% of students at these five schools were eligible for free 
or reduced-price lunches; Oklahoma’s state average is 61%. 
Two female research assistants presented the procedure. 

Procedure and Design 
All children completed the estimation task one-on-one 

with a trained experimenter in a quiet room in their school. 
For each problem, children were shown a line 21.8-cm long, 
with the left endpoint labeled 0 and the right endpoint 
labeled 1000. The child's task was to estimate the position 
of a third number by making a hatch mark on the number 
line corresponding to its location. 

Children differed in the numbers that they estimated and 
the instructions they received. Specifically, children were 
randomly assigned to one of four fully-crossed experimental 
conditions that differed with respect to the numbers that 
were estimated on number lines (over-sampling/even-
sampling conditions) and whether corrective feedback was 
given about the location of 500, the midpoint of the 0-1000 
number line (supervised/unsupervised conditions).  

In the oversampling conditions, children were asked to 
estimate the positions of 2, 5, 18, 34, 56, 78, 100, 122, 147, 
150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 818, 
and 938. These numbers had been used in Opfer and Siegler 
(2007). In the even sampling conditions, children were 
asked to estimate the positions of 3, 7, 19, 52, 103, 158, 
240, 297, 346, 391, 438, 475, 525, 562, 609, 654, 703, 760, 
842, 897, 948, 981, 993, and 997. These numbers had been 
used in Slusser et al. (2012). 

 In the supervised conditions, children received the 
following instructions (adapted from Slusser, Santiago, & 
Barth, 2012): “This task is with number lines. There will be 
a number up here. [Researcher pointed to the top left corner 
of the blank number line data sheet where the to-be-
estimated number was located.] Your job is to show me 
where that number goes on a number line like this one. 
Each number line will have a 0 at this end [Researcher 
pointed to 0.] and 1000 at the other end [Researcher pointed 
to 1000.]. When you decide where the right place for the 
number is, I want you to make a mark through the line like 
this. [Researcher made a vertical hatch mark in the air in 
front of the child.] Can you show me where 0 goes? Great! 
Now, can you show me where 1000 goes? [Researcher 
provided corrective feedback if the participant did not mark 
the right location for these two numbers.] So if this is 0, and 
this is 1000, where would you put 500? [Researcher 
provided corrective feedback on the location of 500.] 
Because 500 is half of 1000, it goes right in the middle 
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between 0 and 1000. So 500 goes right there [Researcher 
pointed to vertical hatch mark that indicated the correct 
location of 500], but it’s the only number that goes there. I 
am going to show you a lot of numbers, so just mark where 
you think each one should go. Don’t spend too long thinking 
about each one. I will read you the number above the line, 
and then you should decide where that number goes. Are 
you ready to give it a try?”  

Children assigned to the no supervision conditions 
received the same instructions except these children were 
not asked to estimate 500, and thus were not given feedback 
about the correct location of the midpoint of the 0-1000 
number line. 

Results 
To ensure that our random assignment to condition resulted 
in equivalent groups, we first confirmed that age did not 
differ significantly by experimental condition, F(1, 92) = 
.41, p > .05.  

Over-sampling/Unsupervised. As in all analyses, we 
regressed children's median estimates against number using 

both the logarithmic and 2-cycle power function (Fig. 3). 
While the logarithmic function accounted for 95% of 
variation in children's estimates, the 2-cycle regression 
function accounted for only 4%. To interpret this difference 
in R2 values, we calculated differences in AICc scores. 
Although this model selection tool is somewhat biased for 
models with parameters having greater flexibility of form 
(e.g., favoring power models over logarithmic ones; Pitt, 
Myung, & Zhang, 2002), AICc scores were used by Slusser 
et al. (2012) and so we used them here as well. In this case, 
we observed an AICc difference of 62.89, meaning that 
there was a greater than 99.99% probability that the data-
generating function was logarithmic rather than a 2-cycle 
power function. To ensure that these results were not 
artifacts of averaging data over subjects, we also fit the 
logarithmic and 2-cycle power function to each individual 
child's estimates, with the result that 84% of children were 
better fit by the logarithmic regression function than by the 
2-cycle power function. Thus, as expected, we replicated 
results from Opfer and Siegler (2007) when using their 
combination of numbers and no supervision. 
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Figure 3. Estimates by experimental condition. 
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Even-sampling/Supervised. We next analyzed results from 
the condition using the numbers and supervision provided 
by Slusser et al. (2012). In this condition, we found that the 
fit of the 2-cycle power model (R2 = .93) was greater than 
the fit of the logarithmic model (R2 = .70). To interpret this 
difference, we calculated differences in AICc scores, and we 
found a difference of 35.84, meaning that the probability 
that the 2-cycle power function is the data-generating model 
is >99.99%. We also fit the logarithmic and 2-cycle power 
function to each individual child's estimates, with the result 
that 70% of children were better fit by the logarithmic 
regression function than by the 2-cycle power function. 
Thus, as expected, we replicated results from Slusser et al. 
(2012) when using their combination of numbers and 
supervision. 

Over-sampling/Supervised. Results from the condition 
using the numbers tested by Opfer & Siegler (2007) and the 
supervision provided by Slusser et al. (2012) were examined 
next. In this condition, we found that the fit of the 
logarithmic model (R2 = .83) was greater than the fit of the 
2-cycle power model (R2 = .81). To interpret this difference, 
we calculated differences in AICc scores, and we found a 
difference of .31, meaning that the probability that the 
logarithmic function is the data-generating model is 46.1%. 
We also fit the logarithmic and 2-cycle power function to 
each individual child's estimates, with the result that 58% of 
children were better fit by the logarithmic regression 
function than by the 2-cycle power function. Thus, whether 
because over-sampling penalized the power function (as 
suggested by Slusser et al., 2012) or because supervision 
increases the linearity of estimates (Opfer & Thompson, 
2008; Thompson & Opfer, 2008), the absolute fit of both 
models was less than had been previously observed and the 
relative differences between the models were less as well. 

Even-sampling/Unsupervised. Finally, we analyzed 
results from the condition using the numbers tested by 
Slusser et al. (2012) but with no supervision (as in Siegler & 
Opfer, 2003; Siegler & Booth, 2004; Booth & Siegler, 2006; 
Laski & Siegler, 2007; Opfer & Siegler, 2007; Opfer & 
Thompson, 2008; Thompson & Opfer, 2008; Opfer & 
Martens, 2012). In this condition, we found that the fit of 
the logarithmic model (R2 = .83) was greater than the fit of 
the 2-cycle power model (R2 = .73). To interpret this 
difference, we calculated differences in AICc scores, and we 
found a difference of 8.73, meaning that the probability that 
the logarithmic function is the data-generating model is 
98.74%. We also fit the logarithmic and 2-cycle power 
function to each individual child's estimates, with the result 
that 67% of children were better fit by the logarithmic 
regression function than by the 2-cycle power function. 
Thus, rather than the fit of the logarithmic function being an 
artifact of the numbers tested, numerical magnitude 
estimates -- when unsupervised -- appear to follow a 
logarithmic function. 

Why might supervision raise the relative fit of the 2-cycle 
power function over the logarithmic function? One 
possibility is that supervision simply causes children to 

improve their estimates, thereby increasing the fit of the 
linear function. To test this idea, we re-analyzed results to 
determine whether they might be better explained by a 
linear rather than 2-cycle function. For median estimates, 
the linear function provided a better fit than the 2-cycle 
function across all four conditions (AICc's > 12; prob. of lin 
> 99%). However, the proportion of individual children best 
fit by logarithmic versus linear functions varied with age 
and supervision. Among the 24 7-year-olds, 75% of children 
in the unsupervised conditions were best fit by log, whereas 
only 43% were best fit by lin, 𝜒2 = 5.49, p = .019. Among 
the 24 8-year-olds, 33% of children in the unsupervised 
conditions and 30% of children in the supervised condition 
were best fit by log. Thus, as in Opfer and Siegler (2007), 
both supervision and age increased the proportion of 
children generating estimates best fit by the linear function.  

Discussion 
In this paper, we sought to reconcile seemingly 

incompatible data (Barth & Paladino, 2011; Opfer & 
Siegler, 2007; Opfer, Siegler, & Young, 2011; Slusser, 
Santiago, & Barth, 2012) regarding the psychophysical 
functions that link numbers to children's estimates of 
numerical magnitude. Specifically, we sought to identify the 
influence of sampling and supervision on the relative fits of 
the 2-cycle and logarithmic functions. 

The results of our study indicate that young children's 
unsupervised estimates of numerical magnitude tend to 
increase logarithmically with the actual value of the 
numbers estimated. This finding held regardless of whether 
the numbers that were presented to children oversampled 
the low end of the range or sampled all numbers equally. 
This result is not consistent with the speculation of Barth et 
al. (2011) and Slusser et al. (2012) that the superiority of the 
fit of the logarithmic function to the power function is an 
artifact of sampling. This was an important issue to test 
because the only previous study examining the relative fits 
of the two models to unsupervised estimates (Opfer, Siegler, 
& Young, 2011) had relied on data that used over-sampling 
and found that over 90% of individual children's estimates 
were best fit by the linear and logarithmic functions.  

Results also suggest that it is not very likely that young 
children spontaneously make use of numerical proportions 
when estimating the positions of numbers on number lines. 
This is a key claim of the proportion-judgment account, and 
it guides the choice of models for testing. Against this view, 
however, few second graders know that the number that is 
half of 1000 is 500. Thus, telling them this fact in the 
context of number line estimation is likely to have a large 
effect on their estimates. Consistent with this idea, 67% of 
children making unsupervised estimates (with even 
sampling) were best fit by the logarithmic function, whereas 
only 30% of children making supervised estimates (with 
even sampling) were best fit by the logarithmic function. 
This result would not be expected if children already knew 
the proportions being given by Slusser et al. (2012) in their 
instructions to children. 
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Most generally, however, the results suggest that 
supervision has a powerful effect on children's number line 
estimates. We found that the largest impact of supervision 
was to increase the linearity of estimates (regardless of 
sampling), not to cause children's estimates to follow a 2-
cycle power function. This result is consistent with a 
number of training studies of children's number-line 
estimates (Opfer & Siegler, 2007; Opfer & Thompson, 
2008; Thompson & Opfer, 2008). An important conclusion 
from these and the present study is that representations of 
symbolic numeric magnitude are plastic and modifiable by 
experience. Given that linearity of children's numerical 
estimates correlate highly with real-world behavior, 
including children's memory for numbers, their ability to 
learn arithmetic facts, their math grades in school, and their 
math achievement scores (Booth & Siegler, 2006, 2008; 
Fazio, Bailey, Thompson, & Siegler, 2014; Siegler & 
Thompson, 2014; Siegler, Thompson, & Schneider, 2011), 
the present results suggest that supervision of numerical 
magnitude judgments could have an important effect on 
children's general math proficiency as well. 
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