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Abstract 

People must often infer what might have transpired in the past 
to bring about the present state of the world, a task called 
retrodiction. We hypothesize that retrodiction relies on 
similar cognitive mechanisms to prediction – inferring 
possible futures based on the present state of the world. Here 
we investigate how people perform on physical reasoning 
tasks that differ only in that people are asked to do either 
prediction or retrodiction. We find that average behavior is 
similar between tasks across a range of difficulty, though 
there was greater variability in retrodiction responses. We 
propose two ways in which prediction and retrodiction might 
be related; however, neither sufficiently explains the 
similarities and differences across tasks.  We suggest that 
both tasks rely on similar cognitive processes, but that further 
research is needed to determine the exact relation. 

Keywords: Prediction; Retrodiction; Physical Reasoning; 
Noisy Newton Physics 

Introduction 
People often predict what might happen next in the world to 
guide their actions: if someone throws a rock at you, where 
is it going and how do you move to avoid it? But in many 
cases, it is important to infer what happened in the past to 
bring about the present: where did the rock that whizzed by 
your head come from? These two types of tasks – prediction 
and retrodiction respectively – both require using 
information about the present to infer possibilities about a 
different period, but differ in the direction of time. Might 
these tasks therefore rely on the same cognitive 
mechanisms? And how does the difference in the direction 
of time affect how people perform these tasks?   

While there has been relatively little research into 
retrodiction, there has been significant attention paid to 
prediction, with many arguing that we are constantly and 
automatically predicting the future in order to plan our 
actions (Bar, 2007; Buckner & Carroll, 2007; Seligman, 
Railton, Baumeister, & Sripada, 2013). Underlying these 
predictions are mental models that simulate future states of 
the world based on how we expect the world to unfold 
alongside our own actions (Grush, 2004). 

Research focused on elaborative prediction (prospection) 
has suggested that this task of looking into the future relies 
on many of the same cognitive mechanisms as remembering 
the past (Schacter, Addis, & Buckner, 2007; Schacter et al., 
2012). We similarly suggest that retrodiction uses the same 
cognitive mechanisms that allow us to extrapolate the world 
forward. 

We propose two candidates for how retrodiction might 
employ the same extrapolation mechanisms as prediction. 
One candidate is that retrodiction is reverse prediction – just 
as we have mental processes to run the world forward, we 
might have complimentary processes to run the world 
backwards. Alternately, retrodiction might be inverse 
prediction. Here we draw parallels to the theory that vision 
is “inverse graphics” – we use a model of optics to infer 
how configurations of objects might give rise to various 
percepts, then condition on visual observations to determine 
what we are seeing (Kersten, Mamassian, & Yuille, 2004; 
Mansinghka, Kulkarni, Perov, & Tenenbaum, 2013). 
Retrodiction might involve positing potential past states of 
the world, then extrapolate the world forward in order to 
determine which prior configuration is most likely to have 
given rise to the current state of the world. 

Here we focus on physical prediction and retrodiction for 
two reasons. First, we have evidence for how people run the 
world forward when engaged in physical reasoning. The 
noisy Newton theory suggests that people use unbiased 
physical dynamics to simulate how objects might move, but 
uncertainty about the latent state of the world might give 
rise to mis-predictions and even systematic errors (Battaglia, 
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, & 
Griffiths, 2013; Smith, Battaglia, & Vul, 2013; Smith & 
Vul, 2013). Second, physics is reversible in time, so if 
retrodiction is simply reverse prediction, we can make 
situations in which there should be no difference between 
how people do prediction and retrodiction. On the other 
hand, stochastic noise is not reversible in time, so if 
retrodiction is inverse prediction, we might observe 
different errors even with matched dynamics. 

We first present an experiment in which we ask 
participants to make predictions and retrodictions with 
matched dynamics to find similarities and differences 
irrespective of discrepancies in the way the world unfolds 
forward or backward in time. We then describe two models 
that implement reverse prediction and inverse prediction and 
compare them to participants’ retrodictions. Participants’ 
average predictions and retrodictions were similar across a 
range of difficulties, suggesting commonalities in prediction 
and retrodiction; however, participants were more variable 
in their responses during retrodiction. We could explain 
prediction using the model of Smith and Vul (2013), but 
models of reverse and inverse prediction based on this 
forward model could not explain retrodiction, suggesting 
that despite being based on similar cognitive processes, 
there is a complex relationship between prediction and 
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retrodiction. Future research can build on this result to 
further specify how prediction and retrodiction relate. 

Experiment 
Participants made judgments about the trajectory of a ball 
bouncing around a table simulated on a computer in two 
conditions. In the prediction condition, participants watched 
a ball in motion and indicated where it would cross a line if 
it continued along its trajectory. In the retrodiction 
condition, participants watched a similar ball in motion and 
indicated where on a line it must have come from so that it 
would follow the observed trajectory. Crucially, trials were 
matched across the two conditions such that where a ball 
would cross the line on a prediction trial was where the ball 
came from on the matched retrodiction trial.  

Methods 
Fifty UC San Diego undergraduates participated in this 
experiment for course credit.1 All participants had normal or 
corrected to normal vision. 

Participants viewed a computer monitor from a distance 
of approximately 60cm, which showed a “table” with 
dimensions of 1200x900px from a top-down view. On all 
trials, participants would watch a ball travel on the table for 
750ms. After viewing this motion once, a vertical line 
would appear on the table, and the ball’s motion would 
continuously repeat. In the prediction block, participants 
indicated where they believed the ball would first cross the 
vertical line if it continued its trajectory. In the retrodiction 
block, participants indicated where on the vertical line they 
believed the ball last passed before its observed trajectory. 
Participants indicated their response by clicking on the 
vertical line, after which point the motion animation loop 
would stop and participants would be provided feedback 
with either the motion of the ball continuing to the line 
(prediction), or the motion of the ball starting at the vertical 
line and continuing through the observed trajectory 
(retrodiction). Participants would earn ‘points’ based on 
how close to reality their response was, but these points 
were simply for motivation and were not used for any 
rewards or analysis. On each trial, we recorded where the 
participant indicated the ball would/did cross the vertical 
line and the time it took them to make that response from 
when the vertical line first appeared (see Figure 1). 

Both the prediction and retrodiction blocks contained 150 
trials each, matched across the blocks. On matched trials, 
the vertical line would be positioned at the same horizontal 
location, and the observed trajectory of the ball would be 
mirrored in time; in this way the correct response to where 
the ball would/did cross the line was the same in both the 
prediction and retrodiction blocks – we call this position the 
actual crossing. Trial paths were constrained such that the 
correct response was never in the top or bottom 50px (5.6%) 
of the table. 

                                                             
1 One participant was excluded because she failed to follow 

directions, instead consistently responding as quickly as possible. 

 

 
Figure 1: Diagram of a trial – prediction (top) and 

retrodiction (bottom). (A) In the prediction condition, 
participants would see a ball in motion. (B) After 750ms 

participants were asked to indicate on a line where the ball 
would cross; the ball would repeat its motion in a loop until 
a prediction was made. (C) After a prediction was indicated, 
the actual trajectory of the ball to the line was shown. (D) In 
the matched retrodiction trial, the mirrored ball motion was 

shown for 750ms. (E) Participants were asked where the 
ball last crossed a line. (F) Feedback was provided by 

showing the ball path from the line to the observations. 
 
Each of the 150 trial pairs was categorized into one of six 

difficulty conditions, crossing the distance that the ball 
would need to travel to or from the vertical line (Short: 
750px; Long: 1000px) with the number of the bounces that 
the ball would take on its unobserved path (0, 1, or 2). Trials 
were equally balanced into 25 from each category. The ball 
traveled at a constant speed of 500px/s for all trials. 

Before each block, participants were given three practice 
trials to familiarize themselves with the task. Block order 
was randomized across participants, and all participants 
were given the same 150 matched trials in an order 
randomized for each block. 

The trajectory of the ball both while observed and 
unobserved was determined by Newtonian physics, as 
implemented in the Chipmunk 2-D physics engine 
(Lembcke, 2011). 

Results 
Average responses by trial Participants responses for each 
trial were very consistent with one another (average split 
half correlation – prediction: r = 0.97; retrodiction: r = 
0.93). We therefore aggregated participants’ responses for 
each trial to determine where, on average, people believed 
the ball would go to or had come from on that trial. 

Both the average prediction (r = 0.87) and retrodiction (r 
= 0.85) responses were correlated with the actual crossing 
location, suggesting that participants were taking into 
account trial differences (see Figure 2). Similar to Smith and 
Vul (2013), participants responded closer to the center of 
the screen than the actual crossing, and the center-bias and 
trial-by-trial variability increased as the distance and 
number of bounces increased. 
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On the other hand, predictions and retrodictions on 
matched trials were more correlated with one another (r = 
0.96), and this correlation did not change appreciably with 
difficulty condition (from a minimum of r = 0.94 in the 
short, one bounce condition to a maximum of r = 0.98 in the 
long, no bounce condition; see Table 1). Because responses 
between the blocks are more related than each block’s 
relation to ground truth (indeed, comparable to the internal 
consistency of each block), and this does not change with 
trial difficulty, it is likely that prediction and retrodiction 
rely on related extrapolation processes. 

 
Figure 3: Variability in prediction versus retrodiction 

responses by matched trial. Each point represents a separate 
matched trial. There is general consistency in which trials 

are more or less variable, but retrodictions are more 
variable. 

 
Variability of responses Although participants’ average 
responses were very similar between the prediction and 
retrodiction, individual responses were more variable in the 
retrodiction block. We measured variability as the standard 
deviation of participants’ responses within each trial. By 
this measure, trials that were variable in the prediction 
condition were also variable in the retrodiction condition (r 

= 0.78), but retrodiction trials were consistently more 
variable than prediction trials (see Figure 3). 
 
Table 1: Prediction vs. retrodiction comparison. (1) By-trial 
correlation between prediction/retrodiction responses. (2) 

Median prediction response time (ms). (3) Median 
retrodiction response time (ms)  

 
Trial condition P/R cor RT (Pred) RT (Retro) 
Overall 0.963 2,371 2,467 
Short distance    
  0 bounce 0.978 1,952 2,267 
  1 bounce 0.941 2,415 2,447 
  2 bounces 0.966 2,664 2,675 
Long distance    
  0 bounce 0.981 2,084 2,244 
  1 bounce 0.969 2,442 2,498 
  2 bounces 0.954 2,736 2,792 

 
Reaction times In this experiment, participants were not 
given any time constraints – they could take as long as 
needed to make predictions or retrodictions. Thus 
differences between the two blocks could be masked if 
participants took significantly longer on one of the two 
blocks. There was evidence that participants took longer to 
do the retrodiction task than the prediction task (Wilcoxon 
rank test: p = 0.021), but this appears to be driven by slower 
responses on trials without unobserved bounces (see Table 
1). Because we find similar amounts of center-shifting but 
increased retrodiction variability even when participants 
spent similar amounts of time across tasks, it is unlikely that 
our observations are biased by participants spending more 
time on the more difficult task. 
 
Learning over time We assumed that participants would 
bring prior knowledge about physics to bear on the tasks we 
gave them in this experiment. We therefore provided 
feedback after every trial to encourage participants to be 
accurate. However, it is possible to learn physical 

Figure 2: Average predictions (left) and retrodictions (right) versus where the ball would/did cross the vertical line, split by 
trial condition. Each point represents a separate trial. Error and trial-by-trial variability increases with difficulty, but differs 

only slightly from prediction to retrodiction. 
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contingencies from this feedback, and indeed we did find 
mild evidence for learning: by correlating absolute error 
(unsigned response less actual crossing) with trial order, we 
find a trend towards anticorrelation in the prediction task (r 
= -0.020, 95% CI = [-0.043, 0.002]) and modest 
anticorrelation in the retrodiction task (r = -0.053, 95% CI = 
[-0.075, -0.030]). Because of the small effect of learning and 
random ordering of trials, we do not believe that learning 
influenced any of the other results we found. 

Reverse vs. inverse prediction 
The behavioral results suggest that prediction and 
retrodiction are accomplished through similar mechanisms. 
Here we begin to investigate how they are tied together. We 
use the forward physical model of Smith and Vul (2013) to 
describe participants’ predictions, then model retrodiction as 
both reverse and inverse prediction based on that 
framework. 

Physical prediction model 
In Smith and Vul (2013) participants were required to 

predict the motion of a ball on a computerized table, similar 
to the prediction task in this experiment. We found that 
participants’ predictions could be well described by a noisy 
Newton model that assumed people had two classifications 
of uncertainty: perceptual uncertainty, which incorporated 
noise in judging the exact location and direction of 
movement of the ball immediately before the prediction, and 
dynamic uncertainty which accounted for noise that 
accumulated as the ball moved or bounced off of the sides 
of the table. In addition, we found that people were 
influenced by a prior belief that the ball would end up in the 
center of the table. 

We fit the prediction responses in this experiment with 
the same model in order to quantify the levels of uncertainty 
our participants had in their forward models for this task. 
This forward physics model described participants’ average 
responses by trial (r = 0.95; Figure 4, upper left) and 
standard deviation of participants responses within a trial (r 
= 0.78; Figure 4, lower left). This model assumed somewhat 
less uncertainty than the model of Smith and Vul (2013) to 
capture the lower variability in participants’ responses 
(possibly due to providing unlimited time to make 
predictions). With a model of how participants simulated the 
world forward, we then investigated how this model might 
be used in retrodiction. 

Retrodiction as reverse prediction 
We considered two cases of reverse prediction. In the basic 
case, there is no difference between simulating the world 
forward or backward, and therefore there should be no 
differences between model fits for prediction and 
retrodiction for each trial. In the noisy retrodiction case, we 
assumed that the extrapolation dynamics would be the same 
as prediction, but considered that people might have 
difficulty reversing the motion of the ball; to model this we 
used the same dynamic uncertainty parameters from the 

forward model and re-fit perceptual uncertainty parameters 
to the retrodiction data. 

Since the average retrodictions are highly correlated with 
average predictions, the basic reverse prediction model does 
describe the average by-trial retrodictions well, albeit more 
noisily (r = 0.92; see Figure 4, upper middle-left). Reverse 
model predictions also corresponded well with empirical 
retrodictions: we should expect a 1:1 relationship between 
participants’ retrodictions and the model on average, and we 
found a slope of 0.99 (95% CI: [0.93,1.07]).2  However, the 
model also predicted a significantly lower level of 
variability in peoples’ responses than was actually observed 
(see Figure 4, lower middle-left).   

The noisy reverse prediction model was also well 
correlated with participants’ responses (r = 0.92) and 
produced less biased amounts of variability by trial (see 
Figure 4, middle-right). However, unlike the basic reverse 
prediction model, its predictions are biased as compared to 
participants’ retrodictions: the slope against empirical data 
was 1.35 (95% CI: [1.27, 1.44]), suggesting that additional 
perceptual noise cannot account for the increased variability 
without producing model bias. 

Because basic reverse prediction cannot capture empirical 
variability and noisy reverse prediction is biased, 
retrodiction must not simply be reverse prediction, but must 
require additional mechanisms to add variability without 
bias. 

Retrodiction as inverse prediction 
Inverse prediction involves proposing possible starting 
conditions then running the world forward to test how likely 
each starting condition is to have given rise to observations. 
As such, it is a candidate process that might give rise to 
greater variability in responses than reverse prediction. 
However, it requires defining both how initial conditions 
might be sampled, and how people determine whether a 
forward sampled ball path is likely or unlikely to have given 
rise to observations. 

In the forward model, we assumed that people have a 
prior expectation on where the ball would cross the vertical 
line. If people share expectations across the prediction and 
retrodiction tasks, then this should be the prior expectation 
on the position the ball would start from – p(y).3 For the 
initial direction of the ball’s motion – p(θ) – we assumed a 
relatively uninformative prior: since the vertical line was 
always to the left of the observed trajectory, we assumed 
that the ball must have some component of rightward 
motion, but that the direction was uniformly sampled from 
the 180° range of potential directions. 

                                                             
2 Because the model predictions were estimated by simulation 

and therefore not exact, we calculated the slope with total least 
squares regression rather than ordinary least squares (Markovsky 
& Van Huffel, 2007). 

3 While we considered a uniform prior on starting position, this 
is logically inconsistent with the forward model and produced 
biased retrodictions; we therefore did not include these results. 
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We assumed people would choose to accept a given 
starting position based on how well a simulated path 
emanating from that position matched the observed 
trajectory. Deviation for a single path was defined as the 
minimum summed squares deviation of the position of the 
ball along that path from the observed positions, sampled 
each 25ms (the time between observed frames). The 
probability that an observation came from a specific path 
was calculated as proportional to the negative 
exponentiation of this deviation, multiplied by an 
adjustment factor α – the one additional free parameter in 
this model; this formulation is equivalent to assuming that 
the path is correct, but there is isotropic Gaussian error in 
observations around that path, then asking what is the 
probability of those observations arising. To calculate the 
probability of getting a set of observations if the ball was 
initialized with a given y and θ, we sampled 50 paths using 
those starting parameters and the dynamic uncertainty fit 
from the forward model, then averaged the path 
probabilities. Finally, according to Bayes rule, the 
probability of selecting a given ending location was 
determined by adjusting the probability of getting the 
observations (v) from a given value of y and θ, multiplying 
by the priors, and marginalizing over all possible starting 
values of θ:4 

                                                             
4 Because these values could not be computed analytically, we 

used a grid search over possible values of y and θ in a 51x51 grid. 
We used LOESS smoothing with a low span parameter (0.02) to 
obtain probabilities at all points of y and θ, and to smooth out any 

 
 

 

𝑝 𝑦 𝒗 ∝ 𝑝
!

𝒗 𝑦, 𝜃 𝑝 𝑦 𝑝 𝜃 𝑑𝜃 

However, this formulation of inverse prediction did a 
poor job describing how people made retrodictions in 
aggregate. The model predictions of average response by 
trial were less well correlated with where participants 
actually indicated the ball came from (r = 0.83), and the 
model overcorrected for center-bias, suggesting that people 
should guess closer to the middle of the screen than they in 
fact did (see Figure 4, upper right). In addition, while the 
inverse prediction model did suggest a higher level of 
variability in participants’ responses than the reverse 
prediction model did, it increased variability 
indiscriminately, suggesting that people should be highly 
variable on most trials, including many trials in which they 
were not (see Figure 4, lower right). Thus it is unlikely that 
people perform retrodiction by simply proposing candidate 
past world states and choosing one based on whether it 
might give rise to the present. 

Discussion 
In this experiment, we attempted to disambiguate the 
cognitive mechanisms underlying both prediction and 
retrodiction by giving people tasks matched in all dynamics 
except that one required prediction and the other 
retrodiction. We found that while there were center-biases in 
both prediction and retrodiction, participants’ average 

                                                                                                       
variability due to the approximation in path sampling while 
keeping fine structure in the probability function. 

Figure 4: Correlation between model predictions (x-axis) and participants’ behavior (y-axis). Top: Average 
responses by trial. Bottom: Standard deviation of responses by trial. Left to right: Forward model, basic reverse 

prediction model, noisy reverse prediction model, and inverse prediction model. 
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predictions were the same as retrodictions on matched 
conditions, but responses were more variable on the 
retrodiction task. Participants’ predictions could be well 
explained by a noisy Newton model of physics; however, 
computational models that treat retrodiction as reverse or 
inverse prediction fail to explain this result, instead 
assuming too much similarity to prediction (basic reverse), 
or too much difference (noisy reverse and inverse). 

 
Table 2: Correlation between model average responses by 

trial and participants’ average responses 
 

Trial condition 
Pred vs 
Forward  

Retro vs 
Reverse 

Noisy 
vs Rev 

Retro vs 
Inverse 

Overall 0.951 0.919 0.921 0.833 
Short distance     
  0 bounce 0.992 0.972 0.964 0.941 
  1 bounce 0.881 0.851 0.785 0.891 
  2 bounces 0.949 0.923 0.921 0.955 
Long distance     
  0 bounce 0.995 0.982 0.984 0.940 
  1 bounce 0.905 0.917 0.922 0.661 
  2 bounces 0.874 0.859 0.863 0.850 
 

The similarity in behavior across the two tasks suggests 
that prediction and retrodiction do rely on similar cognitive 
mechanisms for extrapolation. However, the model results 
suggest that there is not a simple link between them – 
retrodiction is not just running the world backwards, nor is 
it naively sampling possible starting positions and running 
those forward until one starting position explains 
observations. This finding itself implies that prediction 
requires sophisticated cognitive mechanisms; if it were 
simply line extrapolation, then we would expect to find that 
retrodiction is reverse prediction – tracing the line 
backward. Our failure to explain this link may be due to the 
simplicity of the models studied. Perhaps retrodiction is 
inverse prediction, but people use a more sophisticated 
mechanism for sampling potential starting locations – for 
instance, if the ball was moving horizontally while 
observed, it will be less likely to have been traveling nearly 
vertically to begin. Or perhaps retrodiction relies on a 
mixture of forward and backward sampling to converge on a 
proposed past state of the world. 

These findings suggest a parallel to the prospection 
literature: while imagining the future and remembering the 
past rely on the same constructive processes, there are 
differences between the two tasks in the precision of 
responses and difficulty to accomplish them (Schacter et al., 
2012). Similarly, this experiment shows that prediction and 
retrodiction act in similar ways, but crucially that there is 
more variability in retrodiction. However, we find here that 
there is a complex relationship between the tasks of looking 
forward into the future and backward into the past. We hope 
that future research will help disentangle how various 
cognitive processes are shared and differ across these to 
tasks.   
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