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Abstract

People must often infer what might have transpired in the past
to bring about the present state of the world, a task called
retrodiction. We hypothesize that retrodiction relies on
similar cognitive mechanisms to prediction — inferring
possible futures based on the present state of the world. Here
we investigate how people perform on physical reasoning
tasks that differ only in that people are asked to do either
prediction or retrodiction. We find that average behavior is
similar between tasks across a range of difficulty, though
there was greater variability in retrodiction responses. We
propose two ways in which prediction and retrodiction might
be related; however, neither sufficiently explains the
similarities and differences across tasks. We suggest that
both tasks rely on similar cognitive processes, but that further
research is needed to determine the exact relation.
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Introduction

People often predict what might happen next in the world to
guide their actions: if someone throws a rock at you, where
is it going and how do you move to avoid it? But in many
cases, it is important to infer what happened in the past to
bring about the present: where did the rock that whizzed by
your head come from? These two types of tasks — prediction
and retrodiction respectively — both require using
information about the present to infer possibilities about a
different period, but differ in the direction of time. Might
these tasks therefore rely on the same cognitive
mechanisms? And how does the difference in the direction
of time affect how people perform these tasks?

While there has been relatively little research into
retrodiction, there has been significant attention paid to
prediction, with many arguing that we are constantly and
automatically predicting the future in order to plan our
actions (Bar, 2007; Buckner & Carroll, 2007; Seligman,
Railton, Baumeister, & Sripada, 2013). Underlying these
predictions are mental models that simulate future states of
the world based on how we expect the world to unfold
alongside our own actions (Grush, 2004).

Research focused on elaborative prediction (prospection)
has suggested that this task of looking into the future relies
on many of the same cognitive mechanisms as remembering
the past (Schacter, Addis, & Buckner, 2007; Schacter et al.,
2012). We similarly suggest that retrodiction uses the same
cognitive mechanisms that allow us to extrapolate the world
forward.

We propose two candidates for how retrodiction might
employ the same extrapolation mechanisms as prediction.
One candidate is that retrodiction is reverse prediction — just
as we have mental processes to run the world forward, we
might have complimentary processes to run the world
backwards. Alternately, retrodiction might be inverse
prediction. Here we draw parallels to the theory that vision
is “inverse graphics” — we use a model of optics to infer
how configurations of objects might give rise to various
percepts, then condition on visual observations to determine
what we are seeing (Kersten, Mamassian, & Yuille, 2004;
Mansinghka, Kulkarni, Perov, & Tenenbaum, 2013).
Retrodiction might involve positing potential past states of
the world, then extrapolate the world forward in order to
determine which prior configuration is most likely to have
given rise to the current state of the world.

Here we focus on physical prediction and retrodiction for
two reasons. First, we have evidence for how people run the
world forward when engaged in physical reasoning. The
noisy Newton theory suggests that people use unbiased
physical dynamics to simulate how objects might move, but
uncertainty about the latent state of the world might give
rise to mis-predictions and even systematic errors (Battaglia,
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, &
Griffiths, 2013; Smith, Battaglia, & Vul, 2013; Smith &
Vul, 2013). Second, physics is reversible in time, so if
retrodiction is simply reverse prediction, we can make
situations in which there should be no difference between
how people do prediction and retrodiction. On the other
hand, stochastic noise is not reversible in time, so if
retrodiction is inverse prediction, we might observe
different errors even with matched dynamics.

We first present an experiment in which we ask
participants to make predictions and retrodictions with
matched dynamics to find similarities and differences
irrespective of discrepancies in the way the world unfolds
forward or backward in time. We then describe two models
that implement reverse prediction and inverse prediction and
compare them to participants’ retrodictions. Participants’
average predictions and retrodictions were similar across a
range of difficulties, suggesting commonalities in prediction
and retrodiction; however, participants were more variable
in their responses during retrodiction. We could explain
prediction using the model of Smith and Vul (2013), but
models of reverse and inverse prediction based on this
forward model could not explain retrodiction, suggesting
that despite being based on similar cognitive processes,
there is a complex relationship between prediction and
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retrodiction. Future research can build on this result to
further specify how prediction and retrodiction relate.

Experiment

Participants made judgments about the trajectory of a ball
bouncing around a table simulated on a computer in two
conditions. In the prediction condition, participants watched
a ball in motion and indicated where it would cross a line if
it continued along its trajectory. In the retrodiction
condition, participants watched a similar ball in motion and
indicated where on a line it must have come from so that it
would follow the observed trajectory. Crucially, trials were
matched across the two conditions such that where a ball
would cross the line on a prediction trial was where the ball
came from on the matched retrodiction trial.

Methods

Fifty UC San Diego undergraduates participated in this
experiment for course credit." All participants had normal or
corrected to normal vision.

Participants viewed a computer monitor from a distance
of approximately 60cm, which showed a “table” with
dimensions of 1200x900px from a top-down view. On all
trials, participants would watch a ball travel on the table for
750ms. After viewing this motion once, a vertical line
would appear on the table, and the ball’s motion would
continuously repeat. In the prediction block, participants
indicated where they believed the ball would first cross the
vertical line if it continued its trajectory. In the retrodiction
block, participants indicated where on the vertical line they
believed the ball last passed before its observed trajectory.
Participants indicated their response by clicking on the
vertical line, after which point the motion animation loop
would stop and participants would be provided feedback
with either the motion of the ball continuing to the line
(prediction), or the motion of the ball starting at the vertical
line and continuing through the observed trajectory
(retrodiction). Participants would earn ‘points’ based on
how close to reality their response was, but these points
were simply for motivation and were not used for any
rewards or analysis. On each trial, we recorded where the
participant indicated the ball would/did cross the vertical
line and the time it took them to make that response from
when the vertical line first appeared (see Figure 1).

Both the prediction and retrodiction blocks contained 150
trials each, matched across the blocks. On matched trials,
the vertical line would be positioned at the same horizontal
location, and the observed trajectory of the ball would be
mirrored in time; in this way the correct response to where
the ball would/did cross the line was the same in both the
prediction and retrodiction blocks — we call this position the
actual crossing. Trial paths were constrained such that the
correct response was never in the top or bottom 50px (5.6%)
of the table.

! One participant was excluded because she failed to follow
directions, instead consistently responding as quickly as possible.
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Figure 1: Diagram of a trial — prediction (fop) and
retrodiction (bottom). (A) In the prediction condition,
participants would see a ball in motion. (B) After 750ms
participants were asked to indicate on a line where the ball
would cross; the ball would repeat its motion in a loop until
a prediction was made. (C) After a prediction was indicated,
the actual trajectory of the ball to the line was shown. (D) In
the matched retrodiction trial, the mirrored ball motion was
shown for 750ms. (E) Participants were asked where the
ball last crossed a line. (F) Feedback was provided by
showing the ball path from the line to the observations.

Each of the 150 trial pairs was categorized into one of six
difficulty conditions, crossing the distance that the ball
would need to travel to or from the vertical line (Short:
750px; Long: 1000px) with the number of the bounces that
the ball would take on its unobserved path (0, 1, or 2). Trials
were equally balanced into 25 from each category. The ball
traveled at a constant speed of 500px/s for all trials.

Before each block, participants were given three practice
trials to familiarize themselves with the task. Block order
was randomized across participants, and all participants
were given the same 150 matched trials in an order
randomized for each block.

The trajectory of the ball both while observed and
unobserved was determined by Newtonian physics, as
implemented in the Chipmunk 2-D physics engine
(Lembcke, 2011).

Results

Average responses by trial Participants responses for each
trial were very consistent with one another (average split
half correlation — prediction: r = 0.97; retrodiction: r =
0.93). We therefore aggregated participants’ responses for
each trial to determine where, on average, people believed
the ball would go to or had come from on that trial.

Both the average prediction (r = 0.87) and retrodiction (r
= 0.85) responses were correlated with the actual crossing
location, suggesting that participants were taking into
account trial differences (see Figure 2). Similar to Smith and
Vul (2013), participants responded closer to the center of
the screen than the actual crossing, and the center-bias and
trial-by-trial variability increased as the distance and
number of bounces increased.
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Figure 2: Average predictions (/eft) and retrodictions (right) versus where the ball would/did cross the vertical line, split by
trial condition. Each point represents a separate trial. Error and trial-by-trial variability increases with difficulty, but differs
only slightly from prediction to retrodiction.

On the other hand, predictions and retrodictions on
matched trials were more correlated with one another (r =
0.96), and this correlation did not change appreciably with
difficulty condition (from a minimum of r = 0.94 in the
short, one bounce condition to a maximum of r = 0.98 in the
long, no bounce condition; see Table 1). Because responses
between the blocks are more related than each block’s
relation to ground truth (indeed, comparable to the internal
consistency of each block), and this does not change with
trial difficulty, it is likely that prediction and retrodiction
rely on related extrapolation processes.
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Figure 3: Variability in prediction versus retrodiction
responses by matched trial. Each point represents a separate
matched trial. There is general consistency in which trials
are more or less variable, but retrodictions are more
variable.

Variability of responses Although participants’ average
responses were very similar between the prediction and
retrodiction, individual responses were more variable in the
retrodiction block. We measured variability as the standard
deviation of participants’ responses within each trial. By
this measure, trials that were variable in the prediction
condition were also variable in the retrodiction condition (r

= 0.78), but retrodiction trials were consistently more
variable than prediction trials (see Figure 3).

Table 1: Prediction vs. retrodiction comparison. (1) By-trial
correlation between prediction/retrodiction responses. (2)
Median prediction response time (ms). (3) Median
retrodiction response time (ms)

Trial condition P/Rcor RT (Pred) RT (Retro)
Overall 0.963 2,371 2,467
Short distance
0 bounce 0.978 1,952 2,267
1 bounce 0.941 2,415 2,447
2 bounces 0.966 2,664 2,675
Long distance
0 bounce 0.981 2,084 2,244
1 bounce 0.969 2,442 2,498
2 bounces 0.954 2,736 2,792

Reaction times In this experiment, participants were not
given any time constraints — they could take as long as
needed to make predictions or retrodictions. Thus
differences between the two blocks could be masked if
participants took significantly longer on one of the two
blocks. There was evidence that participants took longer to
do the retrodiction task than the prediction task (Wilcoxon
rank test: p = 0.021), but this appears to be driven by slower
responses on trials without unobserved bounces (see Table
1). Because we find similar amounts of center-shifting but
increased retrodiction variability even when participants
spent similar amounts of time across tasks, it is unlikely that
our observations are biased by participants spending more
time on the more difficult task.

Learning over time We assumed that participants would
bring prior knowledge about physics to bear on the tasks we
gave them in this experiment. We therefore provided
feedback after every trial to encourage participants to be
accurate. However, it is possible to learn physical
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contingencies from this feedback, and indeed we did find
mild evidence for learning: by correlating absolute error
(unsigned response less actual crossing) with trial order, we
find a trend towards anticorrelation in the prediction task (r
= -0.020, 95% CI = [-0.043, 0.002]) and modest
anticorrelation in the retrodiction task (r = -0.053, 95% CI =
[-0.075, -0.030]). Because of the small effect of learning and
random ordering of trials, we do not believe that learning
influenced any of the other results we found.

Reverse vs. inverse prediction

The behavioral results suggest that prediction and
retrodiction are accomplished through similar mechanisms.
Here we begin to investigate how they are tied together. We
use the forward physical model of Smith and Vul (2013) to
describe participants’ predictions, then model retrodiction as
both reverse and inverse prediction based on that
framework.

Physical prediction model

In Smith and Vul (2013) participants were required to
predict the motion of a ball on a computerized table, similar
to the prediction task in this experiment. We found that
participants’ predictions could be well described by a noisy
Newton model that assumed people had two classifications
of uncertainty: perceptual uncertainty, which incorporated
noise in judging the exact location and direction of
movement of the ball immediately before the prediction, and
dynamic uncertainty which accounted for noise that
accumulated as the ball moved or bounced off of the sides
of the table. In addition, we found that people were
influenced by a prior belief that the ball would end up in the
center of the table.

We fit the prediction responses in this experiment with
the same model in order to quantify the levels of uncertainty
our participants had in their forward models for this task.
This forward physics model described participants’ average
responses by trial (r = 0.95; Figure 4, upper left) and
standard deviation of participants responses within a trial (r
= 0.78; Figure 4, lower left). This model assumed somewhat
less uncertainty than the model of Smith and Vul (2013) to
capture the lower variability in participants’ responses
(possibly due to providing unlimited time to make
predictions). With a model of how participants simulated the
world forward, we then investigated how this model might
be used in retrodiction.

Retrodiction as reverse prediction

We considered two cases of reverse prediction. In the basic
case, there is no difference between simulating the world
forward or backward, and therefore there should be no
differences between model fits for prediction and
retrodiction for each trial. In the noisy retrodiction case, we
assumed that the extrapolation dynamics would be the same
as prediction, but considered that people might have
difficulty reversing the motion of the ball; to model this we
used the same dynamic uncertainty parameters from the

forward model and re-fit perceptual uncertainty parameters
to the retrodiction data.

Since the average retrodictions are highly correlated with
average predictions, the basic reverse prediction model does
describe the average by-trial retrodictions well, albeit more
noisily (r = 0.92; see Figure 4, upper middle-left). Reverse
model predictions also corresponded well with empirical
retrodictions: we should expect a 1:1 relationship between
participants’ retrodictions and the model on average, and we
found a slope of 0.99 (95% CI: [0.93,1.07]).2 However, the
model also predicted a significantly lower level of
variability in peoples’ responses than was actually observed
(see Figure 4, lower middle-left).

The noisy reverse prediction model was also well
correlated with participants’ responses (r = 0.92) and
produced less biased amounts of variability by trial (see
Figure 4, middle-right). However, unlike the basic reverse
prediction model, its predictions are biased as compared to
participants’ retrodictions: the slope against empirical data
was 1.35 (95% CI: [1.27, 1.44]), suggesting that additional
perceptual noise cannot account for the increased variability
without producing model bias.

Because basic reverse prediction cannot capture empirical
variability and noisy reverse prediction is biased,
retrodiction must not simply be reverse prediction, but must
require additional mechanisms to add variability without
bias.

Retrodiction as inverse prediction

Inverse prediction involves proposing possible starting
conditions then running the world forward to test how likely
each starting condition is to have given rise to observations.
As such, it is a candidate process that might give rise to
greater variability in responses than reverse prediction.
However, it requires defining both how initial conditions
might be sampled, and how people determine whether a
forward sampled ball path is likely or unlikely to have given
rise to observations.

In the forward model, we assumed that people have a
prior expectation on where the ball would cross the vertical
line. If people share expectations across the prediction and
retrodiction tasks, then this should be the prior expectation
on the position the ball would start from — p(y).” For the
initial direction of the ball’s motion — p(6) — we assumed a
relatively uninformative prior: since the vertical line was
always to the left of the observed trajectory, we assumed
that the ball must have some component of rightward
motion, but that the direction was uniformly sampled from
the 180° range of potential directions.

2 Because the model predictions were estimated by simulation
and therefore not exact, we calculated the slope with total least
squares regression rather than ordinary least squares (Markovsky
& Van Huffel, 2007).

? While we considered a uniform prior on starting position, this
is logically inconsistent with the forward model and produced
biased retrodictions; we therefore did not include these results.
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Figure 4: Correlation between model predictions (x-axis) and participants’ behavior (y-axis). Top: Average

responses by trial. Bottom: Standard deviation of responses by trial. Left fo right: Forward model, basic reverse
prediction model, noisy reverse prediction model, and inverse prediction model.

We assumed people would choose to accept a given
starting position based on how well a simulated path
emanating from that position matched the observed
trajectory. Deviation for a single path was defined as the
minimum summed squares deviation of the position of the
ball along that path from the observed positions, sampled
each 25ms (the time between observed frames). The
probability that an observation came from a specific path
was calculated as proportional to the negative
exponentiation of this deviation, multiplied by an
adjustment factor o — the one additional free parameter in
this model; this formulation is equivalent to assuming that
the path is correct, but there is isotropic Gaussian error in
observations around that path, then asking what is the
probability of those observations arising. To calculate the
probability of getting a set of observations if the ball was
initialized with a given y and 6, we sampled 50 paths using
those starting parameters and the dynamic uncertainty fit
from the forward model, then averaged the path
probabilities. Finally, according to Bayes rule, the
probability of selecting a given ending location was
determined by adjusting the probability of getting the
observations (v) from a given value of y and 0, multiplying
by the priors, and marginalizing over all possible starting
values of 0:*

4 Because these values could not be computed analytically, we
used a grid search over possible values of y and 6 in a 51x51 grid.
We used LOESS smoothing with a low span parameter (0.02) to
obtain probabilities at all points of y and 6, and to smooth out any

p(ylv) fe p wly, O)p(»)p(0)d6

However, this formulation of inverse prediction did a
poor job describing how people made retrodictions in
aggregate. The model predictions of average response by
trial were less well correlated with where participants
actually indicated the ball came from (r = 0.83), and the
model overcorrected for center-bias, suggesting that people
should guess closer to the middle of the screen than they in
fact did (see Figure 4, upper right). In addition, while the
inverse prediction model did suggest a higher level of
variability in participants’ responses than the reverse
prediction model did, it increased variability
indiscriminately, suggesting that people should be highly
variable on most trials, including many trials in which they
were not (see Figure 4, lower right). Thus it is unlikely that
people perform retrodiction by simply proposing candidate
past world states and choosing one based on whether it
might give rise to the present.

Discussion

In this experiment, we attempted to disambiguate the
cognitive mechanisms underlying both prediction and
retrodiction by giving people tasks matched in all dynamics
except that one required prediction and the other
retrodiction. We found that while there were center-biases in
both prediction and retrodiction, participants’ average

variability due to the approximation in path sampling while
keeping fine structure in the probability function.
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predictions were the same as retrodictions on matched
conditions, but responses were more variable on the
retrodiction task. Participants’ predictions could be well
explained by a noisy Newton model of physics; however,
computational models that treat retrodiction as reverse or
inverse prediction fail to explain this result, instead
assuming too much similarity to prediction (basic reverse),
or too much difference (noisy reverse and inverse).

Table 2: Correlation between model average responses by
trial and participants’ average responses

Predvs  Retrovs Noisy Retro vs
Trial condition Forward Reverse vsRev Inverse
Overall 0.951 0.919 0.921 0.833
Short distance
0 bounce 0.992 0.972 0.964 0.941
1 bounce 0.881 0.851 0.785 0.891
2 bounces 0.949 0.923 0.921 0.955
Long distance
0 bounce 0.995 0.982 0.984 0.940
1 bounce 0.905 0.917 0.922 0.661
2 bounces 0.874 0.859 0.863 0.850

The similarity in behavior across the two tasks suggests
that prediction and retrodiction do rely on similar cognitive
mechanisms for extrapolation. However, the model results
suggest that there is not a simple link between them —
retrodiction is not just running the world backwards, nor is
it naively sampling possible starting positions and running
those forward until one starting position explains
observations. This finding itself implies that prediction
requires sophisticated cognitive mechanisms; if it were
simply line extrapolation, then we would expect to find that
retrodiction is reverse prediction — tracing the line
backward. Our failure to explain this link may be due to the
simplicity of the models studied. Perhaps retrodiction is
inverse prediction, but people use a more sophisticated
mechanism for sampling potential starting locations — for
instance, if the ball was moving horizontally while
observed, it will be less likely to have been traveling nearly
vertically to begin. Or perhaps retrodiction relies on a
mixture of forward and backward sampling to converge on a
proposed past state of the world.

These findings suggest a parallel to the prospection
literature: while imagining the future and remembering the
past rely on the same constructive processes, there are
differences between the two tasks in the precision of
responses and difficulty to accomplish them (Schacter et al.,
2012). Similarly, this experiment shows that prediction and
retrodiction act in similar ways, but crucially that there is
more variability in retrodiction. However, we find here that
there is a complex relationship between the tasks of looking
forward into the future and backward into the past. We hope
that future research will help disentangle how various
cognitive processes are shared and differ across these to
tasks.
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