Examining strains and symptoms of the ‘Literacy Virus’: The effects of
orthographic transparency on phonological processing in a connectionist model of
reading

Alastair C. Smith (alastair.smith@mpi.nl)
Max Planck Institute for Psycholinguistics, Wundtlaan 1,
Nijmegen, 6525 XD, The Netherlands

Padraic Monaghan (p.monaghan@lancaster.ac.uk)
Department of Psychology, Lancaster University,
Lancaster, LA1 4YF, U.K.

Falk Huettig (falk.huettig@mpi.nl)
Max Planck Institute for Psycholinguistics, Wundtlaan 1,
Nijmegen, 6525 XD, The Netherlands

Abstract

The effect of literacy on phonological processing has been
described in terms of a virus that “infects all speech
processing” (Frith, 1998). Empirical data has established that
literacy leads to changes to the way in which phonological
information is processed. Harm & Seidenberg (1999)
demonstrated that a connectionist network trained to map
between  English  orthographic  and  phonological
representations display’s more componential phonological
processing than a network trained only to stably represent the
phonological forms of words. Within this study we use a
similar model yet manipulate the transparency of
orthographic-to-phonological mappings. We observe that
networks trained on a transparent orthography are better at
restoring phonetic features and phonemes. However,
networks trained on non-transparent orthographies are more
likely to restore corrupted phonological segments with legal,
coarser linguistic units (e.g. onset, coda). Our study therefore
provides an explicit description of how differences in
orthographic transparency can lead to varying strains and
symptoms of the ‘literacy virus’.
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Introduction

There is a well-established link between the acquisition of
literacy and changes to the manner in which phonological
information is processed. Children’s awareness of the
phonological structure of words has been shown to improve
qualitatively and quantitatively when exposed to literacy
training (e.g. Alcock, Ngorosho, Deus, & Jukes, 2010;
Hulme et al., 2005). Critically, similar improvements have
been recorded in adults who receive literacy training later in
life (e.g. Morais, 1979), indicating that changes in
phonological processing are consequent upon literacy and
not due to extended language exposure or other
developmental factors.

Literacy training has also been shown to relate to
improvements in categorical perception of speech sounds
(Serniclaes et al., 2005). Participants who were literate

indicated a sharper boundary in judging syllables along a
ba-da continuum, compared to illiterates. Further, effects of
orthography on speech perception have been reported
widely using varying tasks (Taft et al., 2008; Pattamadilok
et al., 2009; Peereman et al., 2009), languages (Ventura et
al., 2004; Zeigler et al., 2008) and orthographic
manipulations (Orthographic Neighborhood: Zeigler et al.,
2003; Orthographic Consistency: Zeigler et al., 2004). Many
of these previous studies have investigated effects of
literacy on phonological processing by manipulating the
properties of the phonological form of the word. In addition,
recent evidence from studies of language-mediated visual
attention has linked literacy to changes in the granularity of
online speech processing without requiring explicit
operations on the phonological structure of the word
(Huettig, Singh & Mishra, 2011; Smith, Monaghan &
Huettig, 2013). In eye-tracking behavioral studies, and
computational models of the effects, they found that literate,
but not illiterate participants, demonstrated phonological
cohort effects on visual search of objects with similar
names, but equivalent levels of co-activation of visual
search of objects with similar meanings. These studies
suggest a broader impact of literacy-related changes to
phonological processing that extends to language processes
that interface with visual systems.

Brain imaging data provides further support for changes
to phonological processing as a consequence of literacy
training, suggesting both an influence of activation in
orthographic processing regions when processing speech
(Dehaene et al., 2010) and a restructuring of phonological
processing regions (Perre et al., 2009, 2011; Pattamadilok et
al., 2010).

Computational modelling studies offer a means by which
mechanisms that drive such effects can be isolated. Harm &
Seidenberg (1999) captured explicitly the emergent effects
of learning orthographic-to-phonological mappings on
phonological representations in a connectionist model of
reading. They trained a model that learned to stably
represent the phonological forms of a large set of English
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words (the “illiterate” model), and compared this to a model
that also learned to map orthographic forms onto the same
phonological representations (a “literate” model). They
found that the literate model represented phonological forms
of words with a higher degree of componential structure
than the illiterate model. For instance, the model was tested
on its ability to reconstruct individual phonological features
within phonemes, and the literate model was able to do this
more accurately than the illiterate model, akin to the
increased sensitivity of the categorical boundary between
similar phonemes in literate participants (Serniclaes et al.,
2005). Similarly, the model was also tested on its ability to
reconstruct single phonemes that were degraded in the
phonological input, the literate model performed with a
higher degree of accuracy, indicating greater ability to
construct individual phonemes in the spoken form of the
word.

The model was analyzed in terms of the connection
weights between different regions of the words’
phonological representations. The literate model resulted in
stronger connections from each phoneme to itself, and
slightly weaker connections to other phonemes within the
word. This suggested that the model’s granularity of
processing was affected by orthographic training — the
literate model processed more phoneme-by-phoneme,
whereas there was less componential processing in the
illiterate model. Hence, effects of experience of orthography
mapping onto phonology qualitatively changes the way in
which the phonological forms of words are represented,
even when orthography is not directly implicated in the test.

Effects of different orthographies on speech
processing

It is therefore understandable that the analogy of literacy as
a “virus” that “infects all speech processing...” (Frith, 1998)
has resonated so strongly with researchers within this field.
However, evidence from cross-linguistic studies suggests
that this virus may have many strains, each giving rise to a
different set of symptoms. One factor that seems to play a
key role in determining the precise effect that literacy has on
speech processing is the orthographic transparency of a
language.

Orthographic systems differ radically in how they map
onto the speech sounds of the language. English represents a
semi-transparent language as individual letters provide a
reasonable approximation to the word’s pronunciation,
though there are many irregularities present in the set of
letter sound mappings (e.g. PINT. YACHT). Languages
such as Serbian, however, demonstrate a very shallow or
transparent orthography, as each letter corresponds with
perfect regularity to a single speech sound. Chinese, at the
other extreme, provides an example of a deep orthography
(a morphosyllabic language). Chinese characters are each
pronounced as syllables, and are composed of two portions:
a phonological and a semantic radical. The phonological
radical provides a hint about the pronunciation of the
syllable, but this is modulated by the semantic radical. The

effect is that each character’s pronunciation has to be
learned individually, and there is almost no componential
structure at the syllable level in terms of relationships
between orthography and phonology.

Much of the evidence reported earlier in this section
describes effects of literacy observed in transparent or semi-
transparent languages. However, recently the body of
evidence examining the effects of literacy training on
phonological processing in less transparent languages such
as Chinese has grown substantially (e.g. Tan et al., 2005;
Shu et al., 2008; Brennan et al., 2013).

Shu et al.’s (2008) study supports predictions that changes
to the granularity of phonological processing as a
consequence of literacy training are modulated by
orthographic transparency (Ziegler and Goswami, 2005).
They measured the performance on syllable and rime
awareness in Chinese children aged 3 to 6 years, and found
that this improved gradually with age. However, awareness
of phoneme onset and tone awareness only improved above
chance when exposed to additional instruction which made
explicit the relationship between orthography and phonemes
(by training additionally in Pinyin).

Further evidence can be found in Brennan et al.’s (2013)
study that contrasted the effects of literacy training in a
transparent language (English) with training in a non-
transparent language (Chinese), on phonological processing.
They compared neural activity in Chinese and English
children (8-12 years of age) and adults when making
rhyming judgments to pairs of spoken words. Differences
over the course of development in activity in brain regions
associated with phonological processing (superior temporal
gyrus) were only observed between English speaking adults
and children, further this difference was more pronounced
for words with conflicting orthography (e.g. PINT — MINT).
These findings provide evidence that phonological
processing regions can be effected by literacy training and
that orthographic transparency can influence the nature of
this effect.

Together this evidence supports the position that the
consequences of literacy training on phonological
processing differ as a consequence of orthographic
transparency. The current study aims to capture these
differences explicitly in a computational model based on
Harm & Seidenberg (1999). Within this model we
manipulated the transparency of the orthography on which
the model is trained. We predicted that the type of literacy
training would have an effect on the componential structure
of phonological processing in the speech processing of the
model. In particular, we examined the effect of transparent
versus nontransparent literacy training on the model’s
ability to reconstruct phonological features of phonemes,
and also the model’s ability to reconstruct individual
phonemes in words.

Method
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Figure 1: Network Architecture (Harm & Seidenberg,
1999).

Architecture

The model used within this study was based on Harm &
Seidenberg’s (1999) connectionist model of reading (see
Figure 1).

The model contained a phonological attractor network
which was trained to develop stable representations of
spoken forms of words. This network consisted of a
phonological layer of 200 units which were fully self-
connected and fully connected to and from a set of 100
clean up units. The phonological layer comprised 8
phoneme slots of 25 units representing the presence or
absence of a specific phonological feature. Speech input was
simulated as input activations to the phonological layer, and
phonological production was simulated as output activation
across the same set of units in the phonological layer.

Written input was presented at an orthographic layer
consisting of 260 units. The orthographic layer was
composed of 10 orthographic slots, each consisting of 26
units, with each unit corresponding to a distinct letter. The
orthographic layer was fully connected to a hidden layer of
1000 units, which was fully connected to the phonological
layer.

The model differed from that presented in Harm &
Seidenberg (1999) as additional resources were provided in
the form of extra processing units in the cleanup layer and
hidden layer to enable the model to learn the complex non-
transparent mapping between orthography and phonology.
Pilot studies demonstrated that the model failed to learn
accurate and stable representations without these additional
resources.

Representations

A corpus of 6,188 monosyllabic English words, each
between 1-10 letters in length was used to train and test the
transparent orthography model. Each word comprised an
orthographic and phonological representation. Orthographic
representations were 260 unit binary vectors, with 26 units
encoding each letter slot. A single unit indicated the

presence or absence of a given letter in each letter slot.
Phonological representations were 200 unit binary vectors,
with 25 units encoding each of 8 phoneme slots. Phonemes
were defined in terms of 25 phonological features as
implemented in Harm & Seidenberg (2004). Orthographic
and phonological representations were vowel centered to
control for variation in vowel positions.

The non-transparent orthography model was trained using
the same set of orthographic and phonological
representations, but with orthographic representations
randomly reassigned to phonological representations (non-
transparent corpus). Thus, the model had to learn the
relationship between the whole word and its pronunciation
without recourse to regularities at a finer grain level, for
example between particular letters and phonemes, as was
available for the transparent orthography model. The two
orthographies were therefore controlled in terms of the set
of inputs and outputs, but what differed was the extent to
which the mapping between them was componential.

Training

All connections within the network were initialized with
random weights (u = 0, o = 1), except for the self-
connections in the phonological layer which passed
activation back to the same unit. The weights on these
connections were fixed to 0.75 and were therefore not
adjusted during training to ensure that input to the
phonological network decayed over time, thus forcing the
phonological network to developed phonological attractors.

Training of the model consisted of two stages, similar to
Harm and Seidenberg’s (1999) model of reading: a pre-
literate stage, which simulated developing experience with
listening and speaking the phonological forms of words, and
a literate stage, simulating learning to map written onto
spoken forms of words.

The pre-literate stage, the first 1 million training trials,
involved training the phonological attractor to maintain a
stable phonological representation at the phonological layer
over time. For each word, the phonological representation
was clamped at the phonological layer from time step 0 until
time step 2. The model then cycled activity for a further 5
time steps (ts). At time steps 5-7 the target phonological
representation was presented to the phonological layer, error
was computed as the Euclidean distance between actual and
target activation at the phonological layer and then error was
back-propagated and connection weights updated within the
phonological attractor network.

The second stage of model training included literacy
training trials, in which the model was required to map from
orthography to phonology. The orthographic representation
of a word was clamped to the orthographic layer for the
entire training trial. At time steps 5-7 the word’s
phonological representation was presented to the
phonological layer as a target, with error (distance between
target and actual phonological layer activations) back-
propagated and weights updated throughout the entire
network.
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The model was trained on a further 9 million training
trials with orthography to phonology (reading trials: p = 0.8)
and phonology to phonology trials (listening trials: p = 0.2)
randomly interleaved, although reading trials were four
times more likely to occur than listening trials.

Words were sampled randomly according to their log-
compressed frequency, with minimum frequency set at 0.05.
Four simulations each were trained for the transparent and
the non-transparent models, Each simulation run differed in
terms of the random initial starting weights, and the random
selection of words. Each instantiation of the non-transparent
model was trained on a different corpus each with a new
random reassignment of orthography-phonology mappings.
Networks were trained with a learning rate of 0.05.

Results

Pre-Test

Once trained networks were tested on their ability to
perform each training task for each word in the training
corpus to ensure sufficient training had been provided for all
models to learn the requisite mappings. To test listening
performance the phoneme closest in euclidean distance to
the activation of units in each phoneme slot at the end of a
listening trial was computed, providing the phonological
representation produced by the model. This was compared
to the phonological representation of the word presented at
the beginning of the test trial. If all phonemes within the two
representations matched, then the trial was registered as
successful. Networks trained on a transparent corpus
successfully performed the listening task for all words in the
corpus. Networks trained on a non-transparent corpus
performed the listening task successfully for 99.9% (SD =
0.0003) of words in the corpus. A similar procedure was
applied to examine performance on reading tasks. A reading
trial following the training procedure was conducted for
each word in the corpus. The phoneme closest to the
activation of units in each phoneme slot at the end of the
reading trial was computed. If this matched the phonological
representation of the word presented to the orthographic
layer then the model was registered as having correctly read
the word. Networks trained on a transparent corpus read all
words within the training corpus successfully. Networks
trained on a non-transparent corpus successfully read 98.8%
(SD = 0.0009) of words within the training corpus.

To examine differences in the phonological processing of
networks trained on a transparent corpus and those trained
on a non-transparent corpus we tested networks on their
ability to reconstruct phonological features of phonemes,
and to reconstruct individual phonemes in words when
corrupted by noise.

Pattern Completion

Pattern completion tests examined the model’s ability to
restore each active phonological feature, in each phoneme,
of each word. The phonological representation of a given
word was clamped to the phonological layer for ts 0-2 yet

with a single active phonological feature switched off. The
network was then free to cycle until ts 7 at which point the
activity of the unit representing the corrupted phonological
feature was recorded. The distance between its level of
activation at the end of the test trial and its correct value (i.e.
1) was recorded. Figure 2 presents the mean sum squared
error calculated over all features, phonemes and words for
networks trained on a transparent corpus and networks
trained on a non-transparent corpus. Networks trained on a
transparent corpus re-activated corrupted phonological
features more accurately than networks trained on non-
transparent corpora [ = -0.013, 6 = 0.005, t(3) = -4.747, p
=0.018].
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Figure 2: Mean sum squared error (SSE) calculated between
correct feature and restored feature

Segment Restoration

Networks were also tested on their ability to restore entire
phoneme segments. On segment restoration trials a single
phoneme was replaced with random noise. Features within
the corrupted segment were assigned values between [0 —
0.1] with p = 0.8 and values between [0 — 0.5] with p = 0.2.
Networks were tested on their ability to restore each
phoneme within each word. During ts 0-2 the corrupted
phonological representation was clamped to the
phonological layer, the network was then allowed to cycle
freely until ts 7. At ts 7 activation in the phonological layer
was recorded. The nearest neighbor phoneme (euclidean
distance) was identified given the activation recorded in
each phoneme slot.

Phoneme Restoration For each network, the average
(euclidean) distance between the pattern of activation in the
phoneme slot corresponding to the location of the corrupted
phoneme and its nearest neighbor phoneme was calculated.
This provides a measure of how well a network’s
phonological attractor component is able to restore a
corrupted phoneme segment. Figure 3 displays the mean
performance of networks trained on a transparent corpus
and networks trained on a non-transparent corpus. Networks
trained on a transparent corpus restored corrupted phonemes
marginally better than those trained on a non-transparent
corpus [( = -0.045, 6 = 0.029, t(3) = -3.054, p = 0.055].
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Figure 3: Mean Euclidean distance calculated between
nearest neighbor phoneme and restored phoneme

Validity of Segment Restorations Networks were also
tested on the validity of the segment restored. The restored
sub-syllabic segment (onset, vowel or coda) in which the
corrupted phoneme was embedded was examined and
recorded as a legal restoration if the segment existed in the
training corpus. Figure 4 displays the proportion of illegal
restorations made by networks trained on a transparent
corpus and networks trained on a non-transparent corpus.
Networks trained on a transparent corpus made more illegal
segment restorations than those trained on a non-transparent
corpus [1 =-0.102, 6 = 0.012, t(3) = -16.492, p < 0.001].
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Figure 4: Proportion of illegal segment restorations

Discussion

Harm & Seidenberg (1999) demonstrated that literate
networks trained on a transparent orthography restored both
phonetic features and phonological segments (onset, vowel,
coda) more accurately than illiterate models. Our
simulations show that networks trained on a transparent
orthography also outperform models trained on a non-
transparent orthography in restoring phonetic features and
phonemes. However, models trained on a non-transparent
orthography were more likely than models trained on a
transparent corpus to restore phonemes to form valid
segments at a coarser grain size (onset, vowel, coda).

These findings suggest that transparent models processing
of phonological information is more componential (at the

phoneme level), and subsequently models trained on a non-
transparent orthography are more likely to process
phonological information more coarsely. Importantly each
gains contrasting benefits in phonological processing as a
consequence of the mappings on which they are trained.
This is an important extension of the findings of Harm &
Seidenberg (1999). In our simulations we have shown that
literacy training has an effect on phonological processing
both in the case of transparent and non-transparent
orthographies and further that transparency defines the
nature of the effect.

Both models benefit from the regularities of the
orthographic training. In the transparent model increases in
finer grain phonological processing arises as a consequence
of the network learning from consistencies at the phoneme
level between orthography and phonology. It is pushed
towards processing words phoneme by phoneme. Therefore,
when noise was applied to a phoneme segment the
transparent model was more likely to restore the distorted
segment with a segment that was closer to a valid phoneme.

In contrast, in the non-transparent model, correspondence
between orthography and phonology only exists at the word
level. The model is therefore more likely to develop
phonological attractors at a coarser grain size. For this
reason corrupted segments are increasingly pushed toward
valid segments at the level of onsets, vowels or codas.

The finding that transparent networks processing of
phonological information is more componential than non-
transparent networks connects with established empirical
findings such as the results of Shu et al., (2008) in which
phoneme awareness increased in Chinese children when
exposed to training on a transparent orthographic system.
Further this study’s findings provide additional support for
theoretical models that argue that the granularity of
phonological processing developed is dependent on the
transparency of the orthography on which an individual is
trained (Zeigler & Goswami, 2005).

Our results also provide predictions for future empirical
studies. Transparent networks outperformed non-transparent
networks on phonetic feature restoration. This predicts that
individuals trained on deep orthographic systems such as
Chinese will perform worse than individuals trained on
shallower orthographies such as English in identifying fine
phonetic contrasts. A second prediction follows from the
finding that non-transparent models were more likely to
generate valid restorations of coarser grain units (e.g. onset,
coda). Should this finding represent the development of
stronger phonological attractors at onset, coda and word
levels, then individuals trained on non-transparent
orthographies should be more resilient to corrupted speech
at these grain sizes than individuals trained on transparent
orthographies.

Studies that examine the impact of literacy training on
phonological processing regions within the brain have
largely focused on effects in individuals trained on
transparent or semi-transparent languages. Our findings
suggest that phonological restructuring is likely to occur for
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both populations trained on transparent and non-transparent
languages yet the nature of this restructuring and therefore
its neural and behavioral consequences will differ.

Previous modelling of the effects of literacy on
phonological processing provided an explicit description of
how literacy leads to improved phonological processing.
Within the current paper we extend this previous work by
describing how characteristics of the language in which
training is received can have significant consequences for
the nature of the effects observed.

Behavioral and brain imaging studies are beginning to
define various strains and symptoms of the literacy virus.
Computational modelling studies such as the one presented
here provide a means of identifying the factors that
categorize these strains. Such models can then be used to
raise predictions of their resulting symptoms that can then
be tested empirically.
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