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Abstract

Several recent theoretical proposals suggest that young
children are rational, constructivist learners (e.g. Gopnik &
Wellman, 2012; Xu & Kushnir, 2012; 2013). One of the
claims made under constructive learning is that children are
active learners — they selectively attend and explore their
environment in order to maximize information gain (e.g.,
Kidd, Piantadosi, & Aslin, 2012; Schulz & Bonawitz, 2007).
Most studies to date, however, have focused on how
efficiently children learn when they are given evidence by an
experimenter (‘teacher’), under conditions of training:
children receive a restricted set of evidence, and they are
subsequently tested on their learning. Yet children are not
mere observers; they actively engage their environment to
supplement their learning. In our experiment, 3-year-old
children successfully acquired higher-order generalizations
using self-generated evidence during free play, suggesting an
early capacity to engage in self-directed learning.
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Introduction

What is the nature of early learning? In recent years, several
theoretical accounts of cognitive development have
emerged, each describing the young child as a rational,
constructivist learner (e.g. Gopnik & Wellman, 2012; Xu &
Kushnir, 2012; 2013). These proposals make two key
claims: first, learners form meaningful generalizations based
on limited evidence obtained from their environment, and
second, the child is an active learner.

First, much of early learning may be characterized as
inductive learning, i.e. making principled and meaningful
generalizations based on limited amounts of data. Research
has repeatedly demonstrated that young children engage in
such learning proficiently: they generalize non-obvious
properties to novel objects after just a short demonstration
(e.g., Welder & Graham, 2006), and they learn the physical
rules of occlusion with just a single trial (e.g., Wang &
Baillargeon, 2005). Other domains of knowledge in which
young children also show such sophisticated inductive
inferences include language (Chomsky, 1980), causality
(Gopnik & Sobel, 2000), and biological kinds (Gelman &
Wellman, 1991).

In addition, young learners often make generalizations at
multiple levels of abstraction, which is even more important
for building large conceptual structures. Not only do they
make first-order generalizations (e.g. dogs like to eat bones;
rabbits like to eat vegetables), but they also make
sophisticated second, third, or fourth-order generalization

(e.g. each kind of animal has a favored food; each kind of
animal has its own unique traits).

This view of early learning approaches the issue of the
origins of inductive constraints and biases from the
perspective that early input provides the basis for
developing such constraints, and subsequent learning is
guided by these learned constraints. Computational
cognitive scientists have developed formal models, in
particular Bayesian models that capture the idea of learning
to learn (e.g. Kemp, Perfors & Tenenbaum, 2007) across a
variety of domains, from causal learning to categorization to
word learning, and from whole grammars to intuitive
theories (Griffiths & Tenenbaum, 2009; Tenenbaum,
Griffiths & Niyogi, 2011). Recent empirical work has also
provided evidence for such a capacity early on in
development: Looking-time experiments with 9-month-old
infants indicate that they can form second-order
generalizations such as “boxes contain objects that are
uniform in color” (Dewar & Xu, 2010); and Macario,
Shipley & Billman (1990) showed that 4-year-old children
could rapidly construct higher-order generalizations about
how objects were being categorized, successfully classifying
new exemplars into novel categories by shape or color.
These two lines of research, together, provide strong
evidence for the first key claim advanced by rational
constructivist accounts of learning.

The second key claim put forth by these theoretical
proposals of cognitive development is that children can
influence their own learning outcomes. Two sub-claims
underlie this argument: one is that children are smart and
sophisticated processors of data, and the other is that
children may be smart generators of data as well: they can
independently generate the data that is necessary for
learning.

The first sub-claim has been well-researched over the last
two decades. A myriad of experiments on this topic have
produced ample evidence demonstrating that children have
powerful domain-general learning mechanisms that allows
them to keep track of complex statistics in their input (e.g.
Aslin, Saffran & Newport, 1998; Gopnik et al., 2004;
Kirkham, Johnson & Slemmer, 2002; Saffran, Aslin &
Newport, 1996; Xu & Garcia, 2008; among many others).
This sophisticated input processing also enables children to
identify what to learn and when to make further inferences.
For example, after infants had used the statistics in a speech
stream to carry out word segmentation, they attached these
newly segmented words to objects (Graf Estes, Evans,
Alibali & Saffran, 2007).
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In contrast, the second sub-claim has been much less
studied to date. In this claim, it is argued that children can
sometimes generate the relevant and necessary evidence
themselves, even in the absence of explicit instructions or
demonstrations. In some ways, this process is much more
similar to real world learning, where young children engage
in free play, and their attention is drawn to whichever
aspects of the environment that appeal to them.

In the present study, we examine this theoretical
description of the young child as a rational constructivist
learner by exploring the two key claims in tandem — we
investigate whether children are able to generate the
relevant evidence themselves, in order to discover second-
order generalizations. The formation of such generalizations
is the beginning of building larger pieces of the conceptual
structure, such as intuitive theories.

As mentioned, there is strong evidence that children can
form higher-order generalizations based on the input they
receive. However, these studies have exclusively examined
children under conditions of training: infants and children
receive a restricted set of evidence provided by the
experimenter, and they are subsequently tested on their
learning. Furthermore, the evidence presented during such
training is usually helpful, created to lead children towards
making the correct generalizations (e.g. training objects had
shapes that were perfectly correlated with their names in
Smith, Jones, Landau, Gershkoff-Stowe & Samuelson,
2002).

The results from these training studies thus beg the
question of whether children can drive their own learning,
such that they can successfully acquire these inductive
constraints without externally-generated helpful evidence.
To date, few studies have investigated this question, and
there remains a gap in our knowledge about children’s
capacity to engage in such self-directed learning. Many
related questions remain unanswered. Can children
independently generate evidence? Do they gather sufficient
evidence to support their own learning? Can they properly
incorporate the information obtained into their own
knowledge?

Developmental researchers have made some inroads into
addressing these gaps by examining children’s exploration
and question-asking behaviors (e.g. Frazier, Gelman, &
Wellman, 2009; Schulz & Bonawitz, 2007). However, these
studies have focused on the information-seeking behaviors
themselves, and not learning outcomes. In studies that have
investigated learning, results have generally been less than
promising — young children often fail to ask enough
questions to gather sufficient information, and they
frequently fail to remember the relevant information. For
example, when 4- to 6-year-olds were told to ask questions
in order to determine a card (out of an array of 24 cards) that
was previously chosen by an experimenter, Legare, Mills &
Souza (2013) found that the children were able to ask good
questions some of the time, but the overall accuracy at test
was quite low.

Yet there is reason to believe that the research on
question-asking behaviors may underestimate the young
child’s capacity for self-directed learning. Due to the verbal
nature of these tasks, the child’s capacity to gather required
information may be masked by difficulties in explicitly
formulating and generating the necessary questions. Instead,
a nonverbal task that taps into the child’s ability to
independently generate evidence may be more revealing of
his/her capacity for active learning.

One way that young children may actively engage their
environment in order to supplement their learning is through
free play. Young mammals spend an extensive amount of
time playing, and it has been often argued that free play is
an important aspect of cognitive development, allowing the
child to assimilate knowledge (Piaget, 1962), solve
problems (Bruner, 1972) and create new knowledge
(Vygotsky, 1978). One reason that such development can
occur through free play is because playful behavior is less
constrained by functional pressures, allowing the child to
discover novel behavior combinations (Bruner, 1972). We
thus hypothesize that during free play, children may
generate the evidence necessary for their own learning, and
in the context of this experiment — for the formation of
appropriate higher-order generalizations.

Some previous empirical work examining free play has
indicated that 4-year-old children are adept in utilizing the
experience gained from either a play opportunity or a
training situation to accurately complete a problem-solving
task (Smith & Dutton, 1979; Simon & Smith, 1983). In one
study, experimenters presented children with some sticks
and blocks. Half of the children were given a play
opportunity, in which they were allowed to freely explore
the sticks and blocks by themselves, while the other half of
the children were given a training experience, in which they
followed an experimenter’s instructions to learn how to join
the sticks together with a block. After the play/training, the
experimenter presented the child with a lure-retrieval task,
in which it was necessary to join two sticks together with a
block to retrieve a marble. Interestingly, children performed
equally well in both conditions! Given these results, we
further hypothesize that children would be equally
successful in forming these generalizations based on
experimenter-generated and self-generated evidence.

To test our hypotheses, we designed a causal learning
experiment. Three-year-old children were provided with
either a training experience in which an experimenter
demonstrated the activations of three different categories of
machines (Training condition), or a play opportunity in
which children could freely interact with the different
machines (Free Play condition). They were then asked to
make first-order generalizations, where they had to choose
from a new set of blocks to activate a previously seen
machine, and second-order generalizations, where they had
to choose from a new set of blocks to activate a novel
machine. Success in the Free Play condition would suggest
that young children can generate evidence to support their
learning, indicating an early capacity for active learning.

1432



Method

Participants

Fifty-six English-speaking 3-year-olds (22 boys and 34
girls) with a mean age of 35.9 months (range = 30.3 to 42.3
months) were tested. All were recruited from Berkeley,
California, and its surrounding communities. An additional
6 children were tested but excluded due to refusal to make a
choice at test (N = 2), parental interference (N = 3), no
attempt to make any activations (N = 1) and experimenter
error (N = 1). Each child was randomly assigned to a
Training condition or a Free Play condition.

Materials

Four categories of toy machines were used in this
experiment, with two identical machines in each category.
The categories differed in shape and color, i.e. machines in
Category 1 were blue and rectangular; machines in Category
2 were red and triangular; machines in Category 3 were
green and circular; and machines in Category 4 were orange
and L-shaped (each approximately 30 cm x 10 cm x 5 cm).
Each set of machines also produced a unique effect when
activated, e.g. made a sound, lit up with flashing lights, or
played a song.

A variety of small blocks (approximate 4 cm x 2 cm x 1
cm) with different shapes and colors were used to activate
these machines. Some of these blocks matched the toy
machines in shape but not color (shape-match blocks), some
matched the machines in color but not shape (color-match
blocks), and others did not match the machines in shape or
color (distracter blocks). There was an additional cross-
shaped yellow machine that was used only in the Free Play
condition, and it was activated by a cross-shaped yellow
block.

In the Training condition, 3 white trays with separators
were used to easily present the activator blocks during the
training phase and the test phase. In the Free Play condition,
three plastic bins were used to present the toy machines with
their corresponding activator blocks.

Procedure

Children were tested individually in the laboratory. The
parents were also present in the testing room, but sat about
80 cm behind the children throughout the experiment, in
order to not influence their actions and choices. Children
were introduced to the machines and blocks under the
pretext of the experimenter showing them her toys.

The Training condition consisted of two phases: a training
phase and a test phase; while the Free Play condition
consisted of three phases: a familiarization phase, a free
play phase and a test phase. Within each condition, half of
the children were presented with machines that were
activated using a shape rule: a shape-match block had to be
used to activate the machine’s effect, while the other half of
the children were presented with machines that were
activated using a color rule: a color-match block had to be
used to activate the machine’s effect (See Figure 1).
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Figure 1: Schematic diagram of materials and procedure.

Training Condition In the Training condition, each child
was seated opposite an experimenter across a long table. To
begin the training phase, the experimenter presented a white
tray containing three blocks differing in shape and color.
The child was free to play with these blocks for about 20
seconds. After this exploration, the blocks were returned
onto the tray and pulled close to the experimenter, but
remained visible to the child.

The experimenter then presented the first toy machine
(e.g. blue rectangular machine), and activated the machine
with one of the three blocks by placing it on top of the
machine (e.g. red rectangular block, if the machines were
being activated by a shape rule; blue triangular block, if the
machines were being activated by a color rule). Upon the
machine’s activation, the experimenter drew attention to the
event by saying, “Look! The block made the machine go; it
made it go!” The experimenter next showed the child
another machine that was identical to the first one, and
activated it using the same block. This first set of two
machines was then cleared from the table. The experimenter
repeated this procedure with two other sets of training
machines, activating them with their respective shape-match
or color-match blocks.

A total of six machines were presented during the training
phase, and each child saw each machine being activated
only once. The three categories of machines chosen as the
training set were randomized, leaving the fourth category of
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machines for the test phase (i.e. each category could be used
as a training machine or a test machine). The order of
presentation for the categories of training machines was also
counterbalanced. The duration of the training phase was
about 4 minutes.

A test phase immediately followed the training phase. The
test phase consisted of a first-order generalization test and a
second-order generalization test. In the first-order test, each
child was presented with a familiar machine, which is a
machine that was previously presented in the training phase.
Then, the child was provided with 3 novel choice blocks in
a white tray: a shape-match block, which is similar to the
target machine in shape but not color, a color-match block,
which is similar to the target machine in color but not shape,
and a distracter block, which differed from the target in both
color and shape. The experimenter requested the child to
hand her a block that made the target machine go, “Can you
give me the block that makes this machine go?”’

In the second-order test, each child was presented with a
novel machine, which is a machine that was not previously
presented in the training phase. The child was again asked to
activate the machine by choosing among 3 novel choice
blocks: a shape-match block, a color-match block, and a
distracter block. The duration of the test phase was about 1
minute.

Free Play Condition In the Free Play condition, each child
sat opposite an experimenter on the floor. To begin the
familiarization phase, the experimenter presented the child
with a cross-shaped yellow machine, together with its
activator block. This block matched the machine both in
shape and color. The familiarization phase served to
introduce the child to the sound-making function of these
novel machines. This phase was not necessary earlier, since
the machines’ function would be introduced in the course of
training. The experimenter then activated the machine,
drawing attention to the event by saying, “Look! The block
made the machine go; it made it go!” The child was then
given the activator block, and was allowed to activate the
machine freely. The experimenter ensured that each child
saw at least two activations of this familiarization machine.

A free play phase followed the familiarization phase, and
this phase began by the experimenter exclaiming, “Oh no! I
just remembered that I have some work to do. While I'm
doing my work, you can play with some of my toys!” The
experimenter then laid out three plastic bins, each consisting
of two identical machines and their corresponding activator
block. The experimenter subsequently moved to a table and
pretended to work, telling the child, “You can go ahead and
play!” Each child was given 5 minutes to play freely with
the machines and blocks. After 5 minutes, the experimenter
announced that she was done with her work and that it was
time to put the toys away.

The test phase that immediately followed the free play
was identical to that of the Training condition.

Coding

The children’s responses in the test trials were scored for
accuracy. For the children who were exposed to the shape
rule during the training or free play phases, choosing a
shape-match block was scored as 1 point. Correspondingly,
for children exposed to the color rule, choosing a color-
match block was scored as 1 point. The maximum score for
each child was 2 points, as there were 2 test trials in total.
The children’s scores were then converted into percentage
of accuracy. A second coder recoded all of the children’s
responses, and the level of agreement between the coders
was 100%.

Results

An alpha level of 0.05 was used in all statistical analyses.
Preliminary analyses found no effects of gender, median
age-split (whether the children were younger or older than
the median age of the group), trial order (first trial vs.
second trial), presentation order of the training machines
(e.g. whether machines from Category 1 were presented
first, second or third during the training phase), and rule
type (shape rule vs. color rule) on children’s accuracy on the
test trials. Subsequent analyses were collapsed over these
variables.

Due to the free play nature of the Free Play condition,
several parameters varied across children in this condition:
the number of activations for each category of machines (M
= 5.07, SD = 5.12; recall that children in the Training
condition each saw 2 activations per category of machines),
the number of times that “negative evidence” was generated,
as defined by the number of times the child placed an
activator block on a machine from a different bin (M = 3.7,
SD =5.11), and the length of the free play phase (M = 226s,
SD = 126.2s). 75% of the children in the Free Play condition
activated every category of machines that was presented
during the free play phase.

As Figure 2 shows, children performed accurately during
the test trials, selecting the correct activator block in both
the Training and the Free Play conditions. Using the
children’s percentage accuracy, a 2x2 repeated measures
analysis of variance (ANOVA) was performed with
Condition (Training vs. Free Play) as a between-subjects
factor and Type of Generalization (first-order generalization
vs. second-order generalization) as a within-subjects factor.
There was neither a main effect of Condition, F(1, 54) =
.011, p = .98, nor Type of Generalization, F(1, 54) = .54, p
= .47, 12 = .01, and there was also no interaction between
the two factors, F(1, 54) < 1.

Critically, we were interested in the effects of training and
free play on children’s accuracy on the test trials. We used a
conservative chance criterion of .5, even though children
were offered three activator choices at each test trial.
Planned comparisons indicated that children in the Training
condition were significantly more likely to choose the
correct activator block (M = .72, SD = .38) as compared to
chance, t(31) = 3.26, p = .003, d = .57. Children in the Free
Play condition were also significantly more likely to choose
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the correct activator block (M = .73, SD = .36) as compared
to chance, t(23) = 3.11, p = .005, d = .62. An additional
comparison also revealed that children in the two conditions
were equally likely to choose the correct activator block in
both the first-order generalization test, t(54) = 1.65, p =
.870, d = .45, and the second-order generalization test, t(54)
=0,p=1.00,d=0.
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Figure 2: Percentage accuracy in the two conditions. Dashed
line indicates chance performance. Error bars represent SE.

Discussion

The present study examined whether three-year-old children
can form higher-order generalizations in the causal domain,
based on both experimenter-generated and self-generated
evidence. The results demonstrate that the children can, and
they are equally effective in learning from both types of
evidence. In both Training and Free Play conditions, three-
year-olds rapidly made first-order and second-order
generalizations about how the machines and the activator
blocks interacted with one another, and they extended these
generalizations appropriately to novel toy machines.

These results make two important new contributions to
the literature. First, children’s success in the Training
condition constitutes the first demonstration that children
can simultaneously acquire generalizations at multiple
levels in the causal domain. Developmental research in this
area have largely focused on word learning and
categorization tasks, leaving open the question of whether
“learning to learn” is a perspective that is limited to only a
few specific domains. Given that causal knowledge
constitutes the foundation of intuitive theories, and that
these theories are present in multiple domains (Carey, 1985;
2009; Gopnik & Meltzoff, 1996), there is reason to believe
that the ability to “learn to learn” is a domain-general one.

Second, and even more striking, is children’s robust
success in the Free Play condition. Children consistently
chose the correct blocks to activate the machines presented
in both the first-order and second-order generalization tests.

This success suggests that even in the absence of explicit
instructions, children can, in the course of free play,
generate the relevant evidence themselves, in order to form
appropriate generalizations at multiple levels. This learning
condition is much closer to what children encounter in the
real world, where preschoolers are often allowed to play
freely, and engage with whatever aspects of the environment
they find interesting and appealing. Our data provide strong
evidence that (1) preschool children are motivated to
understand what rules govern the behavior of the objects
around them, and (2) they may have some rudimentary
capacity to systematically generate the relevant evidence to
support such learning.

Ongoing work in our laboratory takes a closer look at the
types of evidence generated by children during the free play
phase, and how these different types of evidence is related
to their subsequent accuracy at the generalization tests.
Preliminary analyses show that the number of activations
and the number of negative evidence generated predicted
accuracy at test.

Several previous studies have shown that young learners’
attention is allocated in systematic ways that reflects active
learning. For example, Kidd et al. (2012) showed that 8-
month-old infants preferentially looked at series of stimuli
that provide the most information gain; Gerken, Balcomb &
Minton (2011) found that 17-month-old infants devote more
attention to aspects of their environment that are learnable,
rather than unlearnable; and Schulz and Bonawitz (2007)
demonstrated that preschoolers selectively played with a
box that had produced ambiguous evidence for its causal
structure. These studies, however, have not shown whether
children acquired specific pieces of knowledge through their
own free play and visual exploration. Here we provide the
first clear demonstration that preschoolers are capable of
doing so. Interestingly, using the same task, preliminary
results from our lab suggest that toddlers may not be able to
generate the necessary evidence to support their learning.
Future work will focus on charting the developmental
trajectory for children’s ability to engage in active learning.

Put together, the present study provides strong evidence
for emerging theoretical proposals that children are rational
constructivist learners (e.g. Gopnik & Wellman, 2012; Xu
& Kushnir, 2012; 2013). Our results are consistent with the
two key claims put forth by these proposals: first, children
form principled and meaningful generalizations based on the
inputs from the environment, and second, they are self-
directed learners, actively engaging different aspects of their
environment to supplement their own learning. Future
research should also investigate the optimality of the active
learning that children partake in, as well as its limits, to shed
light on how early learning actually occurs in the real world.
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