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Abstract

According to previous accounts, teaching is the helpful sam-
pling of examples according to a learner’s known biases. Us-
ing the domain of Boolean concepts, we show that biases are
necessary, there is no single rational bias, and teaching is not
possible when the teacher does not know the learner’s bias.
Taken together, these results suggest that teaching via sam-
pling would be either ineffective or impossible for Boolean
concepts. We offer an alternative account of teaching based on
cooperation and the teacher’s omission of irrelevant features.
The result is a model of teaching that is computationally effi-
cient, effective in concept spaces with infinitely many features,
and suggestive of a natural concept representation based on co-
operation.
Keywords: Concept learning; representation; teaching dimen-
sion; relevant features

Introduction
Learning from a cooperative source offers significant advan-
tages over learning from other sources (e.g. disinterested, ran-
dom, or adversarial) (Shafto & Goodman, 2008; Csibra &
Gergely, 2009). Previously, cognitive science and machine
learning researchers have used a sampling account to explain
the advantage of teaching (Xu & Tenenbaum, 2007; Shafto
& Goodman, 2008; Balbach, 2008; Zilles, Lange, Holte, &
Zinkevich, 2009): the teacher selects examples to give to the
learner in order to maximize the probability of learning the
correct concept, given limitations on the number of exam-
ples. These approaches assume that learners have a known
bias—that, a priori, learners are more inclined toward some
concepts than others (e.g for ‘red’ over ‘red or square’ when
both are consistent with the evidence).

In this paper, we analyze the role of a prior bias in the
domain of Boolean concepts (Shepard, Hovland, & Jenkins,
1961) and show three results. First, without a bias, sampling-
based teaching requires the observation of each and every ex-
ample. Second, there are many optimal biases, and hence no
single rational choice. Third, as the number of features grows,
teaching is not possible if the teacher and learner have a dif-
ferent bias. These results indicate that sampling alone is an
incomplete account of the effectiveness of teaching.

We offer a novel account of teaching Boolean concepts
called cooperative inference that uses a notion of cooperation
(such as the idea that a teacher may omit unnecessary features
from examples) rather than biases to explain the effectiveness
of teaching. We show that this method allows teaching with-
out prior communication of the learner’s bias. For the coop-
erative inference model, the difficulty of teaching depends on
the complexity of the target concept irrespective of the con-
cept space, and thus permits teaching in concept spaces with

infinitely many features. The model also indicates a natural
representation for teaching—Disjunctive Normal Form—and
the resulting learning bias is consistent with the best mod-
els of human complexity of learning (Feldman, 2000; Good-
man, Tenenbaum, Feldman, & Griffiths, 2008; Goodwin & P.
Johnson-Laird, 2011).

The limitations of teaching by sampling
To analyze sampling-based teaching, we use an extensively
studied model of algorithmic teaching: the teaching set model
(Shinohara & Miyano, 1991; Anthony, Brightwell, Cohen, &
Shawe-Taylor, 1992; Goldman & Mathias, 1993). The pa-
per will use the following notation for Boolean features, in-
stances, and concepts.
Definition 1 (Preliminaries) Let F = { f0, f1, . . .} be the
feature space. Let the instance space be the function space
from F to Boolean labels X = {0,1}F . And let the concept
space be the function space from X to the Boolean labels
C = {0,1}X . A concept class is some subset of the concept
space C ⊆ C .

Ordered pairs formed of features and Boolean labels such
as those found in an instance ( f ,b)∈ x are referred to as spec-
ifications. Ordered pairs between instances and Boolean la-
bels such as those found in concepts (x,b) ∈ c are referred to
as examples. Finally, let the sample space be any set of ex-
amples that can be found in a concept, S = {s ⊆ c | c ∈ C}.
For abbreviation, samples and concepts may be represented
as strings over {0,1,∗} such that (xi,A[i]) ∈ s for all A[i] 6= ∗.

A concept is consistent with a sample if each example in
the sample is also in the concept.

Cons(s,C) = {c ∈C | s⊆ c} (1)

For an intuitive illustration of these definitions, consider
the two features ‘red’ and ‘square’. These two features can be
combined to form four instances: ‘red and square’, ‘not red
and square’, ‘red and not square’, ‘not red and not square’.
A concept can be thought of as a definition for an unknown
category such as ‘fep’. The four instances allow for 16 con-
cepts from ‘feps are red’ to ‘feps are either not red and not
square or red and square’ to ‘feps are nothing’ (i.e. all four
instances are false). A teacher samples evidence in the form
of labeled examples to teach a concept; in order to teach the
concept ‘feps are red’ a teacher might use the following ex-
amples ‘red and square is a fep, not red and square is not a
fep’.

Within this framework, a learner is both consistent and
class-preserving. Consistent means that learners will only
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learn a concept that is consistent with the teaching sample.
Class-preserving means that learners will only learn a con-
cept that is in the concept class. Equivalently, the learner can
be thought of as beginning with all concepts in the concept
class and ruling out concepts that are inconsistent with the
sample.

Assuming that the teacher knows the concept class of the
learner, the teaching set is the sample with the fewest exam-
ples that will teach the target concept for any consistent, class-
preserving learner—i.e. that will rule out all other concepts in
the concept class.
Definition 2 (Teaching Set) The teaching set of a target con-
cept is the minimal sample that teaches the target concept to
all consistent and class-preserving learners.

TS(c,C) = argmin
s∈S

{|s| | Cons(C,s) = {c}} (2)

The teaching dimension for a target concept is the size of the
teaching set.

One learner’s concept class might include only three con-
cepts, ‘feps are red’, ‘feps are not square’ and ‘feps are not
red and not square’. Then, a teacher could teach ‘feps are red’
with a single labeled example, ‘red and square is a fep’, be-
cause that example rules out the other two concepts. However,
the teacher would require more than one example to teach
‘feps are not square’ because none of the examples in that
concept rule out both other concepts.

Ineffective without a bias
To this point, models of teaching have assumed various learn-
ing biases. Consider learning from an unknown source where,
without a bias, all consistent concepts are equally likely and
thus there can be no learning (Watanabe, 1969). We show that
without a bias, there can also be no sampling-based teaching.

Theorem 1 (Teaching without bias) Given a set of n fea-
tures Fn and a concept class, Xn = {0,1}Fn , Cn = {0,1}Xn .
The teaching set for any c∈Cn must include every instance in
Xn labeled according to the concept such that TS(c,Cn) = c.
PROOF Let s, the teaching set for c, label all but m instances
in c, such that |c\ s|= m.1

The set of unlabeled instances can be used to form a set
of concepts X∗ = {x | (x,b) ∈ c \ s}, C∗ = {0,1}X∗ . These
concepts may be used to construct Cons(s,Cn), the set of all
concepts in Cn consistent with the s.

Cons(s,Cn) =
{

c = s∪ c′ for all c′ ∈ {0,1}X∗
}

(3)

It follows that Cons(s,Cn) = {c} iff Xn = /0—i.e. m= 0 and
no instances are left unlabeled—and thus TS(c,C ) = c. �

Without a bias, a teacher must label every instance in order
to teach the target concept—teaching is no better than other
sampling methods, all of which trivially teach a concept when
allowed to sample the entire example space.

1A\B is the set difference such that A\B = {x ∈ A | x /∈ B}.

Many optimal biases
If a learner needs a bias in order for teaching to be effective,
the most sensible choice for the bias is the one that would, on
average, lead to the most efficient teaching.

We will consider two types of biases: The first, ordered
bias, adopts a total pre-order2on the concepts in C such that
lower ordered concepts are given priority. One example of
this is the Occam’s Razor bias (Balbach, 2008; see also Good-
man et al., 2008) where concepts are judged by the number
of terms (separated by ‘or’s) in the description, e.g. ‘feps are
red and square’ which has one term would be given prior-
ity over ‘feps are red or square’ which has two. The second,
functional bias, permits a redefinition of the set of concepts
that are consistent with any sample. This bias is more com-
plex but also opens up many more possibilities. An example
of this is the Subset Teaching Set (Zilles et al., 2009) where a
learner rules out concepts based on a prediction of the teach-
ing set rather than based on whether or not an example is
consistent (see Shafto & Goodman, 2008, for a probabilistic
example of such a bias). For both kinds of bias, we show that
there are many optimal biases and that the selection of a bias
through prior communication would allow arbitrarily efficient
teaching—effectively equivalent to telepathy.

For an ordered bias, the learner learns the lowest-order con-
sistent concept. Thus, an ordered bias amounts to a mod-
ification of the Cons() function. Given c and �, we use
C�c = {c′ ∈ C | c′ � c} to refer to the set of concepts of the
same or lower order as c and

Cons(s,C ,�) = {c′ ∈C�c | for all c⊇ s} and (4)
TS(c,C ,�) = argmin

s∈S
{|s| | Cons(s,C ,�) = {c}} . (5)

Next, we develop a novel ordered bias called the Hamming
distance bias and show that it minimizes the average teach-
ing dimension and is thus optimal. Informally, the proof is as
follows. Each ordered bias includes a least-element concept
that is of equal or lower order to all other concepts in the con-
cept class. Any ordered bias would, at minimum, require the
teaching set of a target concept to include examples sufficient
to rule out the least-element concept (because it is necessarily
in the set of concepts of lower order than the target concept).
For the Hamming distance bias, we show that the teaching set
of each concept is the minimal set of examples sufficient to
rule out the least-element concept and therefore it is a mini-
mal ordered bias.

Theorem 2 (Hamming distance bias) Let h(c1,c2) be the
Hamming distance between c1 and c2 such that h(c1,c2) =
|c1 \ c2|. Given an origin concept, c∗, the Hamming distance
bias is �h(c∗)= {(c1,c2) ∈ C ×C | h(c∗,c1)≤ h(c∗,c2)} and
is an optimal ordered bias.

2A total-order 4t on a set X is a partial order such that any two
elements in X are comparable (i.e. for all a,b ∈ X either a 4t b or
b4t a). A pre-order 4p on a set X is a total order that is both reflex-
ive (a4p a) and transitive (a4p b and b4p c implies a4p c) for all
a,b,c ∈ X .
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PROOF Let�c0 be an ordered bias with c0 as a least element,
i.e. c0 �c0 c for all c∈ C . Then c0 is in C�c0 c for all c∈ C and
in order to rule out c0, the teaching set for any c must include
c\ c0,

TS(c,C ,�c0)⊇ c\ c0 . (6)

For �h(c∗) and any c1,c2 ∈ C , c1 6= c2 if c1 �h(c∗) c2 (i.e.
|c1 \ c∗| ≤ |c2 \ c∗|) then (c2 \ c∗)* c1. So c2 \ c∗ is sufficient
to rule out any concept of a lesser order, i.e.

Cons(c2 \ c∗,{c1,c2},�h(c∗)) = {c2} (7)

TS(c,C ,�h(c∗)) = c\ c∗ . (8)

From eq. (6), the Hamming distance bias results in the min-
imal size teaching set for each concept and is thus optimal. �

For example, if the origin concept is the concept with all
negative examples, c∗ = 000 . . . , the teaching set for each tar-
get concept c will include only the examples that differ from
c to c∗, or, in other words, the set of positive examples in c.
Thus the average teaching dimension for the Hamming dis-
tance bias is the average number of positive examples in each
concept, or 2n

2 = 2n−1 for a concept space with n features.
The Hamming distance bias is optimal without regard to

the origin concept, so the average teaching dimension would
not change if the origin concept were changed. What does
change, however, is the number of examples required to teach
particular concepts—especially the origin concept which can
be taught with an empty teaching sample.

Rational selection of a functional bias is similar to that
of an ordered bias, with the exception that, because a func-
tional bias may modify which concepts are consistent with
which samples in any way, there is no analogous constraint to
eq. (6). Thus, a functional bias may use any set of examples to
teach a target concept so long as each concept is taught with
a different set of examples.

The minimal functional bias would assign a concept to
each unique s ∈ S , beginning with the smallest. The first
concept would be taught with s = /0, the following concepts
would be taught with samples |s| = 1, and so on. For |s| = i,
and the number of features, n, the number of unique samples
in S is

(2n

i

)
2i. It is outside of the scope of this paper to de-

termine the average teaching dimension for the optimal func-
tional bias, though it is clearly smaller than that of the optimal
ordered bias.

Both the optimal ordered and functional biases have a free
parameter in the choice of an origin concept. So there are at
least as many distinct optimal choices as there are concepts
and for each bias there is at least one concept that can be
taught with an empty teaching sample.

Impossible for unknown bias
First, the different roles of the two biases should be clarified.
For the following analysis, we will use classes Ct ,Cl ⊆ C to
stand in for more complex biases without a loss of generality
(see eq. (4)). The teacher’s class Ct is used to determine a
teaching set that is consistent only with the target concept,

st = TS(c,Ct), while the learner’s class Cl is the class that is
preserved when the learner uses the sample to rule out other
concepts, C′ = Cons(TS(c,Ct),Cl). Given Ct and Cl , we say
that a concept c is teachable iff {c}=Cons(TS(c,Ct),Cl) and
we use the following indicator function such that Teach(c) =
True if the concept c is teachable and False otherwise.

To begin with, concepts not in either Ct or Cl are trivially
unteachable. Of the concepts in the intersection of the teacher
and learner’s classes c ∈ Ct ∩Cl , a concept is teachable iff
each example in the teaching set from the learner’s perspec-
tive TS(c,Cl) is included in the teaching set from the teacher’s
perspective TS(c,Ct). That is, each example in TS(c,Cl) rep-
resents a necessary condition for the teachability of c.

For example, if Ct = {00,01,10} and Cl = {00,01,11},
then the teaching set from the teacher’s perspective includes
both examples TS(00,Ct) = 00. From the learner’s perspec-
tive, 00 includes the teaching set TS(00,Cl) = ∗0, so 00 is
teachable. On the other hand, 01 is not teachable because the
teaching set from the learner’s perspective requires both ex-
amples while the teacher’s includes only one, TS(01,Ct) =
∗1.

The teaching set from the teacher’s perspective includes
an example only when it is necessary to rule out a concept
that hasn’t already been ruled out by other examples in the
teaching set. We refer to such concepts as adjacent concepts.
Given a sample, we say that a concept is adjacent along an
example when the concept would be ruled out if the example
is included in the teaching set but not otherwise. To illustrate,
imagine that the teaching set for a target concept from the
learner’s perspective is TS(c,Cl) = 001∗. The teacher’s class
must include at least one concept adjacent to the third exam-
ple (either 0000 or 0001) otherwise TS(c,Ct) will not include
that example (e.g. TS(c,Ct) = 00∗∗).

To determine the probability that a concept is teachable we
model a process where the teacher’s class is determined by
randomly drawing without replacement from the set of con-
cepts. Then, for each example, the hypergeometric distribu-
tion gives the probability that all adjacent concepts are re-
moved. Let U = |C | be the size of the universe of concepts
and R be the number of concepts removed from C to get the
teacher’s class of size T = |Ct | such that U = R+T . Given an
example in the teaching set from the learner’s perspective, let
Ae be the number of adjacent concepts

P(Teach(c) = False | R,Cl ,e) =

(Ae
Ae

)(U−Ae
R−Ae

)(U
R

) . (9)

As the number of features becomes very large, n → ∞,
the number of concepts U does as well. If R remains con-
stant, then limn→∞ P(Teach(c) = False) = 0 meaning that a
target concept will be teachable in the limit. But, because
U = R+T , a constant R would mean that the teacher’s con-
cept class increases superexponentially, i.e. O(T ) = 22n

, and
this implies an implausible lack of constraints on the size of
a concept space. If T increases less than superexponentially
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such that R approaches U in the limit R = U − T → U , the
target concept will not be teachable.

Stirling’s approximation of the factorial—appropriate be-
cause both U and R are very large—provides a simplification
of the hypergeometric distribution in eq. (9) for n→ ∞.(Ae

Ae

)(U−Ae
R−Ae

)(U
R

) ∼ (U−Ae)
U RU

UU (R−Ae)U
(10)

Then, because R→U , limn→∞ P(Teach(c) = False) = 1.
This result depends on a set of reasonable assumptions: that

the set of features is large, that the set of concepts considered
by the teacher and learner is much smaller than the set of all
concepts, and that the teacher cannot predict which concepts
are in the learner’s concept class. Given these assumptions,
the likelihood that a concept could successfully be taught via
sampling approaches zero. The fact that more complex biases,
such as ordered, reduce to a concept class (see eq. (4)) means
that this result applies to all such biases.

Cooperative Inference
Previous accounts of teaching leverage the idea that teachers
purposefully choose which examples to provide to the learner
but the above resuls show that this is an incomplete account of
the effectiveness of teaching. Such an account cannot explain
the effectiveness of teaching in realistic situations, such as
when the bias of the learner is unknown or the set of features
is large.

In what follows, we propose a solution. Building on previ-
ous approaches that analyze the consequences of the teacher’s
ability to select examples, we analyze the consequences of the
teacher’s ability to select features. When a teacher communi-
cates an example, the teacher may omit unnecessary features,
resulting in what we call a partial example. We show that
this extension leads to a number of important consequences:
teachers may successfully teach when ignoring all irrelevant
features, the complexity of teaching depends on the complex-
ity of the target concept irrespective of the concept space, and
there is a natural representation for teaching.

Let a partial instance be any subset of a typical instance
X ′ = {x′ ⊆ x | x ∈ X }. A partial example is a partial instance
paired with a Boolean label.

To understand how we will use partial examples, recognize
that the relationship between partial instances and typical in-
stances is analogous to the relationship between samples and
concepts; partial instances are a subset of a typical instance
and teaching samples are a subset of concepts. In both cases,
inference is needed to relate the incomplete version to the
complete version. The following application of partial exam-
ples takes advantage of the fact that the teacher and learner
are mutually cooperative.

First consider the set of instances that may be consistent
with a particular partial example

Cons(x′,X ) = {x | x′ ⊆ x} . (11)

A partial example (x′,b), may match some subset of con-
sistent instances Cons(x′,X). Matching instances are given
the label b, allowing a partial example to effectively stand
in for one or more typical examples. Based on cooperation,
a learner infers that all consistent examples should match a
partial example3

Match(s,C) =
⋃

(x′,b)∈s

Cons(x′,X )×b . (12)

Imagine the addition of a third feature to our intuitive ex-
ample, so that we have ‘red’, ‘square’, and ‘small’. For con-
cepts such as ‘feps are red or small and square’, a teacher
would likely wish to use all three features, but for others, such
as ‘feps are red and square’, a teacher might find it helpful not
to include the feature ‘small’. Equation (12) represents our in-
terpretation of cooperation for this case; when a cooperative
source omits features from examples, the learner assumes that
the partial example matches all consistent instances. So, ‘red
and square is a fep’ would imply that ‘red and square and
small is a fep’ as well as ‘red and square and not small is a
fep’.

This use of partial examples allows for a powerful im-
provement in the efficiency of teaching. First, we show that
with cooperative inference a teacher only needs to use fea-
tures known to be relevant in order to teach a concept. A fea-
ture is relevant if, for at least one pair of differently-labeled
instances in the concept, the feature is the only feature to
change4

Relevant(c) = { f | (x0,0),(x1,1) ∈ c} (13)
where x04 x1 = {( f ,0),( f ,1)} . (14)

Theorem 3 (Relevant instance space) Given a concept c let
FR be a subset of F that contains all features that are relevant
with respect to c and XR be the set of partial instances formed
of FR, XR = {0,1}FR . Using cooperative inference, a teacher
may successfully teach c by labeling each partial instance
x′ ∈ XR according to any consistent full instance, x ⊇ x′, x ∈
X .

PROOF The theorem follows immediately from the defini-
tions.

Given an example in the teaching set, (x′,b) ∈ s,
x′ ∈ XR, consider the set of matching examples sx′ =
{(x,b) | x ∈ Cons(x′,X )}. Note that each example in sx′ is a
superset of x′ and so must have the same label for each rel-
evant feature. Assume for the sake of contradiction that two
examples in sx′ are differently labeled, (x,0),(x∗,1) ∈ sx′ . We
may build a series of examples x0,x1, . . .xi beginning with
x0 = x, and for each step, changing the label for one feature
in x0 to match x∗ such that i = 1

2 |x4 xi|.

3Others (e.g. Csibra & Gergely, 2009) have informally proposed
a similar idea, that helpful teachers offer generic or semantically
generalizeable examples.

4Here, 4 refers to the symmetric difference such that A4B =
(A\B)∪ (B\A).
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Because, x0 and xn are differently labeled, there must exist
some i such that (xi,b),(xi+1,b) ∈ c. This implies that the
feature f such that xi4 xi+1 = {( f ,0)( f ,1)} is relevant and
is a contradiction. �

So, a teacher who knows that only ‘red’ and ‘square’ are rel-
evant to the concept ‘fep’, may omit the entire universe of
irrelevant features.

Until this point, our formal discussion of concepts used an
extensional sense, where a concept is defined by the set of
outputs for all inputs. The alternative, intensional sense, is
to represent concepts as a rule that generates the appropriate
output label based on the content of input and is more simi-
lar to our intuitive discussion. For example, the concept with
intension c = f0 ∨ f1 (i.e. ‘feps are red or square’) has the
following extension over two features

f0∨ f1 =


({( f0,0),( f1,0)},0)
({( f0,0),( f1,1)},1)
({( f0,1),( f1,0)},1)
({( f0,1),( f1,1)},1)

 . (15)

The intensional concept f0 ∨ f1 will label instances out-
side of eq. (15), whereas the extensional concept is only de-
fined for the included examples. For f0 ∨ f1, the instance
{( f0,0),( f1,1),( f2,0)} would be labeled positive and the
instance {( f0,0),( f1,0),( f2,0)} would be labeled negative
while both would be undefined for the extensional definition
in eq. (15).

Given a set of examples, an intensional representation can
be derived and we briefly describe this process.

Definition 3 (Intensional form) A literal is a negated or un-
negated variable, e.g. l1 = f is true for ( f ,1) and l2 = f is
true for ( f ,0). A term is a conjunction (i.e. ‘and’) of literals
such as t = l0 ∧ l1 ∧ . . . and is false unless all of the literals
are true. A clause is a disjunction (i.e. ‘or’) of literals such as
cl = l0∨ l1∨ . . . and is true unless all of the literals are false.
Each term and clause is associated with a set of literals such
that t =

∧
l∈Lt l and cl =

∨
l∈Lcl

l. A concept is in Disjunc-
tive Normal Form (DNF) if it is a disjunction of terms such
as (l ∧ l ∧ . . .)∨ (l ∧ l ∧ . . .)∨ . . . and a concept is in Con-
junctive Normal Form (CNF) if it is a conjunction of clauses
(l∨ l∨ . . .)∧ (l∨ l∨ . . .)∧ . . .

This allows us to derive an intensional concept from an ex-
tensional definition. The first method is to collect all of the
positive examples and from each, form a term that is true
when the specifications for that example are true and false
otherwise. At this point, each positive example has an anal-
ogous term that evaluates to true for all instances in positive
examples. To form an intensional concept, these terms then
need to be ‘or-ed’ together. The resulting concept would be
one that is true for all instances in positive examples and false
otherwise.

ext2int+(c) =
∨

(x,1)∈c

 ∧
( f ,1)∈x

f ∧
∧

( f ,0)∈x

f

 (16)

Through a similar process, the negative examples can be
‘and-ed’ together to form a concept that is negative for all of
the instances in negative examples and positive otherwise.

ext2int-(c) =
∧

(x,0)∈c

 ∨
( f ,0)∈x

f ∨
∨

( f ,1)∈x

f

 (17)

If we use the set of examples in equation eq. (15), we
can form an intensional concept both ways. From the posi-
tive examples we have c+ = ( f0 ∧ f1)∨ ( f0 ∧ f1)∨ ( f0 ∧ f1)
and from the negative examples we have c− = ( f0 ∨ f1). In
the case where the provided examples are partial examples,
the learner can infer the concept label for instances not cov-
ered by the examples. If the intensional form of a concept
is known, the output label can be predicted for any instance
defined over the same features and thus intensional concepts
conveniently provide a set of potentially relevant features as
in theorem 3. Thus, a teacher can communicate an intensional
concept through the use of partial examples.

Just as intensional concepts can be derived from the exten-
sional definition, a sample compatible with cooperative infer-
ence can be derived from an intensional concept. Let cd and
cc be concepts in DNF and CNF form, respectively.

int2ext+(cd) =
⋃

t∈cd


⋃

f∈Lt

{( f ,1)}∪
⋃
f∈Lt

{( f ,0)},1


(18)

int2ext-(cc) =
⋃

cl∈cc


 ⋃

f∈Lc

{( f ,1)}∪
⋃

f∈Lc

{( f ,0)},0


(19)

These two equations imply a logical correspondence be-
tween a teaching set for a concept constructed of partial ex-
amples and intensional forms of that concept. If a teacher has
a concept stored intensionally, such as c = f1 ∨ f0 ‘feps are
red or square’, the teacher easily convert this definition to the
teaching sample {(( f0,1),1),(( f1,1),1)} ‘red is a fep, square
is a fep’.

This means that logical operations on one form can be
leveraged for the other, e.g. simplifying the intensional def-
inition results in an equivalent simplification of the exten-
sional teaching set. For example the rule used to combine
terms and clauses in the classic Quine-McCluskey algorithm
(Roth, 2013)—e.g. ‘feps are either red and small or red and
not small’ → ‘feps are red’—has a logical equivalent with
cooperative inference.

If a teacher has a concept in both DNF and CNF form, a
concept can be inferred from the results of eqs. (18) and (19)
using partial examples, c = Match(s+,X ) ∪Match(s−,X )
where s+ = int2ext+(cd) and s− = int2ext-(cc) and vice versa
for eqs. (16) and (17). A teacher may not need both DNF and
CNF forms; a very large feature space combined with sparse
positive instances would support a principle of truth (see e.g.
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P. N. Johnson-Laird, 2001). In such a case, if a teacher were
to only present positive examples a cooperative learner would
infer that the teacher was helpfully omitting the vast set of
negative examples.

This correspondence between the intensional form of a
concept and its teaching set suggests that DNF is a natural
representation for teaching. When a concept is stored in this
way, teaching no longer involves searching a space of teach-
ing samples for the solution; rather, the solution is the rep-
resentation itself. In this way, teaching via cooperative in-
ference would inform sampling biases through representa-
tion. A DNF-based representational bias is consistent with
some of the most successful models and experiments in con-
cept learning (Feldman, 2000; Goodwin & P. Johnson-Laird,
2011; Goodman et al., 2008).

Discussion
In cognitive science and machine learning, previous models
have sought to explain teaching through the helpful sampling
of examples with respect to a known bias. We have argued
that there is no single rational bias, that if the teacher does
not know the learner’s bias, the probability of teaching goes to
zero as the number of features increases, and that a sampling
account is ineffective without a bias. Thus, sampling alone is
an incomplete explanation of teaching.

We have proposed a solution that begins with a notion of
cooperation instead of biases. In the cooperative inference
model, a teacher not only samples examples but is able to
omit unnecessary feature specifications. The most immediate
effect of cooperative inference is a novel, powerful, and real-
istic account of teaching.

In the sampling-based accounts of teaching, the teacher
searches the space of teaching samples for one that rules out
all other concepts in the concept space—so the computational
complexity of the model increases with the size and complex-
ity of the concept space. This represents a significant limita-
tion, as the size of the concept space increases superexpo-
nentially with the number of features and a realistic world
includes many—if not infinitely many—features. For cooper-
ative inference, the complexity of teaching increases with the
complexity of the target concept rather than the complexity of
the concept space. Additionally, the model indicates a natural
representation for teaching such that once a concept has been
learned through teaching or represented for teaching, minimal
work is needed in order to teach the concept again.

Our work is related to a variety of trends in cognition and
cognitive development (Csibra & Gergely, 2009; Tomasello,
Carpenter, Call, Behne, Moll, et al., 2005; Clark & Wilkes-
Gibbs, 1986). Most notably, the assumption of common
knowledge and common ground is key to theories of language
and communication (Clark & Wilkes-Gibbs, 1986). Our prob-
lem differs from the standard formulation in that theories of
language have focused on how to link utterances to referents.
In contrast, we have focused on the case where referents are
clear, and the challenge is linking examples to concepts. Nev-

ertheless, both problems require a priori assumptions about
the other party, and a similar approach may yield insights in
the other domain as well.

A critical component of any model of human behavior is
the choice of bias. Before now, these choices have been made
by a combination of intuition and informal argument (see es-
pecially Anderson, 1990; Feldman, 2000; Goodman et al.,
2008; Goodwin & P. Johnson-Laird, 2011). We have pre-
sented a formal analysis that provides an a priori justifica-
tion for choice of bias in the case of teaching. However, the
promise of this work is in the generality of the approach, and
we are optimistic that similar methods can be applied to more
general learning problems.
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