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Abstract

How do we manage to step into another person’s shoes and
eventually derive the intention behind observed behavior? We
propose a connectionist neural network (NN) model that learns
self-supervised a prerequisite of this social capability: it adapts
its internal perspective in accordance to observed biological
motion. The model first learns predictive correlations between
proprioceptive motion and a corresponding visual motion per-
spective. When a novel view of a biological motion is pre-
sented, the model is able to transform this view to the closest
perspective that was seen during training. In effect, the model
realizes a translation-, scale-, and rotation-invariant recogni-
tion of biological motion. The NN is an extended adaptive
resonance model that incorporates self-supervised error back-
propagation and parameter bootstrapping by neural noise. It
segments and correlates relative, visual and proprioceptive ve-
locity kinematics, gradually refining the emerging representa-
tions from scratch. As a result, it is able to adjust its internal
perspective to novel views of trained biological motion pat-
terns. Thus, we show that it is possible to take the perspective
of another person by correlating proprioceptive motion with
relative, visual motion, and then allowing the adjustment of
the visual frame of reference to other views of similar motion
patterns.

Keywords: Proprioception; vision; associative learning; self-
supervised learning; mental rotation; canonical views; point-
light display; biological motion; recurrent neural networks.

Introduction

Do we build up and use our own sensorimotor knowledge to
adapt our mental perspective for putting ourselves into an-
other person’s shoes? We present an artificial neural network
(NN) model that is able to do just that: it enables a view-point
independent perception of biological motion, correlating rel-
ative visual motion to corresponding proprioceptive motion,
and later mentally transforming novel visual motion perspec-
tives to previously learned, canonical perspectives. In several
fields of research, the ability to mentally transform the own
coordinate system to match an observed one is referred to as
self-projection, view-point adaptation, or perspective-taking.
To enable such a mental transformation, we focus here on the
perception of biological motion.

The perception of biological motion is assumed to be re-
lated to the Superior Temporal Sulcus (STS) (Pavlova, 2012;
Pyles et al., 2007), where temporal and parietal pathways
of visual information processing converge. However, since
the parietal path is also strongly involved in the percep-
tion of body-relative spaces (Holmes & Spence, 2004), it

seems likely that parietal visuo-proprioceptive correlations
are learned in early mental development. We investigate how
such self-induced correlations can be learned and how this
knowledge can be used to adapt the visual processing of ob-
served actions. As Johansson pointed out, showing a moving
set of light points representing the locations of a walking per-
son’s joints is sufficient to perceive the underlying biological
motion (1973). Thus, it seems that this ability is at least par-
tially based on the perception of the relative motion of bodily
feature locations. Hence, we use the motion of relative fea-
ture locations as the visual input to our model. Seeing that
the noise-tolerance of subjects identifying biological motion
from point-light walkers decreases dramatically if the presen-
tation is inverted top-down (Pavlova & Sokolov, 2003), it ap-
pears that canonical views of motions affect biological mo-
tion recognition similar to how canonical views of objects in-
fluence object recognition (Shepard & Metzler, 1971). Thus,
we propose an NN model that learns canonical views of bio-
logical motion, later adjusting the internal frame of reference
to deduce another person’s perspective while monitoring her
or his biological motion patterns.

The neural network we propose segments a continuous sen-
sory stream in a common visual and proprioceptive space at
nonlinearities in the coincident motion dynamics. Persistent
spatiotemporal congruencies in this domain are memorized
by Hebbian-inspired learning rules. The model is scale and
translation invariant, because it processes directions of rela-
tive velocities in the considered sensory spaces. Assuming
that joint angles can be considered a part of the propriocep-
tion that can also be perceived visually, a view-point invari-
ant perception of observed biological motion is enabled by
rotating visual feature locations in accordance to propriocep-
tive experience. The model realizes this by top-down error
projections that minimize the divergence between perceived
positional motion and the previously associated angular mo-
tion. We show that our model is able to progressively adapt its
internal perspective on visual data in a self-supervised man-
ner, effectively slipping into another person’s shoes. In sum,
we present a model that is able to derive another person’s per-
spective by exploiting sensorimotor knowledge about the own
body kinematics. Since it seems necessary to know another
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person’s perspective to some degree for deriving her or his
current intentions, the cognitive capabilities we investigate
may set the stage for the development of the mirror neuron
system. Thus, the model offers one highly embodied, de-
velopmental path for bootstrapping the capability to imitate
another person, to derive her or his intentions, and even to be
empathetic.

A related NN modeling STS was developed previously
(Layher et al., 2014) to fuse visual information from mo-
tion and form pathways. This model did not include pro-
prioceptive dynamics and was not able to adjust the inter-
nal perspective. Another recent NN architecture modeled
view-independence during object interactions (Fleischer et
al., 2012), but it did neither learn correlations nor canonical
views, and it did not investigate the adjustment of the internal
perspective, either.

The remainder of the paper is structured as follows: First,
we introduce our point-light simulation environment to de-
scribe example inputs to the model. Then, we introduce the
neural architecture for matching dynamics, building canoni-
cal views, and progressive mental transformation. In this re-
spect, we also explain how to flexibly bootstrap the network’s
weights on the basis of noise without prior knowledge about
the input data. Next, we evaluate the model in three experi-
mental setups. Finally, we summarize the results, sketch-out
implications, and point to future research options.

Simulation Environment

To exemplify a setup of our model, we implemented a sim-
ple 2D, 2DOF arm-simulation (see Fig. 1). The arm exe-
cutes a continuous forward and backward swing, somewhat
similar to the arm of a walking person. The simulation pro-
vides the relative locations of all joints in retinal coordinates
(d;,dz,d3), as well as the (proprioceptive) shoulder and el-
bow joint angles (a,). Visual information can be trans-
formed by an experimenter (that is, rotated, mirrored, etc.)
before serving as input for the neural network model. The
corresponding visual rotation angle of the entire arm is de-
noted v in the following.

Figure 1: Point-light arm simulation. The big dot represents
the shoulder location, followed by elbow and wrist.

Neural Network Model

The model consists of three successive stages illustrated in
the overview given in Fig. 2. The first stage processes visual

and proprioceptive information. That is, it visually receives
relative locations of joints, and absolute joint angles by the
proprioceptive system. Subsequently, stage I convolves these
data separately into directional velocities. In this process,
mental rotation is applied to the visual information. Note that
the angular information is rotation invariant and may thus also
be derived from vision without transformation.

Stage II performs a modulatory normalization of infor-
mation and then pools the information from the visual and
proprioceptive streams of information. Stage III implements
a self-supervised adaptive resonance model. It uses instar-
learning to segment the sensory stream given by stage II and
to memorize permanent correlations, and outstar-learning to
recall or predict the learned correlations. Compared to the
classical unsupervised approach, this allows to derive a pre-
diction error, which is backpropagated through the network.
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Figure 2: Overview of the three-stage neural modeling ap-
proach. Boxes numbered with n indicate layers consisting
of n neurons. Black arrows describe weighted forward con-
nections between layers, while bullet-heads indicate modu-
lations. Dashed lines denote delay-connections. Red arrows
denote the backward propagation of prediction errors.

Stage I - Feature Processing

The visual input path of the network is driven by relative (2D)
coordinates of simulated arm joints. Analogously, the propri-
oceptive path of the model is driven by the (1D) angles be-
tween limbs. We momentarily assume that the coordinates
of hand, elbow and wrist and their according angles can be
identified and assigned to the respective input neurons reli-
ably. We chose the angular information as the only propri-
oceptive input, and assume that this information can also be
derived from vision upon action observation. Fig. 3 shows
the feature processing for a single, two-dimensional visual
limb relation in the visual path. The input is, for example,
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Figure 3: Processing path of a relative joint location

the hand-location minus the elbow-location d; = (x ) " in
retinal coordinates.

In interstage Ia, this information is transformed into a di-
rectional velocity by time-delayed subtraction. In this way,
the model becomes translation-invariant. In interstage Ib, the
information of directional velocity is transformed by means
of a presynaptic, gain field-like modulation (Andersen et al.,
1985), simulating a mental transformation. It is realized by
a two dimensional matrix multiplication of the directional

velocity (Ax Ay)T into a transformed directional velocity

(A Ay)":
(D))

When the rotation applies, the neurons a,b,c,d implement
the elements of the rotation matrix, which is driven by an ad-
justable rotation angle u realized by a bias neuron. While the
same mental rotation angle is applied to all visual informa-
tion, no mental rotation is applied to the single-dimensional
angular pathway. Interstage Ic implements directional con-
volution over time, converting the directional velocities into
direction-responsive activities. The weighing matrix is set up
in a combinatorial fashion, as every single dimension of the
feature input may increase, not change, or decrease. W is fur-
thermore normalized per direction. This procedure can easily
be performed for features of every dimensionality D, result-
ing in 3P — 1 direction sensitive neurons.

In all, stage I provides a population of neurons for each
sensory feature processed, which is either sensitive to direc-
tional velocities in the visual position of a feature (8 neurons)
or sensitive to directional velocities of a proprioceptive angle
(2 neurons).

Stage II - Normalization and Pooling

Stage II firstly accounts for a separate normalization of activ-
ity in the direction-sensitive populations, which is indicated
by feedback connections in Fig. 2. In this way, absolute ve-
locities are ignored and only the directions of changes in vi-
sual/proprioceptive information are taken into consideration,
by which the model becomes scale-invariant. Normaliza-
tion of a layer’s activity-vector can be accomplished by axo-
axonic modulation. The method we propose approximates a

real-time normalization of a layer’s output-vector to the Eu-
clidean length 1. In our model, a common neuron indexed
by j can formally be described by its input net;, its activation
function fj(net;), its output o;, some noise-term &; (which
we will address later) and the axonic modulatory factor a;:

oj=a;- fj(net;) ¢))
netjzﬁj—l—z:wij-o,-. )

Normalization of the neural activity in a layer a is realized by
modulating all neurons j of that layer by the output o, of a
single, layer-specific normalizing neuron (a; := 04)', with

_04(t—1)
04(t) = W? 3)

where 0; denotes a delayed moving average of the output of
neuron j:

0j(t) = (1=2)-0j(t=1)+A-0j(r—1) )

with decay parameter A € (0,1].

After normalization, all direction-sensitive fields are
pooled by one-to-one connections into a single, bigger pool-
ing layer, which serves as input to stage III. The connections
are weighted by 1/,/n, where n denotes the number of sensory
information sources being processed (5 in our example). In
this way, also the pooling layer input is normalized, which is
important for the applied learning rules.

Stage III - Correlation Learning

Stage III realizes a segmentation of the normalized and
pooled information from stage II (neurons indexed by i) by
means of a number of pattern responsive neurons (indexed j,
quasilinear in the range [0, 1]). Each pattern neuron becomes
the representative for a unique constellation of positional and
angular directions of variability. For segmentation, we use
instar learning (Grossberg, 1976a):

Un-owij(t)/dt = Aw;j(t) = 0;(t) - (net;(t) —wi;(t)) ,  (5)

with learning rate 1. The rule implies that the weight vector
W to each single pattern neuron j approaches the input vector
of the preceding layer at a rate determined by the pattern’s
activity. To avoid “catastrophic forgetting” of patterns, we
use winner-takes-all (WTA) competitive learning (Rumelhart
& Zipser, 1985) in the sense that only the weights to the most
active neuron in the pattern layer are adapted.

Grossberg’s “sparse patterns theorem” (Grossberg, 1976b)
states that learned patterns can in general only be guaranteed
to be stable if the initial weight vectors underlie a certain dis-
tribution, which depends on the actual subspace of input vec-
tors. Since the input space is initially typically unknown, we
bootstrap the weight vectors from scratch (w;;(fo) = 0) by a

'No square root is necessary for the normalization to length 1.
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neural noise mechanism. Initially, no sensory information is
propagated to the pattern layer (0;(fo) = 0). Instead, we add
normally distributed noise §; = A(0,06) to the input net; of
each neuron in the pattern layer (see Eq. 2), such that pat-
tern neurons are driven by the sum of signal and noise. Thus,
some random pattern neuron is initially the winner, and its
weight vector adapts from O to a novel pattern.

To account for the issue that the weight vectors are not be-
ing normalized to a length of 1 in this way — which is an
important property of instar-learning — we assume that the
excitability of a pattern neuron decreases proportional to its
overall synaptic strength:

fj(net;) = net; - min(||w;|| ", r) , (6)

where r denotes the upper excitability boundary. By that, the
weight vector to a pattern neuron is normalized if its length
exceeds r. In contrast to other approaches, this procedure
does not initialize the pattern neurons’ instar weights with a
random direction but changes their response randomly, and
with it, their probability to win. During the development of
a pattern, the winning probability is magnified by the angle
between the presented pattern and the weight vector of a pat-
tern neuron, while the relative influence of neural noise de-
creases. Thus, both the amount of neural noise — determined
by ¢ — and the initial responsiveness r play a major role for
the distribution of the network’s pattern capacity: While ¢ in-
fluences the probability that a developed pattern is retrained,
G - r determines the probability that an undeveloped pattern
wins over a developed one and is thus consulted to increase
the spatial resolution of this episode in dynamics.

We furthermore use predictive outstar learning as an atten-
tional gain control mechanism, by which stage III becomes
an adaptive resonance (or self-stabilizing) model (Grossberg,
1976¢). This is realized by feedback connections from the
pattern layer to the pooling layer, which are trained by

In-ow;i(t) /9t = Awji(t) = 0;(t—1) - (neti(r) —wji()) ,
)

where neuron j is the winner of time step #—1. This means
that the outgoing weight vector of the last most active pattern
neuron also approaches the input of the pooling layer (which
again activates the neuron itself) and thereby learns a predic-
tion over a marginal time span.

The absolute outstar learning signal is also used on forward
propagation from the winner of time step —1 as axo-axonic
modulatory gain in the pooling layer i:

ai(t) =1—|Aw;i(t)| € [0,1] . (8)

By this modulation, the last winner inhibits the pooling
layer’s output (via Eq. 1): the larger the error in and the larger
the reliability of the prediction, the stronger is the resulting
inhibition (cf. Eq. 7). In result, the pattern distinction is im-
proved further.

The prediction error is in turn also being backpropagated
top-down through the network to adapt the mental transfor-
mation in an error-minimizing manner (see Fig. 2). In our

model, the perspective adaptation is thus driven by the vi-
sual kinematics expected for the proprioceptive dynamics and
vice versa. The prediction error §;, which is backpropagated
over the outstar weights to a pattern neuron, can be described
by the weighted sum of negative prediction deviations in the

pooling layer?:

8j(t) = Y wii(t) - (wji(t) —neti(r)) , ©)

where j is again the winner neuron of time step # — 1. This is
equivalent to

8;(1) = lenet,‘(t)wj,-(t), (10)

under the assumption that the outstar weights have completed
training (hence have length 1). Thereby, the error of a pat-
tern neuron is determined by the angle between the predicted
and the actual pooled information. Assuming furthermore
that the predictions have been learned correctly, the error-
driven adaptation of the network’s parameters maximizes the
response of patterns that represent the momentary constella-
tion of positional and angular dynamics best.

Experiments

In the following, we evaluate our NN model on psycholog-
ical findings. The network architecture was parametrized
with 6 = 0.002, r = 100, a learning rate of n = 0.04 for in-
star/outstar and mental rotation learning, and with 64 neurons
in the pattern recognition layer. We took the average of 100
independent runs for all experiments.

Baby-Mirror-Test

In a psychological experiment done by Rochat and Morgan
(1995), two real-time videos with different spatial transfor-
mations were presented to infants, showing their own leg-
movements. The infants paid significantly more attention to
a mirrored view of their movements than to an untransformed
presentation. This underlines the importance of movement
directionality in self-perception.

In our experiment, we interpret the attention of an infant
to be guided by surprise (see e.g. Itti & Baldi, 2006), or an
error in the prediction of visual feedback, assuming that a
normal self-perspective has been learned. To show that an
exogenous visual transformation produces such an error, we
trained our model on the specified arm simulation. The for-
ward and backward swings of the arm were clearly distin-
guished after presenting the whole movement (forward and
backward) 300 times. We then decorrelated the visual feed-
back from the associated proprioception by left-right inver-
sion of the network’s visual input. As can be seen in Fig. 4,
the prediction error (RMS of the winner pattern neuron) rises
and stays constant since we neither allow further learning nor

2All other backpropagation terms (including those for gain
fields) and the weight adaptation rules for the model’s internal per-
ception angle u follow from gradient descent.
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Figure 4: Baby-mirror-test. The prediction error decreases
during training, and increases afterwards when the simulated
vision is left-right inverted.

the adjustment of the model’s internal perspective u, effec-
tively simulating the surprise of the babies when confronted
with an inverted video display.

Canonical Views

View-based representations of goals and biological motion
have been found in the macaque premotor cortex area F5
(Caggiano et al., 2011) as well as in the (posterior) STS,
respectively, which are both considered to be part of — or
contributing to — the mirror neuron system. Those view-
dependent cells are assumed to play a part in the resulting
view-independence of action recognition associated to further
cells found both in F5 (Caggiano et al., 2011) and (anterior)
STS (Jellema & Perrett, 2006). We show that our model is
able to learn multiple view-dependent representations of bio-
logical motion, which we term ‘canonical views’.

In this experiment, we trained the model on three ro-
tated perspectives (v € {0,120,—120}°) of the arm move-
ment and repeated that training 4 times. 50 full arm move-
ments were presented in each perspective, resulting in 600
full arm swings altogether. As in the baby mirror test, we did
not allow the adaptation of p.

Fig. 5 shows that multiple canonical views could generally
be learned by the same network without relearning patterns in
between: The bar plot counts the number of pattern neurons
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Figure 5: Separate representation of canonical views and mo-
tion directions. The three canonical views and two motion
directions (color-coded) are learned in six disjunct groups of
pattern neurons.
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Figure 6: Learning multiple canonical views. The prediction
error decreases for each canonical view trained repeatedly.
The smaller peaks in the error when the same view is shown
again indicate pattern recognition.

that were exclusively winning in all repetitions of a single per-
spective, stacked for the forward and backward swing. Both
the forward and backward swings as well as the canonical
views of the whole movement were represented by a com-
parable amount of patterns, while movements learned early
were slightly favored in terms of the number of patterns.

Fig. 6 shows the trend of the prediction error over time.
It can be seen that the prediction error decreased separately
for each trained canonical view. Thus, several, independent
canonical views can be learned and maintained by the NN
model.

Mental Transformation

Motivated by the fact that humans appear to mentally ro-
tate objects to their respective closest, known canonical view
(Shepard & Metzler, 1971), in the final experiment we in-
vestigate if the model is able to transform biological mo-
tion to the closest canonical motion view. In order to show
that the model is able to change its internal perspective using
the expected directional correlations, we set the exogenous
rotation v of the visual feedback to a random value within
[—180,180]° after learning three canonical views as in the
last experiment. In doing so, we did not allow new patterns
to arise, but allowed the model/mental rotation u to adapt ac-
cording to the prediction error backpropagated to the mental
rotation module via the individual Ib stages in the visual path-
way.

Fig. 7 shows the adaptation of the overall rotation (v + u)
over time for all tested trials. The model adapted its men-
tal rotation angle u progressively to the nearest (in terms of
orientation difference) canonical view that was learned be-
fore without explicit knowledge about the simulation angle v.
Thus, the NN model is able to derive the perspective of an-
other person (in this case a simple arm) by learning to asso-
ciate visual motion of relative joint locations with the angular
motion of the joints. This adaptation is driven by the error in
self-generated predictions.
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Figure 7: Perspective taking. When a novel view on the
trained motion is shown, the perspective gradually converges
to the nearest canonical view.

Summary, Conclusion & Future Work

The presented results have shown that our NN model is able
to simulate (a) surprise when being presented with unex-
pected directionalities in visual kinematics; (b) the learning
of multiple canonical views of biological motion and thus the
generation of both, view-dependent and view-independent vi-
sual mirror neurons; (c) the prediction-error-driven adapta-
tion of the visual perspective to derive the perspective of an-
other person.

Despite the rather large degree of abstraction in our model,
our experiments confirm that directionalities in a visuo-
proprioceptive space alone may suffice to put oneself into
another person’s shoes. While the brain may certainly use
other clues as well, it appears that the perception of biolog-
ical motion plays a crucial factor (Pavlova, 2012). In effect,
our model offers an embodied pathway towards learning mir-
ror neuron capabilities, imitating other people, deriving their
intentions, and even showing empathy. Further model eval-
uations may even yield implications for understanding social
dysfunctions, such as autism.

Despite the capabilities of the model, further investigations
are necessary. Most importantly, here we assigned bodily fea-
tures to neural inputs directly. However, when visual input
is presented, the observed features still need to be properly
mapped to the respective body parts and thus to the corre-
sponding neural inputs. Also, additional information sources
may be considered such as motor activity, the axis of gravity,
information about the floor / the ground, acceleration, or fur-
ther visual features about the observed body. Moreover, the
capability of dealing with information missing or distorted
on action observation needs to be further investigated. Fi-
nally, along with object-relative information, a model for self-
supervised and view-independent imitation learning could be
established.
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